CSE-571
Robotics

Mapping

Types of SLAM-Problems
Grid maps or scans
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Problems in Mapping

® Sensor interpretation

e How do we extract relevant information
from raw sensor data?

e How do we represent and integrate this
information over time?

® Robot locations have to be known

e How can we estimate them during
mapping?

Occupancy Grid Maps

® Introduced by Moravec and Elfes in 1985
® Represent environment by a grid.

® Estimate the probability that a location is
occupied by an obstacle.

® Key assumptions
e Occupancy of individual cells is independent

Bel(m,)=P(m, |u,,z, ...,u, ,,z,)
=HBel(m,[xy])
X,y

e Robot positions are known!




Inverse Sensor Model
for Occupancy Grid Maps

Combination of linear function and Gaussian:

Oceupaney probabilty Qccupancy probability

Incremental Updating
of Occupancy Grids (Example)

Alternative for Lidar: Counting

e For every cell count

e hits(x,y): number of cases where a beam ended
at <x,y>

e misses(x,y): number of cases where a beam
passed through <x,y>

hits(x, y)
hits(x, y) + misses(x, )

Bel(m™) =

e Assumption: P(occupied(x,y)) = P(reflects(x,y))




Tech Museum, San Jose

occupancy grid map
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Robots in 3D Environments
Outdoor navigation
Hum‘noid robots Flying robots
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OctoMap
£ A Probabilistic, Flexible, and Compact 3D
g Map Representation for Robotic Systems
i
S&

K.M. Wurm, A. Hornung,

Autonomous

#
AIS i M. Bennewitz, C. Stachniss, W. Burgard

Humanoid
Robots Lab

M e University of Freiburg, Germany

http://octomap.sf.net
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3D Map Requirements

= Full 3D Model

= Volumetric representation

= Free-space

= Unknown areas (e.g. for exploration)
= Can be updated

= Probabilistic model

(sensor noise, changes in the environment)

= Update of previously recorded maps
= Flexible

= Map is dynamically expanded

= Multi-resolution map queries
= Compact

= Memory efficient

= Map files for storage and exchange
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Map Representations

Pointclouds

= Pro:
= No discretization of data
* Mapped area not limited

= Contra:
* Unbounded memory usage

* No direct representation of free or
unknown space

Map Representations
3D voxel grids

* Pro:
= Probabilistic update
= Constant access time
= Explicit reasoning about
free space and unknown
= Contra:

= Memory requirement
= Extent of map has to be known
= Complete map is allocated in memory
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Map Representations

Octrees

= Tree-based data structure

= Recursive subdivision of
space into octants

= VVolumes allocated
as needed

= Multi-resolution

Map Representations

Octrees

* Pro:
= Full 3D model
= Probabilistic

» Flexible, multi-resolution
= Memory efficient

= Contra:

» Implementation can be tricky
(memory, update, map files, ...)

= Open source implementation as C++ library available at http://octomap.sf.net
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Probabilistic Map Update

*= Clamping policy ensures updatability [vguel ‘07]
L(n) € [lmin, Imax]
= Update of inner nodes enables multi-
resolution queries

L(n) = max L(n;)
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Examples

= Cluttered office environment

Map resolution: 2 cm

Examples: Office Building
* Freiburg, building 079
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Examples: Large Outdoor Areas

* Freiburg computer science campus
(292 x 167 x 28 m3, 20 cm resolution)
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Examples: Tabletop
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The SLAM Problem

A robot is exploring an

Given:

o 8

unknown, static environment. '

= The robot’s controls

= Observations of nearby features
Estimate:

= Map of features

= Path of the robot
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CSE-571
Robotics

SLAM: Simultaneous
Localization and Mapping

Many slides courtesy of Ryan Eustice,
Cyrill Stachniss, John Leonard
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SLAM Applications

Undersea
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Illustration of SLAM
without Landmarks

With only dead reckoning,
vehicle pose uncertainty
> 4 * grows without bound

Courtesy J. Leonard
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Illustration of SLAM
without Landmarks
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With only dead reckoning,
vehicle pose uncertainty

grows without bound

Courtesy J. Leonard
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Illustration of SLAM
without Landmarks

