

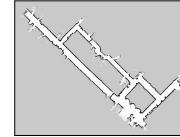
CSE-571 Robotics

Mapping

1

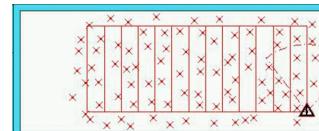
Types of SLAM-Problems

Grid maps or scans



Sparse landmarks

RGB / Depth Maps



2

Problems in Mapping

- Sensor interpretation
 - How do we extract relevant information from raw sensor data?
 - How do we represent and integrate this information over time?
- Robot locations have to be known
 - How can we estimate them during mapping?

3

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions
 - Occupancy of individual cells is independent

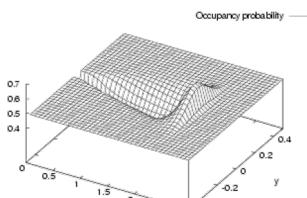
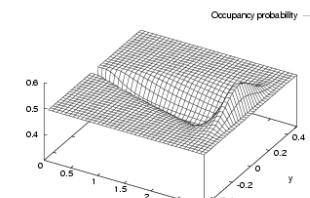
$$\begin{aligned} Bel(m_t) &= P(m_t | u_1, z_2, \dots, u_{t-1}, z_t) \\ &= \prod_{x,y} Bel(m_t^{[xy]}) \end{aligned}$$

- Robot positions are known!

4

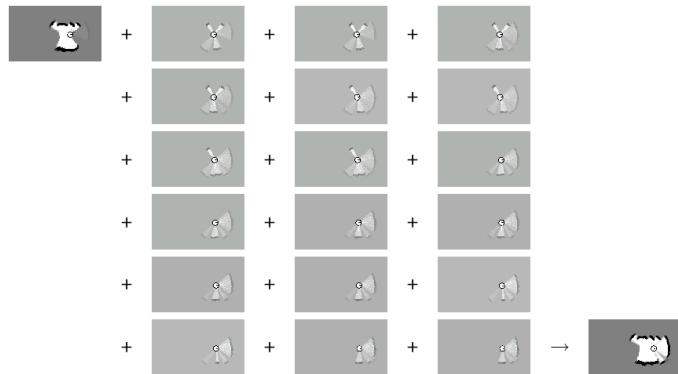
Inverse Sensor Model for Occupancy Grid Maps

Combination of linear function and Gaussian:



5

Incremental Updating of Occupancy Grids (Example)



6

Alternative for Lidar: Counting

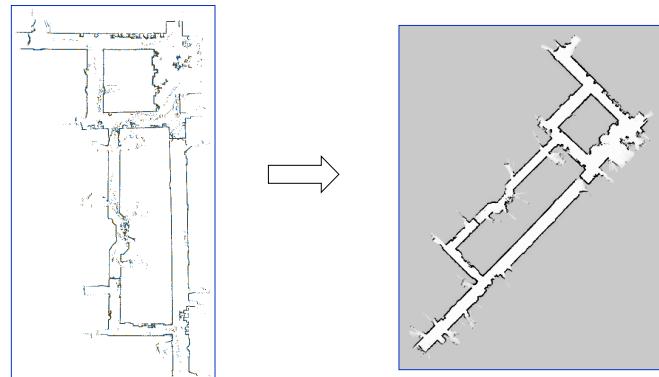
- For every cell count
 - $\text{hits}(x,y)$: number of cases where a beam ended at $\langle x,y \rangle$
 - $\text{misses}(x,y)$: number of cases where a beam passed through $\langle x,y \rangle$

$$Bel(m^{[xy]}) = \frac{\text{hits}(x,y)}{\text{hits}(x,y) + \text{misses}(x,y)}$$

- Assumption: $P(\text{occupied}(x,y)) = P(\text{reflects}(x,y))$

7

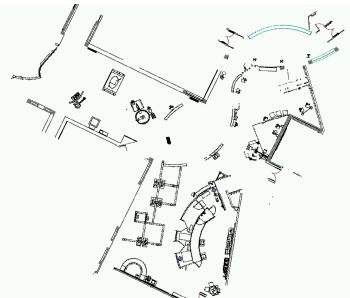
Occupancy Grids: From scans to maps



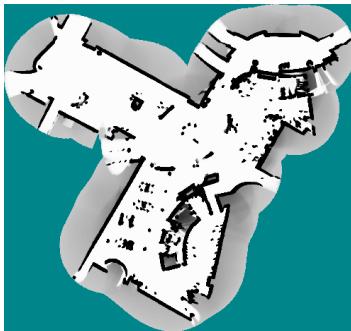
8

2

Tech Museum, San Jose



CAD map



occupancy grid map

9

OctoMap

A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems

University of Freiburg, Germany

K.M. Wurm, A. Hornung,
M. Bennewitz, C. Stachniss, W. Burgard

University of Freiburg, Germany

<http://octomap.sf.net>

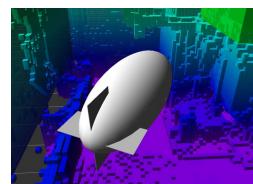
10

Robots in 3D Environments

Mobile manipulation

Outdoor navigation

Humanoid robots



Flying robots

11

3D Map Requirements

- Full 3D Model
 - Volumetric representation
 - Free-space
 - Unknown areas (e.g. for exploration)
- Can be updated
 - Probabilistic model (sensor noise, changes in the environment)
 - Update of previously recorded maps
- Flexible
 - Map is dynamically expanded
 - Multi-resolution map queries
- Compact
 - Memory efficient
 - Map files for storage and exchange

