

CSE-P571

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

1

Motion/Path Planning

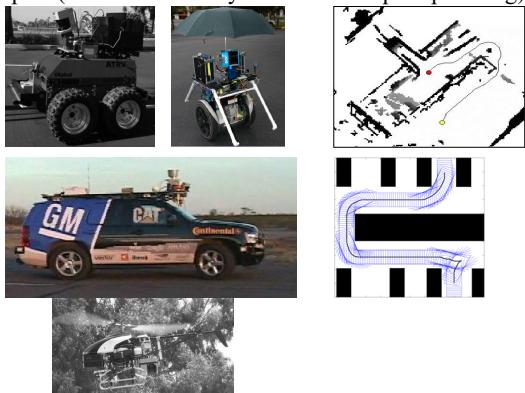
- Task:
find a feasible (and cost-minimal) path/motion from the current configuration of the robot to its goal configuration (or one of its goal configurations)
- Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot
- Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-P590a: Courtesy of Maxim Likhachev, CMU

2

Motion/Path Planning

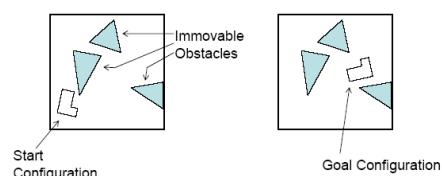
Examples (of what is usually referred to as path planning):



3

Motion/Path Planning

Examples (of what is usually referred to as motion planning):



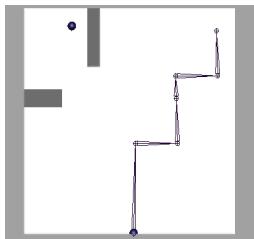
Piano Movers' problem

the example above is borrowed from www.cs.cmu.edu/~avm/tutorials

4

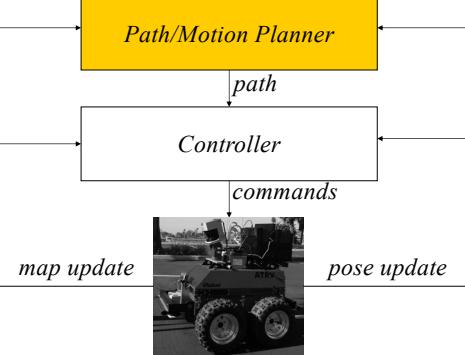
Motion/Path Planning

Examples (of what is usually referred to as motion planning):



Planned motion for a 6DOF robot arm

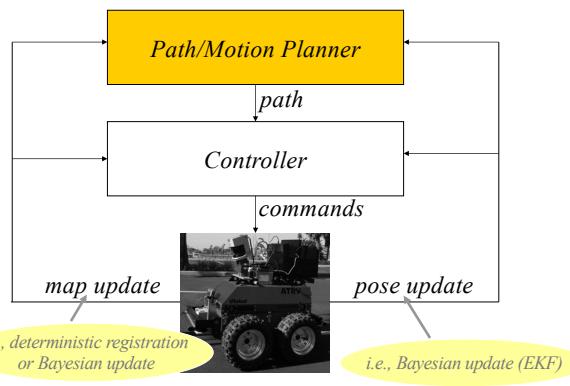
Motion/Path Planning



5

6

Motion/Path Planning



7

Uncertainty and Planning

- Uncertainty can be in:
 - prior environment (i.e., door is open or closed)
 - execution (i.e., robot may slip)
 - sensing environment (i.e., seems like an obstacle but not sure)
 - pose
- Planning approaches:
 - deterministic planning:
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives
 - planning under uncertainty:
 - associate probabilities with some elements or everything
 - plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
 - re-plan if unaccounted events happen

8

Uncertainty and Planning

- Uncertainty can be in:
 - prior environment (i.e., door is open or closed)
 - execution (i.e., robot may slip)
 - sensing environment (i.e., seems like an obstacle but not sure)
 - pose
- Planning approaches:
 - deterministic planning:
 - assume some (i.e., most likely) environment
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives
 - planning under uncertainty:
 - associate probabilities with some elements or everything
 - plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
 - re-plan if unaccounted events happen

