CSE-P571

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

Motion/Path Planning

* Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

» Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

» Generated motion/path should (objective):
be any feasible path

minimize cost such as distance, time, energy, risk, ...

CSE-P590a: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Examples (of w

hat is usually referred to as path planning):
1 B i ~

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

A s | 4
e IS

Goal Configuration

Start
Configuration

Piano Movers " problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

Maxim Likhachev

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

Motion/Path Planning

Path/Motion Planner

lpath

Controller

lcommands

map update pose update

Motion/Path Planning

Path/Motion Planner

lpath

Controller

lcommands

map update pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)

Uncertainty and Planning

* Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

* Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
- plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Maxim Likhachev

Uncertainty and Planning

* Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure
g
- pose
M Planning approaches: re-plan every time
- deterministic plarming: sensory data arrives or
. . . robot deviates off its path
- assume some (i.e., most likely) env1ronme]12,7{) deviates off its path
- plan a single least-cost trajectory under t+*
_ ll?e—pl an asgnew in formatio;]"l am:/yes re-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
- plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

* Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

* Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything

- plan a policy that dictates what to do for each outcome of sensing/action

and minimizes expected cost-to-goal

X computationally MUCH harder
- re-plan if unaccounted events happen

10

Example

Urban Challenge Race, CMU team, planning with Anytime D*

Outline

* Deterministic planning
- constructing a graph
- search with A*
- search with D*

11

Maxim Likhachev

12

Outline

* Deterministic planning
- search with A*
- search with D*

Planning via Cell Decomposition

» Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

13

14

» Approximate Cell Decomposition:

discretize

gs convert into a graph

Planning via Cell Decomposition

- construct a graph and search it for a least-cost path

@)
@@

planning map

search the graph
for a least-cost path
from Sgzart tO Sgoar

Planning via Cell Decomposition

» Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize
e

eight-connected grid
(one way to construct a graph)

Se

planning map

for a least-cost path

)G (s
convert into a graph_ ‘@.{ search the graph

@ from Syiar t0 Sgoat

15

Maxim Likhachev

16

Planning via Cell Decomposition

 Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of
arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic
robots

Planning via Cell Decomposition
* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

by “

.‘
o == replicate it°
discretize . online
17 18
Planning via Cell Decomposition Outline

* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness ¢

N
action template s, &‘

4 > s;
C(s4,57) = 100

m . ., C(s,89) = s Cls,59 =5
replicate it "1 Wl e
online § s,

* Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

19

Maxim Likhachev

20

A* Search

» Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s 1o sgoal

e

s,
the cost of a shortest path 8
from ssurt to s found so far

A* Search

» Computes optimal g-values for relevant states

at any point of time:

heuristic function

one popular heuristic function — Euclidean distance

21 22
A* Search A* Search
» Computes optimal g-values for relevant states + Computes optimal g-values for relevant states
ComputePath function ComputePath function
while(s,,,, is not expanded) while(s,,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN; remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,; insert s into CLOSED;
for every successor s ” of s such that s " not in CLOSED for every successor s " of s such that s " not in CLOSED
ifg(s) > g(s) +e(ss) ifg(s) > g(s) +e(ss) 8(52) > &(Sstar) + C(SstarnsS2)
gls) =gls) +cls.s); g(s’) =g(s) +clss’);
insert s " into OPEN;, insert s " into OPEN;
g=o g= o g=o g=©
=2 h=1 =2 h=1
g=0 —2 g=w g=0 —2 . g=ow
h=3 = h=3 -

CLOSED = {} ./‘/ h=0 CLOSED =} h=0
OPEN = {Ssiars} ! OPEN = {Sqtar) ! /
next state to expand: Sy, @ 3 @// next state to expand.: Sy, @ 3 @

g=© g=o g=© g= o

h=2 h=1 h=2 h=1

23 24

Maxim Likhachev

ComputePath function
while(s,,. is not expanded)

insert s into CLOSED;

ifg(s’) > gls) +clss’)
8s’) =g(s) +clss);
insert s " into OPEN;

CLOSED = {Ssans}
OPEN = {53}
next state to expand: s;

A* Search

» Computes optimal g-values for relevant states

remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;

for every successor s~ of s such that s " not in CLOSED

ComputePath function
while(s,,,; is not expanded)

insert s into CLOSED;

ifg(s’)>g(s) +clss’)
gs’) =g +cfss’);
insert s " into OPEN;

CLOSED = {S54r1,82}
OPEN = {s,,54}
next state to expand.: s,

A* Search

» Computes optimal g-values for relevant states

remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;

for every successor s " of s such that s " not in CLOSED

g=w g=w g=2 g=
h=2 h=1 h=2 h=1
25 26
A* Search A* Search
» Computes optimal g-values for relevant states + Computes optimal g-values for relevant states
ComputePath function ComputePath function
while(s,,,, is not expanded) while(s,,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN; remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,; insert s into CLOSED;
for every successor s ” of s such that s " not in CLOSED for every successor s " of s such that s " not in CLOSED
ifg(s’) >g(s) +c(ss’) ifg(s’) > g(s) +c(ss’)
es’) =gs) +clss); g(s’) =g(s) +c(s5);
insert s " into OPEN;, insert s " into OPEN;
g=1 g=3 g=1 g=3
=2 h=1 =2 h=1
e (2, AP OSen O
CLOSED = {Ss1ar1,52,51} h=0 CLOSED = {S54r,52,51,5 4} — h=0
OPEN = {545 gout} ! OPEN = {53,5goul} ! /@
next state to expand. s, . 3 @ next state to expand: Sgoal @ 3 @
g=2 g= g=2 g=35
h=2 h=1 h=2 h=1
27 28

