CSE-571
Sampling-Based Motion Planning: RRTs

Various slides based on those from Pieter Abbeel, Zoe McCarthy
Many images from Lavalle, Planning Algorithms

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

= Basicidea:

= Build up a tree through generating “next states” in the tree by
executing random controls

= However: not exactly above to ensure good coverage

| How to Sample

Rapidly exploring Random Tree (RRT)

= Select random point, and expand nearest vertex towards it

= Biases samples towards largest Voronoi region

2/2/26

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

= Select random point, and expand nearest vertex towards it

= Biases samples towards largest Voronoi region

X
(new

—_—

X
near

init

Source: LaValle and Kuffner 01}

Rapidly exploring Random Tree (RRT)

RRT Practicalities

GENERATE RRT (init, K, At)
1 T.init(@ini);
2 for k=1to K do
3 Zrand — RANDOM_STATE();
4 Tnear ¢ NEAREST NEIGHBOR(2yand, T);
5 4+ SELECTINPUT (@rand, Tnear);
6 Tpew — NEW_STATE(2,,eqr, u, At);
7 T .add_vertex(zpey);
8 T .add-edge(Tnear, Tnew, u);
9 Return 7

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly

s NEAREST_NEIGHBOR(X,4nq, T): need to find (approximate)
nearest neighbor efficiently

= KD Trees data structure (upto 20-D) [e.g., FLANN]

= Locality Sensitive Hashing

» SELECT_INPUT (Xrand, Xnear)

= Two point boundary value problem

= If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

2/2/26

RRT Extension

No obstacles, holonomic:

Non-holonomic: approximately (sometimes as approximate as picking best of a
few random control sequences) solve two-point boundary value problem

Growing RRT

390 iterations

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

9
Bi-directional RRT
= Volume swept out by unidirectional RRT: = Volume swept out by bi-directional RRT:
X6
Xnew
(Xnew)
Xne;r \Xfand *nar .
L goal
init
= Difference more and more pronounced as dimensionality increases
11

10
Multi-directional RRT
= Planning around obstacles or through narrow passages can
often be easier in one direction than the other
fn
@ 4 2
bA
12

2/2/26

RRT*

= Asymptotically optimal

= Main idea:

(current) parent

= Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original

13

RRT*

Algorithm 6: RRT*

@

16

1V {zimic}; B« 0
2 fori=1,...,ndo

Zrand < SampleFree;;
Tnearest < Nearest(G = (V, E), Trana);
Tnew ¢+ Steer(Tncarest; Trand) ;
if ObtacleFree(Zncarest: Tnew) then
Xucar = Near(G = (V, E), Zyew, min{yrr- (log(card (V))/ card (V) /4, 7}) ;
Ve VU {Zaen ks
Tmin + Tnearest) Cmin < COSE(Tnearest) + ¢(Line (Znearest, Tnew));
foreach Zgear € Xpear do // Connect along a minimum-cost path
if CollisionFree(Zncar; Znew) A COSt(Znear) + c(Line(Znear; Tnew)) < Cmin then
|| @min < Tucar; Cmin 4 CoSt(Tnear) + c(Line(Zncar, Tnew))

E E U {(@min, Taew) };

foreach Tucar € Xncar do // Rewire the tree
if CollisionFree(Tuew; Tnear) A COSt(Tnew) + c(Line(Tnew, Tnear)) < COSE(Tnear)
then Tparent + Parent(Tnear);
E « (E\ {(zparent; Tnear) }) U { (@new, Zuear)}

17 return G = (V, E);

Source: Karaman and Frazzoli

14

RRT

RRT*

Source: Karaman and Frazzoli

6

Source: Karaman and Frazzoli

15

16

2/2/26

Smoothing

Additional Resources

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

- In practice: do smoothing before using the path

= Shortcutting:

= along the found path, pick two vertices X, Xi, and try to connect them
directly (skipping over all intermediate vertices)

= Nonlinear optimization for optimal control

= Allows to specify an objective function that includes smoothness in
state, control, small control inputs, etc.

Marco Pavone (http://asl.stanford.edu/):

= Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf

= Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf

Sidd Srinivasa (https://personalrobotics.cs.washington.edu/)

= Batch informed trees: https://robotic-esp.com/code/bitstar/

= Expensive edge evals: https://arxiv.org/pdf/2002.11853.pdf

Adam Fishman / Dieter Fox (https://rse-lab.cs.washington.edu/)
= Motion Policy Networks: https://mpinets.github.io/

Lydia Kavraki (http://www.kavrakilab.org/)

= Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html

17

18

2/2/26

http://asl.stanford.edu/
https://arxiv.org/pdf/1705.02403.pdf
https://arxiv.org/pdf/1709.05448.pdf
https://personalrobotics.cs.washington.edu/
https://robotic-esp.com/code/bitstar/
https://robotic-esp.com/code/bitstar/
https://robotic-esp.com/code/bitstar/
https://arxiv.org/pdf/2002.11853.pdf
https://mpinets.github.io/
https://mpinets.github.io/
https://mpinets.github.io/
https://www.ucsdarclab.com/neuralplanning
http://www.kavrakilab.org/
http://www.kavrakilab.org/nsf-nri-1317849.html
http://www.kavrakilab.org/nsf-nri-1317849.html
http://www.kavrakilab.org/nsf-nri-1317849.html
http://www.kavrakilab.org/nsf-nri-1317849.html
http://www.kavrakilab.org/nsf-nri-1317849.html