*re-plan every time
sensory data arrives or
robot deviates off its path*
re-planning needs to be FAST

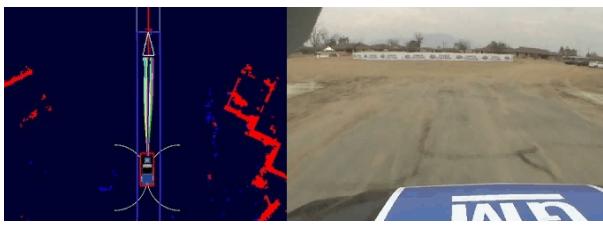
9

Uncertainty and Planning

- Uncertainty can be in:
 - prior environment (i.e., door is open or closed)
 - execution (i.e., robot may slip)
 - sensing environment (i.e., seems like an obstacle but not sure)
 - pose
- Planning approaches:
 - deterministic planning:
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives
 - planning under uncertainty:
 - associate probabilities with some elements or everything
 - plan a policy that dictates what to do for each outcome of sensing/action and minimizes expected cost-to-goal
 - re-plan if unaccounted events happen

10

Example



*Urban Challenge Race, CMU team, planning with Anytime D**

11

Outline

- Deterministic planning
 - constructing a graph
 - search with A*
 - search with D*

12

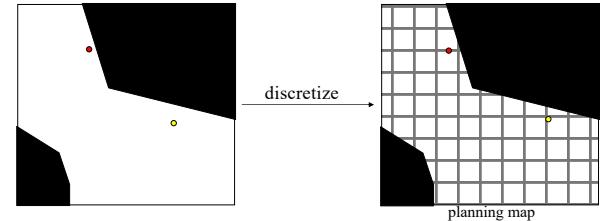
Outline

- Deterministic planning
 - **constructing a graph**
 - search with A*
 - search with D*

13

Planning via Cell Decomposition

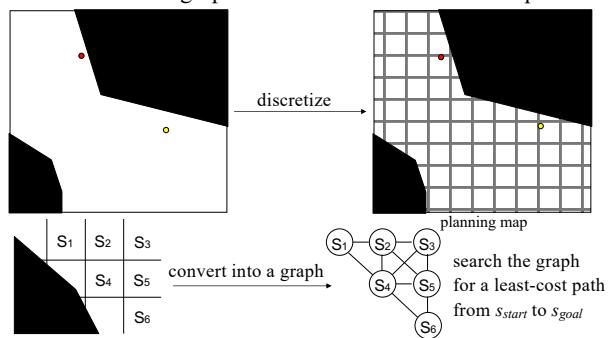
- Approximate Cell Decomposition:
 - overlay uniform grid over the C-space (discretize)



14

Planning via Cell Decomposition

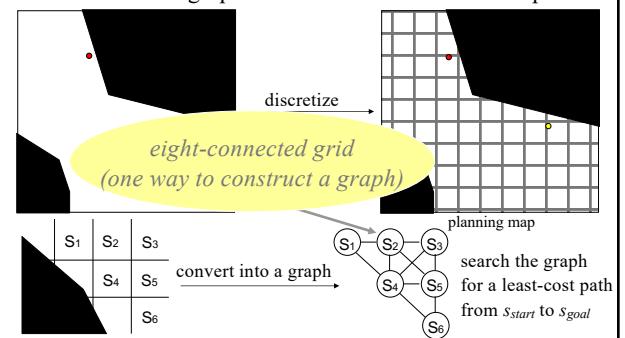
- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path



15

Planning via Cell Decomposition

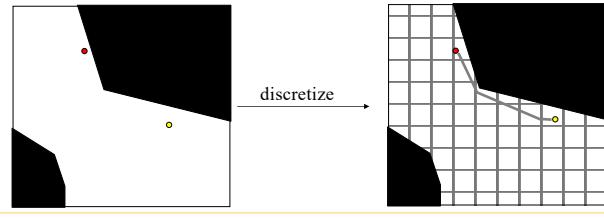
- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path



16

Planning via Cell Decomposition

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity and representation of arbitrary obstacles
 - Problem: transitions difficult to execute on non-holonomic robots