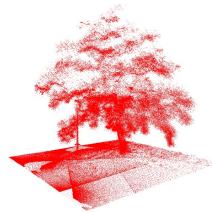
12

Map Representations

Pointclouds

- **Pro:**

- No discretization of data
- Mapped area not limited



- **Contra:**

- Unbounded memory usage
- No direct representation of free or unknown space

13

Map Representations

3D voxel grids

- **Pro:**

- Probabilistic update
- Constant access time
- Explicit reasoning about free space and unknown



- **Contra:**

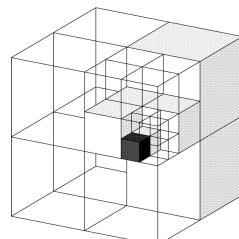
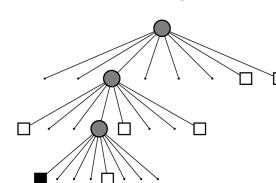
- Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory

14

Map Representations

Octrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes allocated as needed
- Multi-resolution



15

Map Representations

Octrees

- **Pro:**

- Full 3D model
- Probabilistic
- Flexible, multi-resolution
- Memory efficient

- **Contra:**

- Implementation can be tricky (memory, update, map files, ...)

▪ Open source implementation as C++ library available at <http://octomap.sf.net>

16

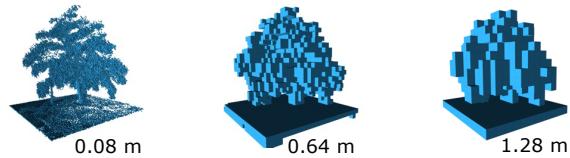
Probabilistic Map Update

- Clamping policy ensures updatability [Yguel '07]

$$L(n) \in [l_{\min}, l_{\max}]$$

- Update of inner nodes enables multi-resolution queries

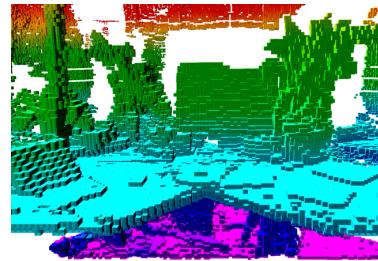
$$L(n) = \max_{i=1..8} L(n_i)$$



17

Examples

- Cluttered office environment

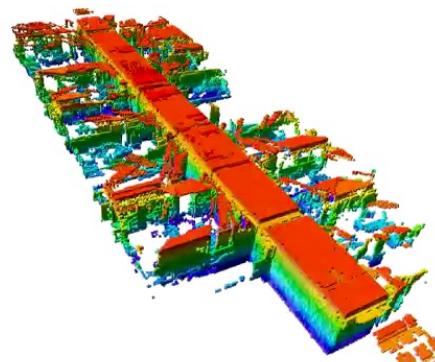


Map resolution: 2 cm

18

Examples: Office Building

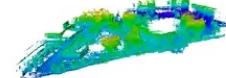
- Freiburg, building 079



19

Examples: Large Outdoor Areas

- Freiburg computer science campus
(292 x 167 x 28 m³, 20 cm resolution)



20

Examples: Tabletop

21

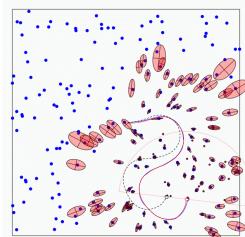
CSE-571
Robotics

SLAM: Simultaneous Localization and Mapping

Many slides courtesy of Ryan Eustice,
Cyrill Stachniss, John Leonard

The SLAM Problem

A robot is exploring an unknown, static environment.



Given:

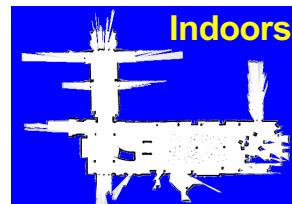
- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