Maxim Likhachev

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(s,,. is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > g(s) +cfss’)
8s’) =gls) +c(ss’);
insert s " into OPEN;

SR
CLOSED = {sza"t;52,51»54,sgaal} V 2 =0
OPEN = fs3} () J1 1
done , @/

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(s,,,; is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s " of s such that s " not in CLOSED
ifg(s’) > gls) +e(ss’)
8(s’) =g(s) +e(ss);
insert s " into OPEN;
g -
h =

1
2 h=1

OSSR ONEY
e |

1

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound —3>@
g=3

we can now compute a least-cost path g=2
h=2 h=1

29

30

A* Search

* Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

* Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the

computations
g=1 g=3
=2 =l
g=0 g=5

L

A* Search

* Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

+ Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations

31

Maxim Likhachev

32

Effect of the Heuristic Function

* A* Search: expands states in the order of /= g+h values

Effect of the Heuristic Function

* A* Search: expands states in the order of /= g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

33

34

Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =
g+eh values, ¢ > I = bias towards states that are closer to
goal

solution is always e-suboptimal:
cost(solution) < e-cost(optimal solution)

. sgoal

Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of /' =
g+eh values, ¢ > [= bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10° states

&l

planning with ARA* (anytime version of weighted A*)

35

Maxim Likhachev

36

Effect of the Heuristic Function Outline

* Deterministic planning
- constructing a graph
- search with A*

* planning in 8D (<x,y> for each foothold)
* heuristic is Euclidean distance from the center of the body to the goal location
cost of edges based on kinematic stability of the robot and quality of footholds

d 4

planning with R* (randomgd version of weighted A*)

Joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

37 38

Incremental version of A* (D*/D* Lite) Motivation for Incremental Version of A*

* Reuse state values from previous searches

. -
Robot needs to re p lan whenever cost of least-cost paths 10 ., initially

— new information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path g | T

ATRYV navigating o 8716
initially-unknown environment planning map and path 110
M . ann
ZyRE 8 518 § 518
cost of least-cost paths to s, after the door turns out to be closed
-)| 1 1
Seaay] 1
716
S[STRTSTR[S]R]S®

Maxim Likhachev

Motivation for Incremental Version of A*

» Reuse state values from previous searches
cost of least-cost paths 1o Sy,q initially

7
7
7
7
7
-

f N n 63

oo = -
o o = oo

These costs are optimal g-values if search is

done backwards

7
7
7
3 7
114 8

H [N e e o
cost of least-cost paths to S,,q after the door turns out to be closed

2 RO EN Y 4 Y Y

Motivation for Incremental Version of A*

» Reuse state values from previous searches

cost of least-cost paths to S, initially

cost of least-cost paths 10 S,/

111
. 1 Tsgear
h Wil
4 1110 X076 (e)
1[10 | 3 1 2 12
110 716
T 7 | 4
FNEAN 7
a3 777
1 ST s ey

41

42

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 s, initially

4 7 6 6
y = ;
4 7 313
7 5 T
4 . 7 E Sgoal] |
5 (N
A 0 8765 22702
4 0 5 [N)
0 7165 2 N R
1 716 I
p

ESESE
* Would # of changed g-values be
cost of least-cost paths to 5, yery different for forward A*?

43
i 16|

Ey
3

b oo o] o

b poeofsfn

ool (|~ <l 2| [

EANIENENEY BN

cost of least-cost paths 10 ., initially

Motivation for Incremental Version of A*
* Reuse state values from previous searches

5ol

199
oo = | pofs =

1
I
33

I

work needs to be done if robot

cost of least-cost paths to s, deviates off its path?
7 j 4
7 313
7 212
) 7 111
7 Sgoall 1
716
s
7
S[STR8TST8[ST]SR

43

Maxim Likhachev

44

11

Incremental Version of A*
» Reuse state values from previous searches

initial searc

initial search by backwards A*
T I

second search by backwards A*

Anytime Aspects

|
T

el

1. |

"i
\

45 46
Anytime Aspects Searching the Graph
* Incremental behavior of Anytime D*:
cost = 133,736
[£=3.0
13,000 # expands = 1,715
11,000
@ cost = 77,345
8 £=10
expands = 14,132
9,000
l
7,000
0 0.2 04 0.6
time (secs) initial path a path afier re-planning
48
47 48

Maxim Likhachev

12

Searching the Graph
* Performance of Anytime D* depends strongly on
heuristics /4(s): estimates of cost-to-goal

cost-to-goal)

should be consi and admissible (never over

h(S) Seoal

Searching the Graph
* In our planner: i(s) = max(hmecn(s), henv(s)), Where
— Nimeen(s) — mechanism-constrained heuristic

— hen(s) — environment-constrained heuristic

henv(s) — considers only environment

hmeen(s) — considers only dynamics constraints
constraints and ignores dynamics

and ignores environment

AN

51

Maxim Likhachev

49 50
49 50
Searching the Graph Heuristics
* In our planner: /i(s) = max(hmeci(s), henv(s)), Where
— Nimecn(s) — mechanism-constrained heuristic
— hen(s) — environment-constrained heuristic
hmech(s) — considers only dynamics constraints henv(s) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination
\ heuristic states time
expanded (secs)
h 2,019 0.06
hop 26,108 1.30
i hraw 124794 3.49
sl
52

13

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

Summary

* Deterministic planning
- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDRP exist!!

53

55

Maxim Likhachev

54

14

