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CSE-571
Robotics 

Mapping
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Types of SLAM-Problems
Grid maps or scans

 

Sparse landmarks     RGB / Depth Maps
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Problems in Mapping

•Sensor interpretation
• How do we extract relevant information 

from raw sensor data?
• How do we represent and integrate this 

information over time?

•Robot locations have to be known
• How can we estimate them during 

mapping?
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Occupancy Grid Maps

• Introduced by Moravec and Elfes in 1985
• Represent environment by a grid.
• Estimate the probability that a location is 

occupied by an obstacle.
• Key assumptions

• Occupancy of individual cells is independent

• Robot positions are known!

∏=
= −

!"

"!
#

####

$B&'
()()$*$B&'

!

"#
$%$

&'
&!!!('&' !

Occupancy Grid Maps
• Introduced by Moravec and Elfes in 1985
• Represent environment by a grid.
• Estimate the probability that a location is 

occupied by an obstacle.
• Key assumptions

• Occupancy of individual cells is independent

• Robot positions are known!
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Inverse Sensor Model 
for Occupancy Grid Maps
Combination of linear function and Gaussian:
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Incremental Updating 
of Occupancy Grids (Example) 
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Alternative for Lidar: Counting

• For every cell count
• hits(x,y): number of cases where a beam ended 

at <x,y>
• misses(x,y): number of cases where a beam 

passed through <x,y>

• Assumption: P(occupied(x,y)) = P(reflects(x,y)) 
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Occupancy Grids: From scans to maps
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Tech Museum, San Jose

CAD map occupancy grid map
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K.M. Wurm, A. Hornung,
 M. Bennewitz, C. Stachniss, W. Burgard

University of Freiburg, Germany

OctoMap
 

A Probabilistic, Flexible, and Compact 3D 
Map Representation for Robotic Systems

http://octomap.sf.net
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Robots in 3D Environments

Flying robotsHumanoid robots

Outdoor navigationMobile manipulation
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3D Map Requirements
§ Full 3D Model

§ Volumetric representation
§ Free-space
§ Unknown areas (e.g. for exploration)

§ Can be updated
§ Probabilistic model 

(sensor noise, changes in the environment)
§ Update of previously recorded maps

§ Flexible
§ Map is dynamically expanded 
§ Multi-resolution map queries

§ Compact
§ Memory efficient
§ Map files for storage and exchange
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Map Representations
Pointclouds

§ Pro: 
§ No discretization of data
§ Mapped area not limited

§ Contra:
§ Unbounded memory usage
§ No direct representation of free or 

unknown space
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Map Representations
3D voxel grids

§ Pro: 
§ Probabilistic update
§ Constant access time
§ Explicit reasoning about 

free space and unknown 
§ Contra:

§ Memory requirement
§ Extent of map has to be known
§ Complete map is allocated in memory
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Map Representations
Octrees

§ Tree-based data structure
§ Recursive subdivision of 

space into octants

§ Volumes allocated 
as needed

§ Multi-resolution
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Map Representations
Octrees
§ Pro: 

§ Full 3D model
§ Probabilistic
§ Flexible, multi-resolution
§ Memory efficient

§ Contra:
§ Implementation can be tricky 

(memory, update, map files, …)

§ Open source implementation as C++ library available at http://octomap.sf.net
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Probabilistic Map Update

§ Clamping policy ensures updatability [Yguel ‘07]

§ Update of inner nodes enables multi-
resolution queries

0.08 m 0.64 m 1.28 m
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Examples
§ Cluttered office environment

Map resolution: 2 cm
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Examples: Office Building
§ Freiburg, building 079
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Examples: Large Outdoor Areas
§ Freiburg computer science campus 

(292 x 167 x 28 m³, 20 cm resolution)
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Examples: Tabletop
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CSE-571
Robotics 

SLAM: Simultaneous 
Localization and Mapping

Many slides courtesy of Ryan Eustice, 
Cyrill Stachniss, John Leonard
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Given:
§ The robot’s controls
§ Observations of nearby features

 Estimate:
§ Map of features

§ Path of the robot

The SLAM Problem

A robot is exploring an 
unknown, static environment.
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SLAM Applications

Indoors

Space

Undersea

Underground
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Illustration of SLAM 
without Landmarks

Courtesy J. Leonard

 With only dead reckoning, 
vehicle pose uncertainty 
grows without bound
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Illustration of SLAM 
without Landmarks

 With only dead reckoning, 
vehicle pose uncertainty 
grows without bound
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Illustration of SLAM 
without Landmarks

 With only dead reckoning, 
vehicle pose uncertainty 
grows without bound

Courtesy J. Leonard
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Mapping with Raw Odometry
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Repeat, with Measurements of 
Landmarks

§ First position: two features 
observed

Courtesy J. Leonard
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Illustration of SLAM with 
Landmarks

§ Second position: two new 
features observed

Courtesy J. Leonard
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Illustration of SLAM with 
Landmarks

§ Re-observation of first two 
features results in improved 
estimates for vehicle and 
feature Courtesy J. Leonard
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Illustration of SLAM with 
Landmarks

