Bayes Filter Reminder
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® Predicti
Robotics rediction

bel(x,) = [ p(x, |u, %) bel(x,.,) dx,

Kalman Filters

_ e Correction
Dieter Fox
bel(x) =1 p(z, | x,)bel(x,)
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Properties of Gaussians Properties of Gaussians
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Multivariate Gaussians

X~ N2
(u )} = Y~N(4du+B,43547)

Y=4AX+B

X, ~N(,2) z P 1
XI N vl = p(X) p(X,)~ 2 it ! Hys -l -l
, ~ N, Z,) 4%, 42, I +2,

® Marginalization and conditioning in Gaussians results in Gaussians

and perform only linear transformations.
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Kalman Filter Updates in 1D
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Discrete Kalman Filter

Estimates the state x of a discrete-time
controlled process that is governed by the
linear stochastic difference equation

xz . A1xt—1 + Btut + gt

with a measurement
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Kalman Filter Updates in 1D

=0 +K (2~ 1) 5!

bei(x)={ M zﬂ’ ! _fl with K,=—2r
02 =(1-K,)5’ O, +0y,
=[,+K,(z,—-CL,) _ _

bel(x,) = He= fer RGOl with K,=Z.C(C,Z.CT +0,)"
Z, =(I-KC)Z
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Kalman Filter Updates in 1D

bel(x,) = {_2

H=apu_ +bu,
_ 2.2 2
o, =a,0, +0,

act,t

bel(x,) ={

L+ By,
L= Arzt—1A1T +Rt

A=A
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Kalman Filter Updates
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Kalman Filter Algorithm
1. Algorithm Kalman_filter(u_ .2 _ .u,.z):
2. Prediction:
3. M =4p,+Buy,
4 E=AT A +R,
5. Correction:
6. K =xC(CEC +0)"
7. M=u+K(-Cup)
8. 3, =(I-KC)%
9. Returny s,
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Kalman Filter Summary
® Highly efficient: Polynomial in
measurement dimensionality k and
state dimensionality n:
O(k2-376 + n2?)

® Optimal for linear Gaussian systems!

® Most robotics systems are nonlinear!
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Going non-linear

EXTENDED KALMAN FILTER
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Nonlinear Dynamic Systems

® Most realistic robotic problems involve nonlinear
functions

xt :g(ut > xtfl)

2, =h(x,)

21

20
Linearity Assumption Revisited
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Non-linear Function
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EKF Linearization (1)

EKF Linearization (2)

4
MZ\
i
0 o
2 2
4 4
0 05 1 0 05 1

P
4

ar

25

EKF Linearization: First Order
Taylor Series Expansion

® Prediction:

0g(u,, 4,1) .
X

-1

glu,x_ )~ g, p )+ 1~ M)

g(u; ’ xH) ~ g(uu /1,71)"' G1 (XI,I - .u,fl)

® Correction:

) =)+ 2 (3, - )
x!

h(x,) = h(g)+ H, (x,— 1)
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EKF Linearization (3)
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EKF Algorithm

1. Extended_Kalman_filtery, .2 _.u,.z ):

Prediction:

ﬁt =g(ut’/’l1*])
% =G3, G +R

Lol S

Correction:
K,=%.H'(HZH' +Q)"
4 =0+K,(z, ()

%, =(-K,H,)Z,

© ©NOw

M= A4+ B,
To=AZ A +R,

D Kr =§’C)3T(Ct§’CzT +_Qz)71
H=H, +Kr(zz__ct/ut)
3, =(I-K,C)Z

! Ox, ! ox,

Return y 3, i oh(11,) G = oglu,p,_)
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Landmark-based Localization
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1. EKF_localization (4.2, 4.z ):

Prediction:
'
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7. El; =g(u:uu:—1)
8. % =Gx, G +VMV'
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Jacobian of g w.r.t location

Jacobian of g w.r.t control

Motion noise

Predicted mean
Predicted covariance
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EKF Prediction Step
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Correction:

CT - [ (.~} +m, -7, F

atan 2(m, ~ 7,,.,m, ~ .. )~ T

or, or,
5. g - OMEm _ oh,.  OH,
! ox, a9, 99,
Oh,. O,
ol 0
Q'=[ 0 O';J
S‘ =HIZIHIT+QI

ion (4. DIFRTAS ):

J Predicted measurement mean

ar,
M, Jacobian of h w.r.t location
99,
O,

Pred. measurement covariance
Kalman gain
Updated mean

Updated covariance

EKF Observation Prediction / Correction Step
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Estimation Sequence (1)

Estimation Sequence (2)
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Comparison to GroundTruth
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Multi-

hypothesis

Tracking
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EKF Summary

® Highly efficient: Polynomial in
measurement dimensionality k and
state dimensionality n:
O(k2-376 + n2)

® Not optimal!

® Can diverge if nonlinearities are large!

® Works surprisingly well even when all
assumptions are violated!
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