23

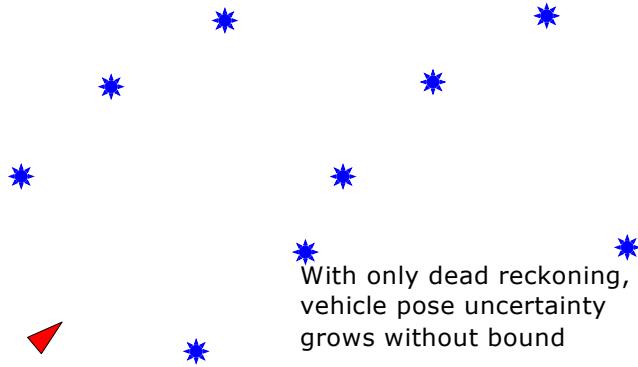
SLAM Applications



23

24

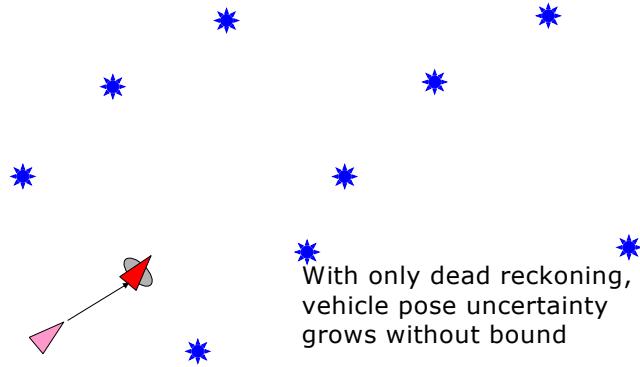
Illustration of SLAM without Landmarks



Courtesy J. Leonard

25

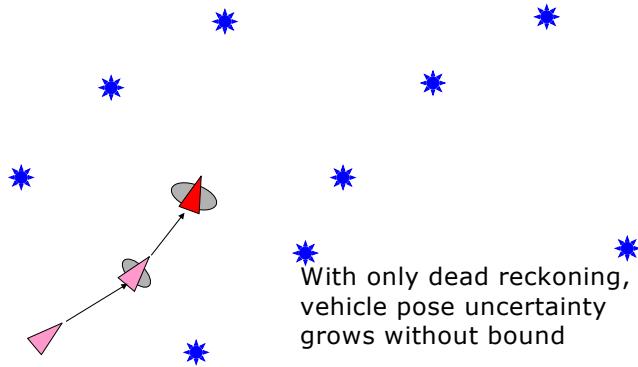
Illustration of SLAM without Landmarks



Courtesy J. Leonard

26

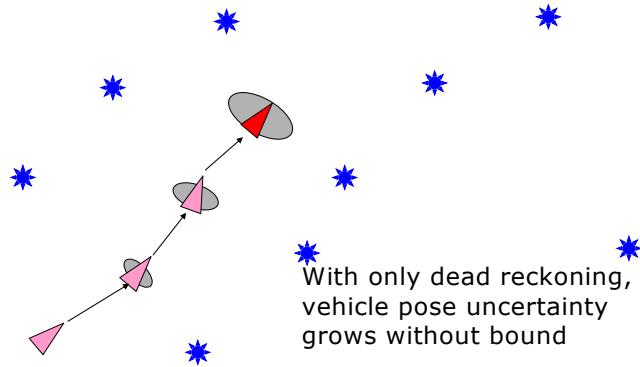
Illustration of SLAM without Landmarks



Courtesy J. Leonard

27

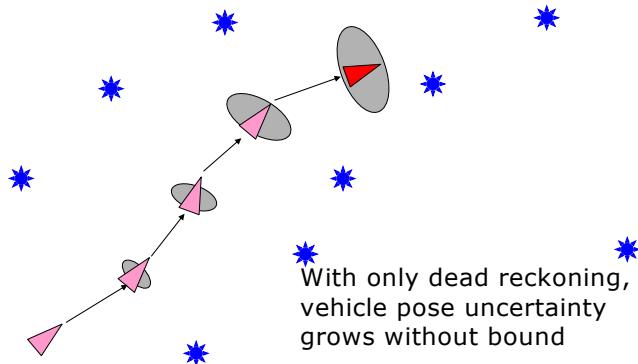
Illustration of SLAM without Landmarks



Courtesy J. Leonard

28

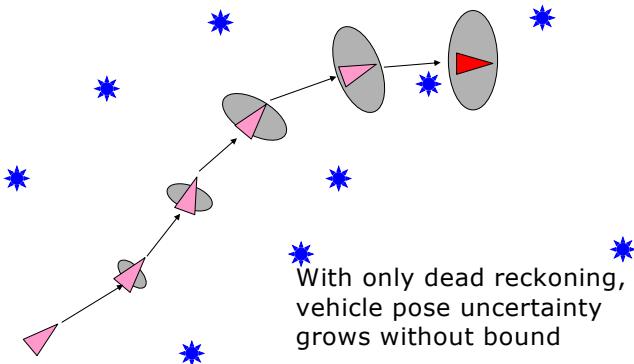
Illustration of SLAM without Landmarks



Courtesy J. Leonard

29

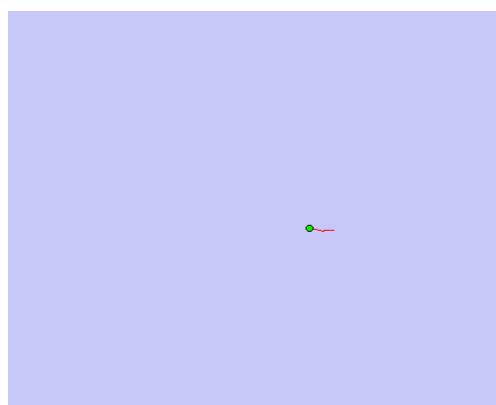
Illustration of SLAM without Landmarks



Courtesy J. Leonard

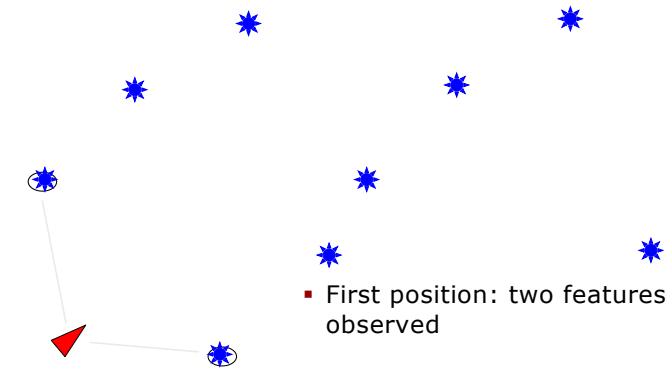