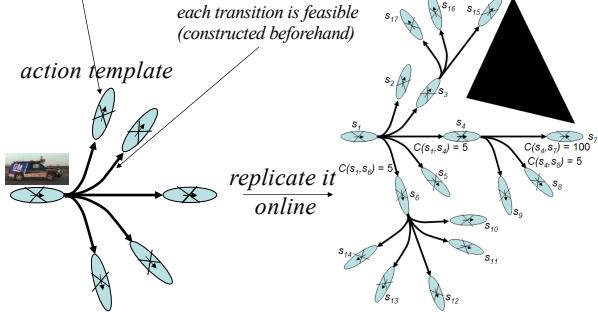


17

Planning via Cell Decomposition

- Graph construction:
 - lattice graph

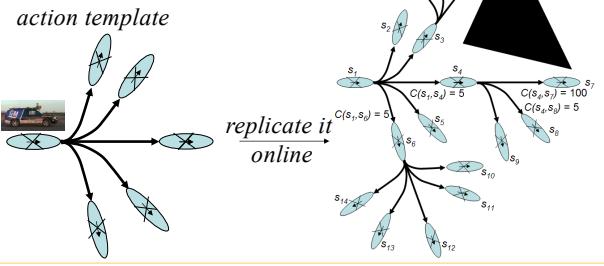
outcome state is the center of the corresponding cell
each transition is feasible (constructed beforehand)



18

Planning via Cell Decomposition

- Graph construction:
 - lattice graph
 - pros: sparse graph, feasible paths
 - cons: possible incompleteness



19

Outline

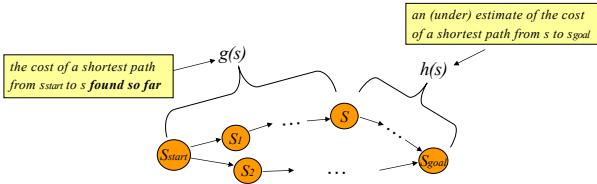
- Deterministic planning
 - constructing a graph
 - **search with A***
 - search with D*
- Planning under uncertainty
 - Markov Decision Processes (MDP)
 - Partially Observable Decision Processes (POMDP)

20

A* Search

- Computes optimal g-values for relevant states

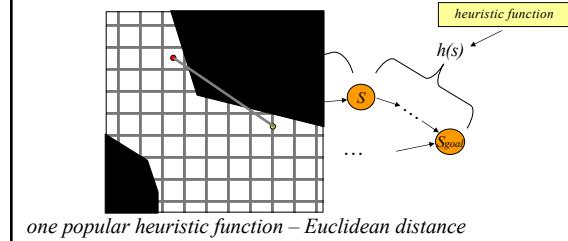
at any point of time:



A* Search

- Computes optimal g-values for relevant states

at any point of time:



21

22

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

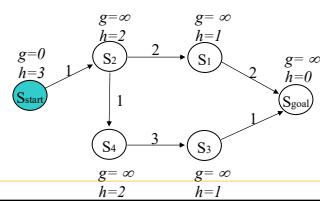
$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;

$CLOSED = \{\}$

$OPEN = \{s_{start}\}$

next state to expand: s_{start}



A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;

$CLOSED = \{\}$

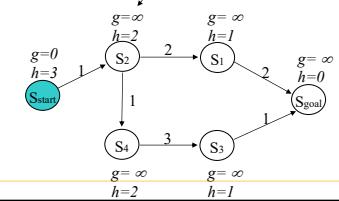
$OPEN = \{s_{start}\}$

next state to expand: s_{start}

$g(s_2) > g(s_{start}) + c(s_{start},s_2)$

$g(s_2) = g(s) + c(s,s');$

insert s' into $OPEN$;



23

24

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

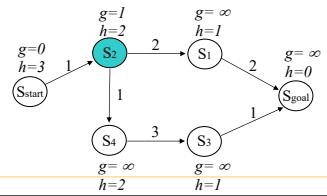
$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;

$CLOSED = \{s_{start}\}$

$OPEN = \{s_2\}$

next state to expand: s_2



25

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

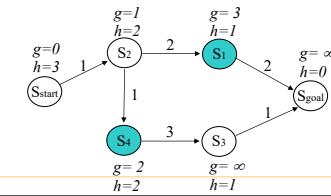
insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;