A / A

With only dead reckoning,
vehicle pose uncertainty

grows without bound
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Courtesy J. Leonard
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Illustration of SLAM
without Landmarks

/Vyb/ With only dead reckoning,

vehicle pose uncertainty
* grows without bound

Courtesy J. Leonard
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Mapping with Raw Odometry
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Illustration of SLAM
without Landmarks

*

4*.
D 3 /%/;
A
/

* % *
With only dead reckoning,
vehicle pose uncertainty
7 , grows without bound
*
Courtesy J. Leonard
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Repeat, with Measurements of
Landmarks
B8 *.
*» > 3
= First position: two features
bserved
v #* °

Courtesy J. Leonard
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Illustration of SLAM with

Landmarks
> 3 *
*® ¥
®
/% = Second position: two new
« %* features observed

Illustration of SLAM with
Landmarks

® *

/ = Re-observation of first two

7 features results in improved
*® estimates for vehicle and
feature Courtesy J. Leonard

Courtesy J. Leonard
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Illustration of SLAM with
Landmarks

* o
S
/ * Third position: two

4 %* additional features added
to map

Courtesy J. Leonard
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Illustration of SLAM with
Landmarks

/ ] 3

/ = Re-observation of first four

7 features results in improved
*© location estimates for vehicle
and all features Courtesy J. Leonard
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Illustration of SLAM with
Landmarks

* %
% 57/@’}

/ ®

/ = Process continues as the

7 vehicle moves through the
*® environment

Courtesy J. Leonard
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Test Environment (Point Landmarks)

Courtesy J. Leon|
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SLAM Using Landmarks

Odometry Profie of the Robot Locations
T T T T

Courtesy J. Leon|
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SLAM Using Landmarks

1. Move

2. Sense

3. Associate measurements with known features

4. Update state estimates for robot and previously mapped
features

5. Find new features from unassociated measurements

6. Initialize new features

7. Repeat

time stepi20, time=1 61

MIT Indoor Track
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Comparison with Ground
Truth

BQpeefeeee e [ s e e d

) S ORI SOUPROOG .

odometry T EOUUR SUUUUPON OPUUUOUOIN SOOI SO

-60 -50 -40 -30 -20 -10 o

SLAM result

Courtesy J. Leon|
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Definition of the SLAM Problem

Given
= The robot’s controls
ur.T = {ul, U2, U3,y - ., UT}
= Observations
Z21:T = {21, Ry Ry e e ,ZT}
Wanted
= Map of the environment
m
= Path of the robot

Zo.T = {51307501,3527 s JJT}

Courtesy: Cyrill Stachn
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Simultaneous Localization and

Mapping (SLAM)

* Building a map and locating the robot in the
map at the same time

* Chicken-and-egg problem

Courtesy: Cyrill Stachn
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Two Main Paradigms
Kalman  Graph-
filter based
44 Courtesy: Cyrill Stachn
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EKF SLAM

= Application of the EKF to SLAM

= Estimate robot’s pose and locations of
landmarks in the environment

= Assumption: known correspondences

= State space (for the 2D plane) is

_ T
rr=( 2,9,0 M1z, My, .., Mng, Mpy)
—_—— —,——T —_—————

robot’s pose landmark 1 landmark n

Courtesy: Cyrill Stachn
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EKF SLAM: State Representation

= More compactly (note: Tp — T )

7! by

Courtesy: Cyrill Stachn
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EKF SLAM: State Representation

= Map with n landmarks: (3+2n)-dimensional
Gaussian

= Belief is represented by
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Courtesy: Cyrill Stachn
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EKF SLAM: Filter Cycle

1. State prediction

2. Measurement prediction
Measurement

Data association
Update

niA W

Courtesy: Cyrill Stachn
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EKF SLAM: State Prediction

TR Dommm — Dommmn  coo  Demitg
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I » Courtesy: Cyrill Stachn
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EKF SLAM: Obtained
Measurement

o
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I » Courtesy: Cyrill Stachn
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EKF SLAM: Measurement
Prediction