30

Mapping with Raw Odometry



31

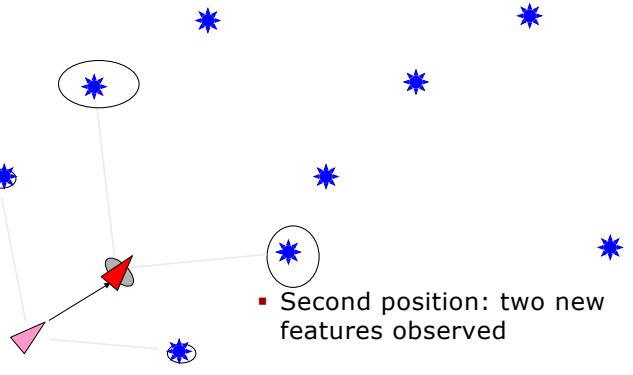
Repeat, with Measurements of Landmarks



Courtesy J. Leonard

32

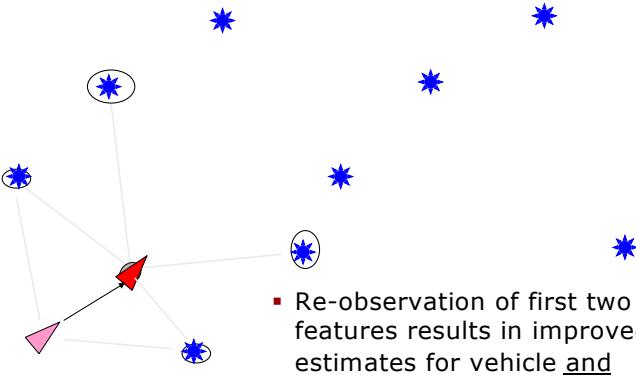
Illustration of SLAM with Landmarks



Courtesy J. Leonard

33

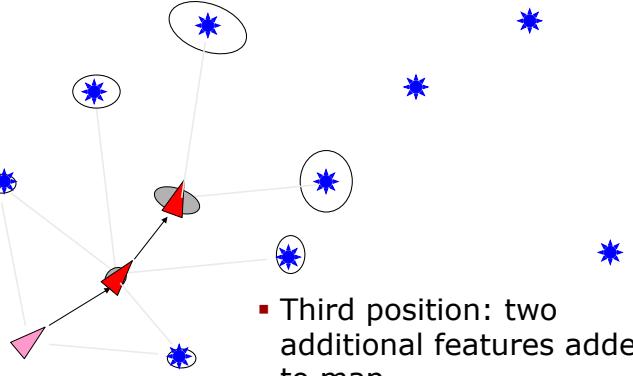
Illustration of SLAM with Landmarks



Courtesy J. Leonard

34

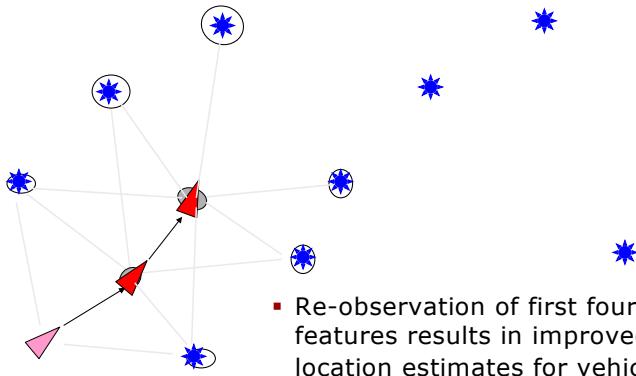
Illustration of SLAM with Landmarks



Courtesy J. Leonard

35

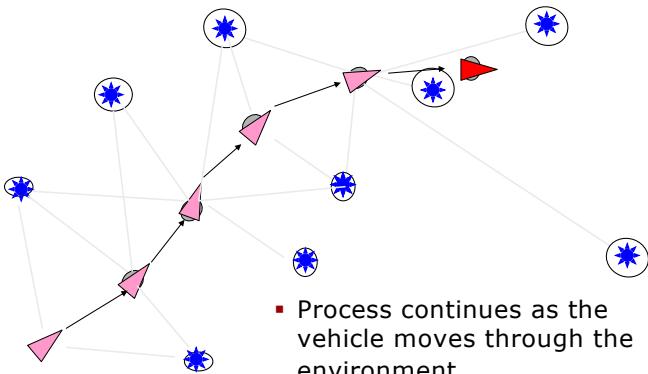
Illustration of SLAM with Landmarks



Courtesy J. Leonard

36

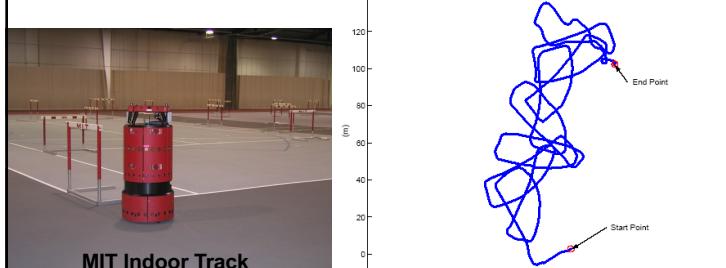
Illustration of SLAM with Landmarks



Courtesy J. Leonard

37

SLAM Using Landmarks



Courtesy J. Leonard

38

Test Environment (Point Landmarks)