26

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

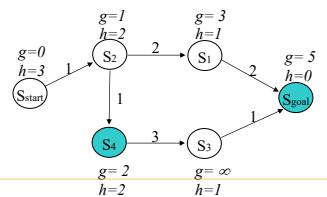
$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;

$CLOSED = \{s_{start}, s_2, s_1\}$

$OPEN = \{s_4, s_{goal}\}$

next state to expand: s_4



27

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

insert s into $CLOSED$;

for every successor s' of s such that s' not in $CLOSED$

if $g(s') > g(s) + c(s,s')$

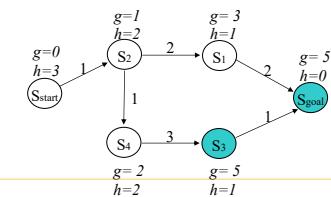
$g(s') = g(s) + c(s,s');$

insert s' into $OPEN$;

$CLOSED = \{s_{start}, s_2, s_1, s_4\}$

$OPEN = \{s_3, s_{goal}\}$

next state to expand: s_{goal}



28

A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

 remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

 insert s into $CLOSED$;

 for every successor s' of s such that s' not in $CLOSED$

 if $g(s') > g(s) + c(s, s')$

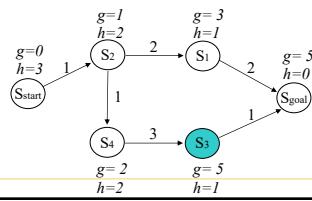
$g(s') = g(s) + c(s, s');$

 insert s' into $OPEN$;

$CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}$

$OPEN = \{s_3\}$

done



A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

 remove s with the smallest $[f(s) = g(s) + h(s)]$ from $OPEN$;

 insert s into $CLOSED$;

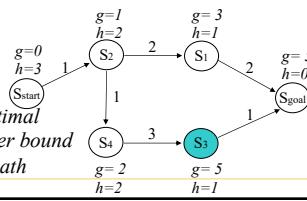
 for every successor s' of s such that s' not in $CLOSED$

 if $g(s') > g(s) + c(s, s')$

$g(s') = g(s) + c(s, s');$

 insert s' into $OPEN$;

for every expanded state $g(s)$ is optimal
for every other state $g(s)$ is an upper bound
we can now compute a least-cost path

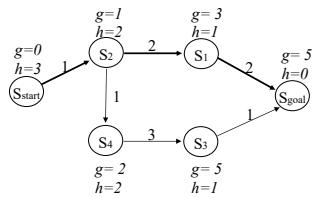


29

30

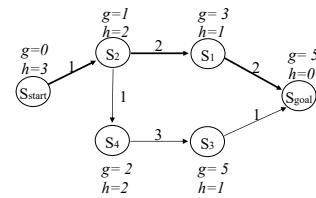
A* Search

- Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations



A* Search

- Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations



31

32

Effect of the Heuristic Function

- A* Search: expands states in the order of $f = g + h$ values

33

Effect of the Heuristic Function

- A* Search: expands states in the order of $f = g + h$ values

for large problems this results in A quickly running out of memory (memory: $O(n)$)*

34

Effect of the Heuristic Function

- Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

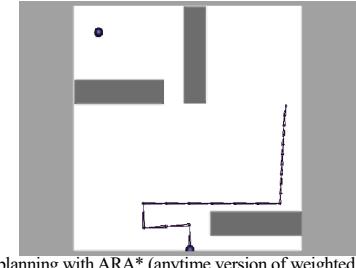
*solution is always ε -suboptimal:
 $\text{cost}(\text{solution}) \leq \varepsilon \text{cost}(\text{optimal solution})$*

35

Effect of the Heuristic Function

- Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

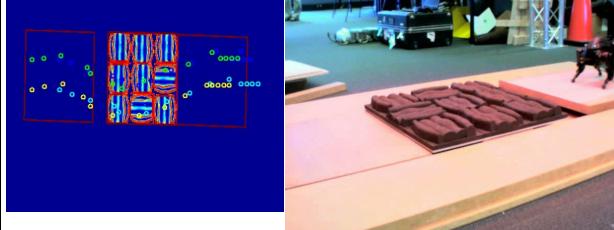
20DOF simulated robotic arm
state-space size: over 10^{26} states