/

TR Yopzr Yzpmy -+ Dzpm,
mi Yomwzr  Zmimi -+ Zmgmy,
mp EmnacR Emnml Emnmn
~
17 » Courtesy: Cyrill Stachn
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EKF SLAM: Data Association and
Difference Between h(x) and z

S 4

o4

TR Yoprr Dzpm, -+ Dzpm,
my Ymizr  Zmymy  --- Zmymy,
mp EmnacR Emnml Emnmn

Courtesy: Cyrill Stachn

52




EKF SLAM: Update Step
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1 > Courtesy: Cyrill Stachn

EKF SLAM Correlations
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= true path Red path = estimated path Black path = odometry
Courtesy: M. Montefme!
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Data Association in SLAM
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences
= EKF SLAM is brittle in this regard

= Pose error correlates data associations

55

Loop-Closing

* Loop-closing means recognizing an already
mapped area

» Data association under
= high ambiguity
= possible environment symmetries

* Uncertainties collapse after a loop-closure
(whether the closure was correct or not)

55

Courtesy: Cyrill Stachn
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Online SLAM Example
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After the Loop-Closure
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Courtesy: K. Arras
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Before the Loop-Closure

F o139

+
+

L J
+ 4

%
%ﬁ@ﬁoﬁ@gﬁoﬂ@mmm» R

@@% #
. 4
f)®® 4

s

)
POE® ® @ @o® ® ® b
R )

= Y@pe o o e &

Courtesy: K. Arras
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Example: Victoria Park Dataset

Courtesy: E. Neb

60
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Victoria Park: Data Acquisition

Courtesy: E. Neb
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Victoria Park: EKF Estimate

Courtesy: E.6Reb

Victoria Park: EKF Estimate
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Courtesy: E. Neb
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Victoria Park: Landmarks
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Courtesy: E. Neb

64

16



Victoria Park: Landmark Covariance

1 12 14 16 18 2 22 24 2B 28 il
states.

Courtesy: E.6Neb

Andrew Davison: MonoSLAM
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Graph-SLAM

Full SLAM technique
» Generates probabilistic links
= Computes map only occasionally

= Based on Information Filter form

65
EKF SLAM Summary
* Quadratic in the number of landmarks:
o(n3)
= Can if nonlinearities are large!
» Have been applied successfully in large-
scale environments.
= Approximations reduce the computational
complexity.
67
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69
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Information Form

® Represent posterior in canonical form

Q=X" Information matrix
& =374 Information vector
® One-to-one transform between
canonical and moment representation
r=Q"
u=Q7"

Information vs. Moment Form

Correlation matrix Information matrix
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Graph-SLAM Idea

5 % 1%, = gy, ) R [x, = g(aty, )] [2, — h(my, x,)T7 Q7' [z, —h(my, x,)]

%= gl )l R\ g 3] &

[x = g )1 R [ = gy 5)]

Lz, = h(m. x)1" Q7' [z, — himy, x)] %

[z, =h(my, x )V Q7' [z, ~h(my. x,)] /"‘.‘

o 12y = hmyx,)] Q7' [z, = (i, x,)]

[, = gy, R o, ~ gy )]

Sum of all constraints:

JGmpnsl..m :xé Qr)xo‘*‘Z[x» —g(u,x, \)'7 R [x, —g(u, x, ‘)]‘*’Z[Z, _h(ymmx.)lyl Q_ile —h(m, ,x,))
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3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.

72

73
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Map Before Optimization

Map After Optimization
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Robot Poses and Scans (. and mitios

1997]

Successive robot poses
connected by
odometry
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® [aser scan matching
yields constraints
between poses

Loop closure based on
map patches created
from multiple scans
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Mapping the Allen Center

77

19



Graph-SLAM Summary

Adresses full SLAM problem

Constructs link graph between poses and
poses/landmarks

Graph is sparse: number of edges linear in number
of nodes

Inference performed by building information
matrix and vector (linearized form)

Map recovered by reduction to robot poses,
followed by conversion to moment representation,
followed by estimation of landmark positions

ML estimate by minimization of Jsrapnsiam
Data association by iterative greedy search

78
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