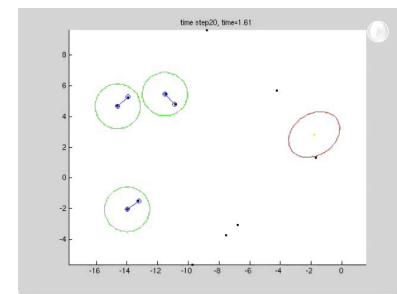
Courtesy J. Leonard

39

SLAM Using Landmarks

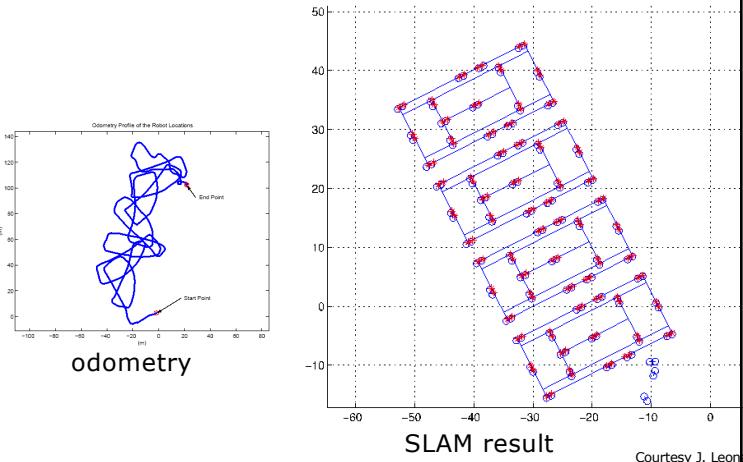
1. Move
2. Sense
3. Associate measurements with known features
4. Update state estimates for robot and previously mapped features
5. Find new features from unassociated measurements
6. Initialize new features
7. Repeat

MIT Indoor Track



40

Comparison with Ground Truth



41

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-and-egg problem

Courtesy: Cyrill Stachn

42

Definition of the SLAM Problem

Given

- The robot's controls
 $u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$
- Observations
 $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$

Wanted

- Map of the environment
 m
- Path of the robot
 $x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$

Courtesy: Cyrill Stachn

43

Two Main Paradigms

Kalman
filter

Graph-
based

Courtesy: Cyrill Stachn

44

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = \left(\underbrace{\begin{matrix} x, y, \theta \end{matrix}}_{\text{robot's pose}}, \underbrace{\begin{matrix} m_{1,x}, m_{1,y} \end{matrix}}_{\text{landmark 1}}, \dots, \underbrace{\begin{matrix} m_{n,x}, m_{n,y} \end{matrix}}_{\text{landmark n}} \right)^T$$

Courtesy: Cyrill Stachn

45

EKF SLAM: State Representation

- Map with n landmarks: $(3+2n)$ -dimensional Gaussian
- Belief is represented by

$$\begin{pmatrix} x \\ y \\ \theta \\ m_{1,x} \\ m_{1,y} \\ \vdots \\ m_{n,x} \\ m_{n,y} \end{pmatrix} \underbrace{\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{x\theta} & \sigma_{xm_{1,x}} & \sigma_{xm_{1,y}} & \dots & \sigma_{xm_{n,x}} & \sigma_{xm_{n,y}} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{y\theta} & \sigma_{ym_{1,x}} & \sigma_{ym_{1,y}} & \dots & \sigma_{m_{n,x}} & \sigma_{m_{n,y}} \\ \sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta\theta} & \sigma_{\theta m_{1,x}} & \sigma_{\theta m_{1,y}} & \dots & \sigma_{\theta m_{n,x}} & \sigma_{\theta m_{n,y}} \\ \sigma_{m_{1,x}x} & \sigma_{m_{1,x}y} & \sigma_{\theta} & \sigma_{m_{1,x}m_{1,x}} & \sigma_{m_{1,x}m_{1,y}} & \dots & \sigma_{m_{1,x}m_{n,x}} & \sigma_{m_{1,x}m_{n,y}} \\ \sigma_{m_{1,y}x} & \sigma_{m_{1,y}y} & \sigma_{\theta} & \sigma_{m_{1,y}m_{1,x}} & \sigma_{m_{1,y}m_{1,y}} & \dots & \sigma_{m_{1,y}m_{n,x}} & \sigma_{m_{1,y}m_{n,y}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \sigma_{m_{n,x}x} & \sigma_{m_{n,x}y} & \sigma_{\theta} & \sigma_{m_{n,x}m_{1,x}} & \sigma_{m_{n,x}m_{1,y}} & \dots & \sigma_{m_{n,x}m_{n,x}} & \sigma_{m_{n,x}m_{n,y}} \\ \sigma_{m_{n,y}x} & \sigma_{m_{n,y}y} & \sigma_{\theta} & \sigma_{m_{n,y}m_{1,x}} & \sigma_{m_{n,y}m_{1,y}} & \dots & \sigma_{m_{n,y}m_{n,x}} & \sigma_{m_{n,y}m_{n,y}} \end{pmatrix}}_{\Sigma}$$

Courtesy: Cyrill Stachn

46

EKF SLAM: State Representation

- More compactly (note: $x_R \rightarrow x$)

$$\underbrace{\begin{pmatrix} x \\ m \end{pmatrix}}_{\mu} \underbrace{\begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix}}_{\Sigma}$$