36

Effect of the Heuristic Function

- planning in 8D (x, y for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds



planning with R* (randomized version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

Outline

- Deterministic planning
 - constructing a graph
 - search with A*
 - search with D*

37

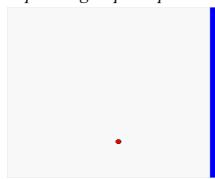
38

Incremental version of A* (D*/D* Lite)

- Robot needs to re-plan whenever
 - new information arrives (partially-known environments or/and dynamic environments)
 - robot deviates off its path

A photograph of an ATRV (Autonomous Terrestrial Robot Vehicle) navigating a parking lot. The ATRV is a small, red, tracked vehicle with a white sensor mast on top. It is moving towards the right of the frame. The background shows a parking lot with several cars and a large tree. The text "ATRV navigating initially-unknown environment" is overlaid at the top of the image.

planning map and path



Motivation for Incremental Version of A*

- Reuse state values from previous searches

$$\text{cost of least-cost paths to } s_{goal} \text{ initially}$$

cost of least-cost paths to s after the door turns out to be closed

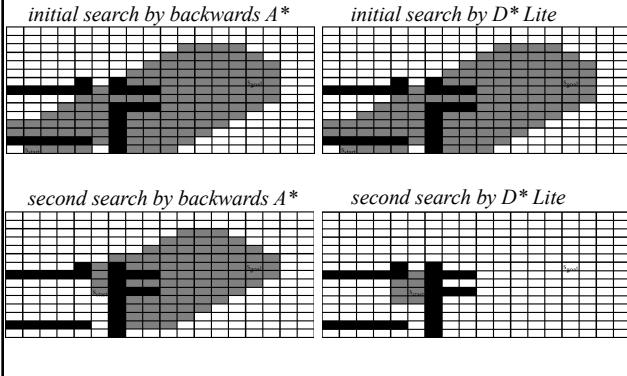
Cost of test-cost pairs to $goal$ after the door turns out to be										
i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_8	i_9	i_{10}	i_{11}
14	13	12	11	10	9	8	7	6	6	6
14	13	12	11	10	9	8	7	6	5	5
14	13	12	11	10	9	8	7	6	5	4
14	13	12	11	10	9	8	7	6	5	3
14	13	12	11	10	9	8	7	6	5	3
14	13	12	11	10	9	8	7	6	5	2
14	13	12	11	10	9	8	7	6	4	2
14	13	12	11	10	9	8	7	6	4	1
14	13	12	11	10	9	8	7	6	3	0
14	13	12	11	10	9	8	7	6	3	Equal
15	14	13	12	11	10	9	8	7	6	5
15	14	13	12	11	10	9	8	7	6	4
15	14	13	12	11	10	9	8	7	6	3
15	14	13	12	11	10	9	8	7	6	2
15	14	13	12	11	10	9	8	7	6	1
15	14	13	12	11	10	9	8	7	6	0
15	14	13	12	11	10	9	8	7	7	Equal
15	14	13	12	11	10	9	8	7	7	3
15	14	13	12	11	10	9	8	7	7	2
15	14	13	12	11	10	9	8	7	7	1
15	14	13	12	11	10	9	8	7	7	0

