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CSE-571
Robotics

Bayes Filter Implementations

Particle filters
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§ Particle sets can be used to approximate densities

Density Approximation

§ The more particles fall into an interval, the higher 
the probability of that interval

§ How to draw samples form a function/distribution?
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§ We can even use a different distribution g to 
generate samples from f

§ By introducing an importance weight w, we can 
account for the “differences between g and f ”

§ w = f / g

§ f is often called
target

§ g is often called
proposal

Importance Sampling Principle
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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draw xit-1 from Bel(xt-1)

draw xit from p(xt | xit-1,ut-1)

Importance factor for xit:
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Particle Filter Algorithm

10

1.  Algorithm particle_filter( St-1, ut-1 zt):
2.  

3.  For Generate new samples

4.  Sample index j(i) from the discrete distribution given by wt-1

5.  Sample     from                         using          and

6.      Compute importance weight

7.      Update normalization factor

8.      Insert

9.  For 

10.     Normalize weights

Particle Filter Algorithm
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Localization for AIBO robots

CSE-571 - AI-based Mobile Robotics1/14/26 12
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Adaptive Sampling
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KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure
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KLD-Sampling Laser
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6D OBJECT POSE ESTIMATION

x

y

z6D Object Pose

3D 
Translation

3D 
Orientation
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ORIENTATION UNCERTAINTY
Depends on context, shape, sensor

Observation

Orientation
uncertainty

Shape symmetry Texture breaks  
symmetry View-based uncertainty
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TEACHING A DEEP NETWORK WHAT AN OBJECT LOOKS LIKE
Randomly Sample Views onto the Textured Object Model

Encoder Decoder

Network output
1 training epoch

Input view Target Network output
50 training epochs

128 dim

Bottleneck encodes viewpoint information

[Sundermeyer-Marton-Durner-Brucker-Triebel: ECCV-18]
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FROM VIEW ENCODER TO VIEW SIMILARITY
Sample Views onto the Textured Object Model

Encoder

…

…

Codebook (5 deg discretization; 191,808 views)

Similarity

…

128 dim 128 
dim
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RAO-BLACKWELLIZATION

Factorization to exploit dependencies between 
variables:

If                can be computed efficiently, 
represent only           with samples and compute                
for every sample
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191,808 bins
5 deg resolution

PoseRBPF: 6D PARTICLE FILTER

3D Translation
𝑇! 

Orientation Distribution
𝑷 𝑹𝒊 𝑻𝒊, 𝒁𝟏:𝒌)

RoI

Encoder

Rotations

Codebook

Particle
Code

Rotation Likelihood

…

…

…

𝑋( = {𝑇( , P 𝑅( 𝑇( , 𝑍):+ }

YCB-Video RGB(-D)
§ PoseRBPF: 

ADD: 62.1, ADD-S: 78.4
§ PoseCNN:

ADD: 53.7, ADD-S: 75.9 

[Deng-Mousavian-Xiang-Xia-Bretl-F: RSS-19,T-RO-21]
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EXAMPLE RESULTS

Tracked bounding 
boxes

Orientation 
uncertainty

RGB RGB-D 
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GLOBAL LOCALIZATION EXAMPLE
Sample Uniformly in Translation Space

1st frame: 5,000 particles, then 500 particles until strong match, then 50 particles
500 particles: 2.6 fps; 50 particles: 20 fps
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