Courtesy: Cyrill Stachn

47

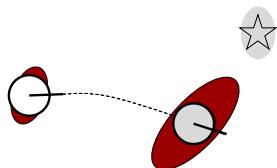
EKF SLAM: Filter Cycle

1. State prediction
2. Measurement prediction
3. Measurement
4. Data association
5. Update

Courtesy: Cyrill Stachn

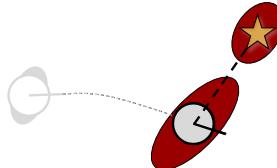
48

EKF SLAM: State Prediction



$$\underbrace{\begin{pmatrix} x_R \\ m_1 \\ \vdots \\ m_n \end{pmatrix}}_{\mu} \underbrace{\begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{m_n x_R} & \Sigma_{m_n m_1} & \dots & \Sigma_{m_n m_n} \end{pmatrix}}_{\Sigma}$$

EKF SLAM: Measurement Prediction



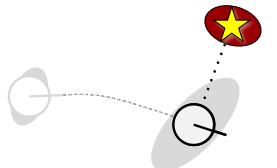
$$\underbrace{\begin{pmatrix} x_R \\ m_1 \\ \vdots \\ m_n \end{pmatrix}}_{\mu} \underbrace{\begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{m_n x_R} & \Sigma_{m_n m_1} & \dots & \Sigma_{m_n m_n} \end{pmatrix}}_{\Sigma}$$

Courtesy: Cyrill Stachn

49

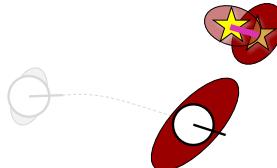
50

EKF SLAM: Obtained Measurement



$$\underbrace{\begin{pmatrix} x_R \\ m_1 \\ \vdots \\ m_n \end{pmatrix}}_{\mu} \underbrace{\begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{m_n x_R} & \Sigma_{m_n m_1} & \dots & \Sigma_{m_n m_n} \end{pmatrix}}_{\Sigma}$$

EKF SLAM: Data Association and Difference Between $h(x)$ and z



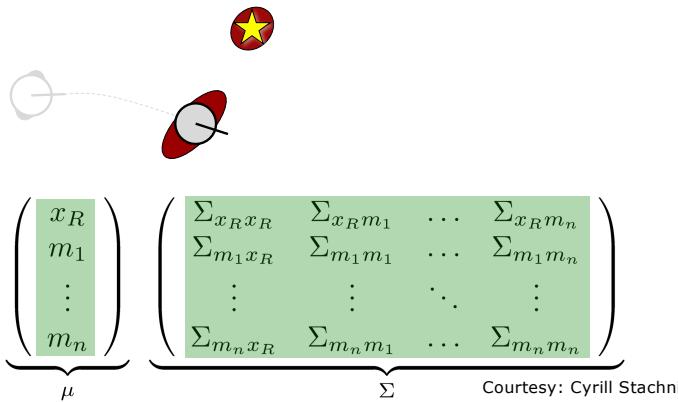
$$\underbrace{\begin{pmatrix} x_R \\ m_1 \\ \vdots \\ m_n \end{pmatrix}}_{\mu} \underbrace{\begin{pmatrix} \Sigma_{x_R x_R} & \Sigma_{x_R m_1} & \dots & \Sigma_{x_R m_n} \\ \Sigma_{m_1 x_R} & \Sigma_{m_1 m_1} & \dots & \Sigma_{m_1 m_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{m_n x_R} & \Sigma_{m_n m_1} & \dots & \Sigma_{m_n m_n} \end{pmatrix}}_{\Sigma}$$

Courtesy: Cyrill Stachn

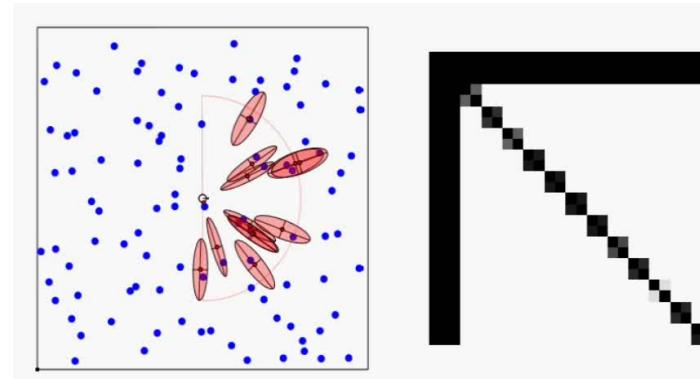
51

52

EKF SLAM: Update Step



EKF SLAM Correlations



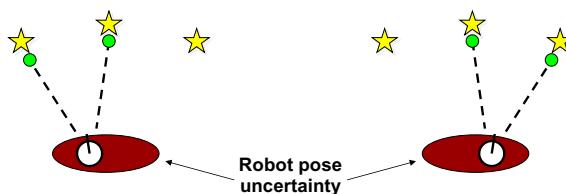
Blue path = true path Red path = estimated path Black path = odometry

Courtesy: M. Montemerlo

53

54

Data Association in SLAM



- In the real world, the mapping between observations and landmarks is **unknown**
- Picking wrong data associations can have **catastrophic** consequences
 - EKF SLAM is brittle in this regard
- Pose error correlates data associations