39

40

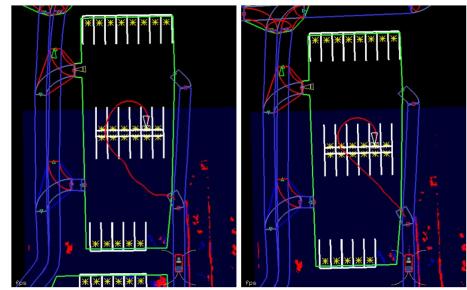
Incremental Version of A*

- Reuse state values from previous searches



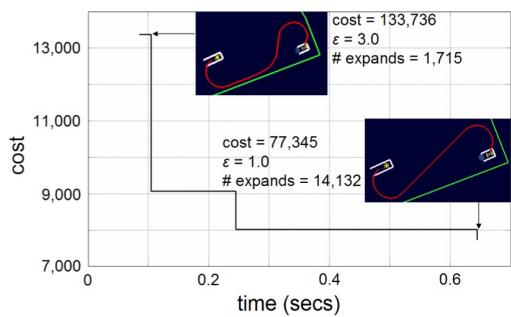
45

Anytime Aspects



46

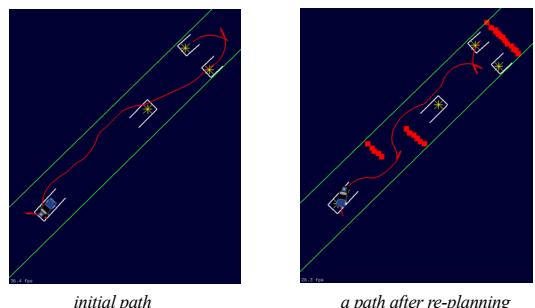
Anytime Aspects



47

Searching the Graph

- Incremental behavior of Anytime D*:

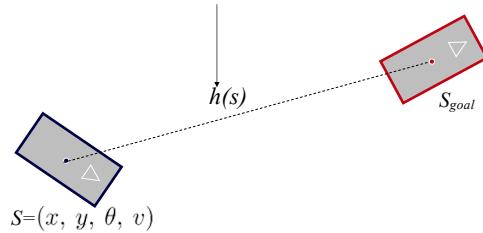


48

Searching the Graph

- Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)



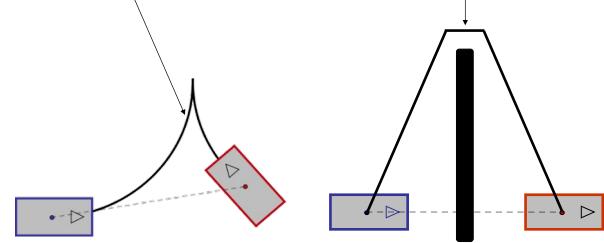
49

Searching the Graph

- In our planner: $h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s))$, where
 - $h_{\text{mech}}(s)$ – mechanism-constrained heuristic
 - $h_{\text{env}}(s)$ – environment-constrained heuristic

$h_{\text{mech}}(s)$ – considers only dynamics constraints and ignores environment

$h_{\text{env}}(s)$ – considers only environment constraints and ignores dynamics



50

Searching the Graph

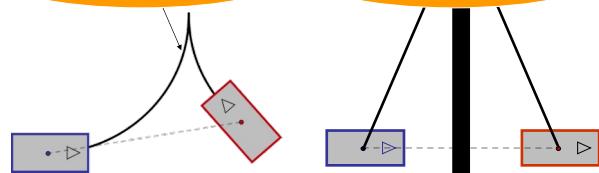
- In our planner: $h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s))$, where
 - $h_{\text{mech}}(s)$ – mechanism-constrained heuristic
 - $h_{\text{env}}(s)$ – environment-constrained heuristic

$h_{\text{mech}}(s)$ – considers only dynamics constraints and ignores environment

$h_{\text{env}}(s)$ – considers only environment constraints and ignores dynamics

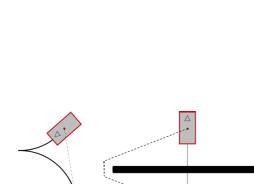
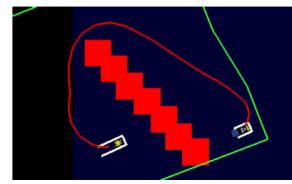
pre-computed as a table lookup for high-res. lattice

computed online by running a 2D A* with late termination



51

Heuristics



heuristic	states expanded	time (secs)
h	2,019	0.06
h_{2D}	26,108	1.30
h_{fsh}	124,794	3.49

52

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

Summary

- Deterministic planning

- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

- Planning under uncertainty

- Markov Decision Processes (MDP)
- Partially Observable Decision Processes (POMDP)

think three or four times before trying to use it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

53

54

Manipulation Planning Examples

55