§ Third position: two 
additional features added 
to map

Courtesy J. Leonard
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Illustration of SLAM with 
Landmarks

§ Re-observation of first four 
features results in improved 
location estimates for vehicle 
and all features Courtesy J. Leonard
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Illustration of SLAM with 
Landmarks

§ Process continues as the 
vehicle moves through the 
environment

Courtesy J. Leonard
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SLAM Using Landmarks

MIT Indoor Track

Courtesy J. Leonard
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Test Environment (Point Landmarks)

Courtesy J. Leonard
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1. Move
2. Sense
3. Associate measurements with known features
4. Update state estimates for robot and previously mapped 

features
5. Find new features from unassociated measurements
6. Initialize new features
7. Repeat

SLAM Using Landmarks

MIT Indoor Track
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Comparison with Ground 
Truth

odometry

Courtesy J. Leonard
SLAM result
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Simultaneous Localization and 
Mapping (SLAM)
§ Building a map and locating the robot in the 

map at the same time
§ Chicken-and-egg problem

map

localize
Courtesy: Cyrill Stachniss
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Definition of the SLAM Problem
Given

§ The robot’s controls

§ Observations

Wanted
§ Map of the environment

§ Path of the robot

Courtesy: Cyrill Stachniss
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Two Main Paradigms

Kalman 
filter

Graph-
based

Courtesy: Cyrill Stachniss
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EKF SLAM
§ Application of the EKF to SLAM
§ Estimate robot’s pose and locations of 

landmarks in the environment
§ Assumption: known correspondences
§ State space (for the 2D plane) is

Courtesy: Cyrill Stachniss
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EKF SLAM: State Representation
§ Map with n landmarks: (3+2n)-dimensional 

Gaussian
§ Belief is represented by 

Courtesy: Cyrill Stachniss
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EKF SLAM: State Representation
§ More compactly (note:                 ) 

Courtesy: Cyrill Stachniss
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EKF SLAM: Filter Cycle
1. State prediction
2. Measurement prediction
3. Measurement
4. Data association
5. Update

Courtesy: Cyrill Stachniss
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EKF SLAM: State Prediction

Courtesy: Cyrill Stachniss
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EKF SLAM: Measurement 
Prediction

Courtesy: Cyrill Stachniss
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EKF SLAM: Obtained 
Measurement

Courtesy: Cyrill Stachniss
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EKF SLAM: Data Association and 
Difference Between h(x) and z

Courtesy: Cyrill Stachniss
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EKF SLAM: Update Step

Courtesy: Cyrill Stachniss
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EKF SLAM Correlations

Blue path = true path   Red path = estimated path   Black path = odometry

Courtesy: M. Montemerlo
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Data Association in SLAM

§ In the real world, the mapping between 
observations and landmarks is unknown

§ Picking wrong data associations can have 
catastrophic consequences
§ EKF SLAM is brittle in this regard

§ Pose error correlates data associations

Robot pose
uncertainty
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Loop-Closing
§ Loop-closing means recognizing an already 

mapped area
§ Data association under

§ high ambiguity
§ possible environment symmetries

§ Uncertainties collapse after a loop-closure 
(whether the closure was correct or not)

Courtesy: Cyrill Stachniss
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Online SLAM Example

57
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Before the Loop-Closure

Courtesy: K. Arras

58

After the Loop-Closure

Courtesy: K. Arras
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Example: Victoria Park Dataset

Courtesy: E. Nebot
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Victoria Park: Data Acquisition

Courtesy: E. Nebot
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Victoria Park: EKF Estimate

Courtesy: E. Nebot
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Victoria Park: EKF Estimate

Courtesy: E. Nebot
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Victoria Park: Landmarks

Courtesy: E. Nebot
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65

Victoria Park: Landmark Covariance

Courtesy: E. Nebot
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Andrew Davison: MonoSLAM

66
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EKF SLAM Summary

§ Quadratic in the number of landmarks: 
O(n2) 

§ Convergence results for the linear case. 
§ Can diverge if nonlinearities are large!
§ Have been applied successfully in large-

scale environments.
§ Approximations reduce the computational 

complexity. 
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Graph-SLAM

§ Full SLAM technique

§ Generates probabilistic links

§ Computes map only occasionally

§ Based on Information Filter form

69
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70

70

Information vs. Moment Form

Correlation matrix             Information matrix

71

Graph-SLAM Idea
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3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.

73



19

Map Before Optimization
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Map After Optimization
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Robot Poses and Scans [Lu and Milios 
1997]

• Successive robot poses
connected by

odometry

• Laser scan matching
yields constraints
between poses

• Loop closure based on 
map patches created
from multiple scans

!"!"!" #$$ +=
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Mapping the Allen Center
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Graph-SLAM Summary

§ Adresses full SLAM problem
§ Constructs link graph between poses and 

poses/landmarks
§ Graph is sparse: number of edges linear in number 

of nodes
§ Inference performed by building information 

matrix and vector (linearized form)
§ Map recovered by reduction to robot poses, 

followed by conversion to moment representation, 
followed by estimation of landmark positions 

§ ML estimate by minimization of JGraphSLAM
§ Data association by iterative greedy search
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