55

Loop-Closing

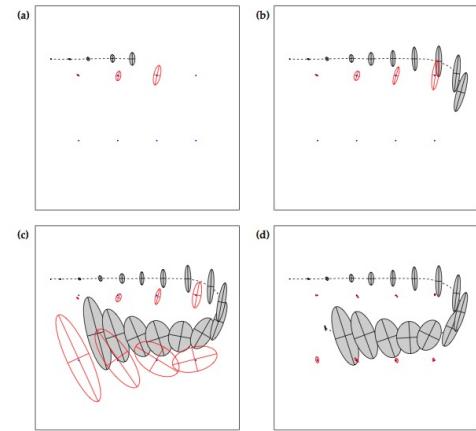
- Loop-closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties **collapse** after a loop-closure (whether the closure was correct or not)

Courtesy: Cyrill Stachniss

55

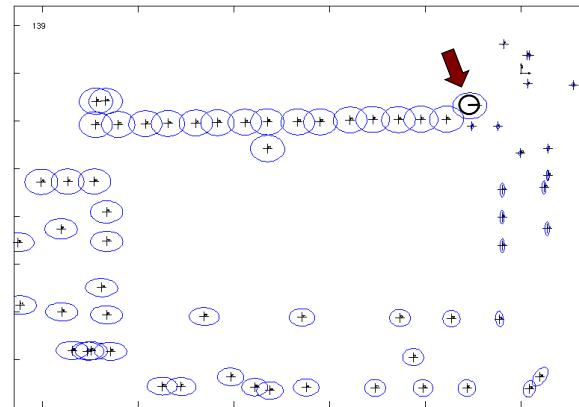
56

Online SLAM Example



57

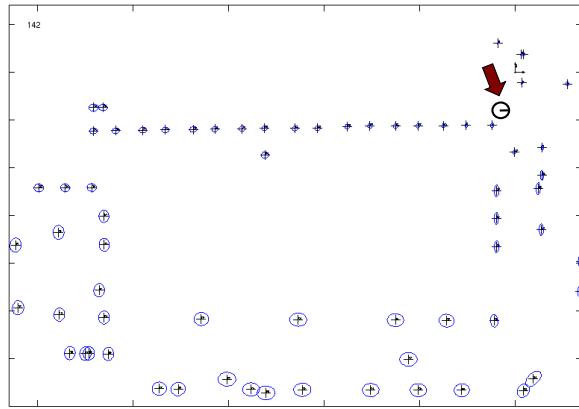
Before the Loop-Closure



Courtesy: K. Arras

58

After the Loop-Closure



Courtesy: K. Arras

59

Example: Victoria Park Dataset

Courtesy: E. Nebel

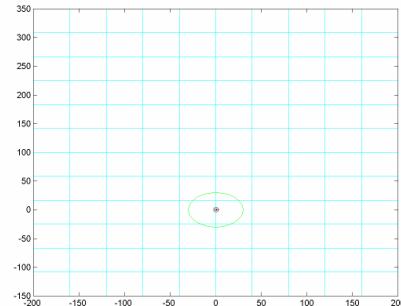
60

Victoria Park: Data Acquisition

Courtesy: E. Nebel

61

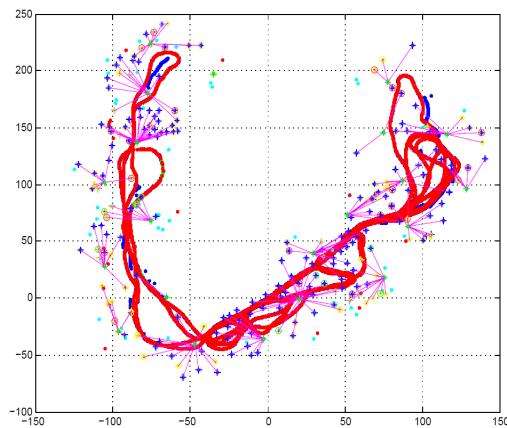
Victoria Park: EKF Estimate



Courtesy: E. Nebel

62

Victoria Park: EKF Estimate



Courtesy: E. Nebel

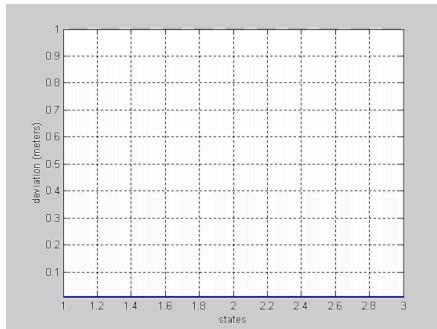
63

Victoria Park: Landmarks

Courtesy: E. Nebel

64

Victoria Park: Landmark Covariance



Courtesy: E. Nebel

65

Andrew Davison: MonoSLAM

66

EKF SLAM Summary

- Quadratic in the number of landmarks: $O(n^2)$
- **Convergence results for the linear case.**
- Can **diverge** if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

67

Graph-SLAM

- Full SLAM technique
- Generates probabilistic links
- Computes map only occasionally
- Based on Information Filter form

69

67

17

Information Form

- Represent posterior in canonical form

$$\Omega = \Sigma^{-1} \quad \text{Information matrix}$$

$$\xi = \Sigma^{-1} \mu \quad \text{Information vector}$$

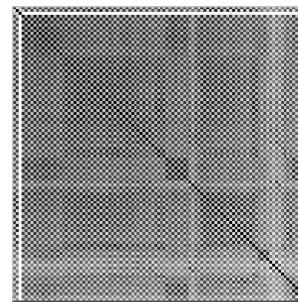
- One-to-one transform between canonical and moment representation

$$\Sigma = \Omega^{-1}$$

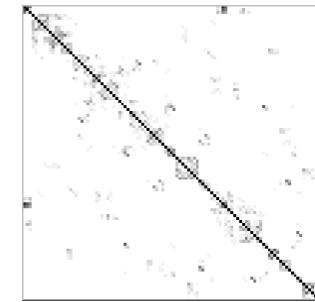
$$\mu = \Omega^{-1} \xi$$

70

Information vs. Moment Form



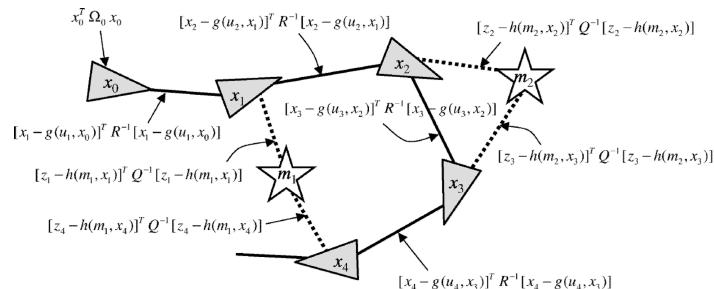
Correlation matrix



Information matrix

71

Graph-SLAM Idea

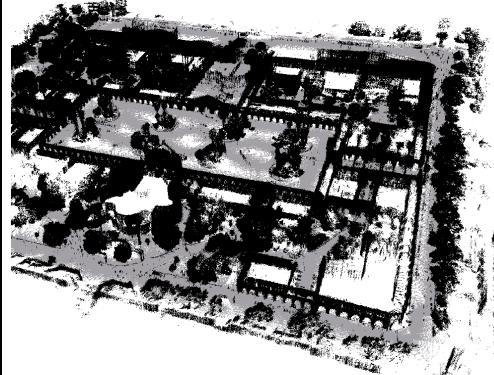


Sum of all constraints:

$$J_{\text{GraphSLAM}} = \mathbf{x}_0^T \Omega_0 \mathbf{x}_0 + \sum_i [\mathbf{x}_i - g(\mathbf{u}_i, \mathbf{x}_{i-1})]^T R^{-1} [\mathbf{x}_i - g(\mathbf{u}_i, \mathbf{x}_{i-1})] + \sum_i [\mathbf{z}_i - h(\mathbf{m}_{c_i}, \mathbf{x}_i)]^T Q^{-1} [\mathbf{z}_i - h(\mathbf{m}_{c_i}, \mathbf{x}_i)]$$

72

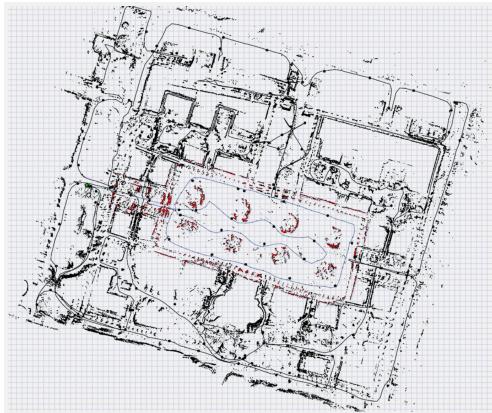
3D Outdoor Mapping



10^8 features, 10^5 poses, only few secs using cg.

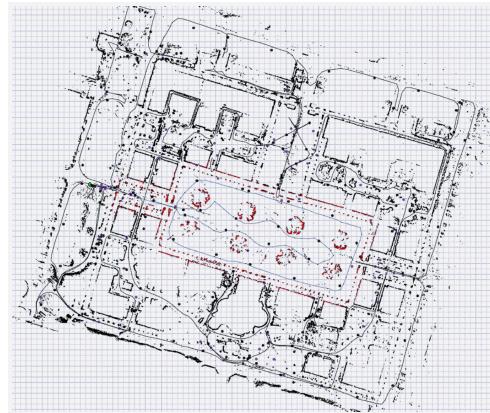
73

Map Before Optimization



74

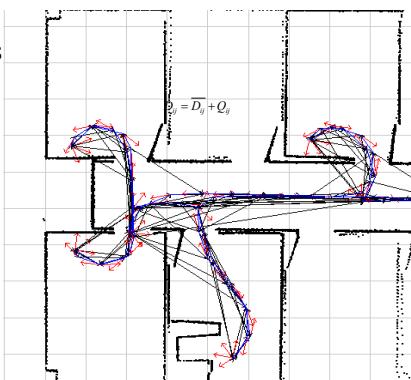
Map After Optimization



75

Robot Poses and Scans [Lu and Milios 1997]

- Successive robot poses connected by odometry
- Laser scan matching yields constraints between poses
- Loop closure based on map patches created from multiple scans



76

Mapping the Allen Center

77

Graph-SLAM Summary

- Addresses full SLAM problem
- Constructs link graph between poses and poses/landmarks
- Graph is sparse: number of edges linear in number of nodes
- Inference performed by building information matrix and vector (linearized form)
- Map recovered by reduction to robot poses, followed by conversion to moment representation, followed by estimation of landmark positions
- ML estimate by minimization of $J_{GraphSLAM}$
- Data association by iterative greedy search