

# CSE-571

## Robotics

### Probabilistic Motion and Sensor Models

1

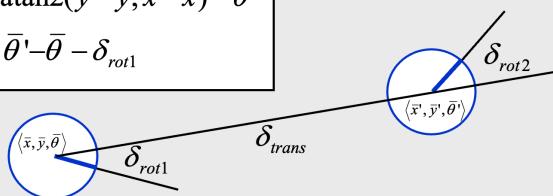
$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

2

### Probabilistic Kinematics

- Robot moves from  $\langle \bar{x}, \bar{y}, \bar{\theta} \rangle$  to  $\langle \bar{x}', \bar{y}', \bar{\theta}' \rangle$ .
- Odometry information  $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$ .

$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$
$$\delta_{rot1} = \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$
$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$



CSE-571 - Robotics

4

### Noise Model for Motion

- The measured motion is given by the true motion corrupted with noise.

$$\hat{\delta}_{rot1} = \delta_{rot1} + \epsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|}$$
$$\hat{\delta}_{trans} = \delta_{trans} + \epsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 |\delta_{rot1} + \delta_{rot2}|}$$
$$\hat{\delta}_{rot2} = \delta_{rot2} + \epsilon_{\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|}$$

CSE-571 - Robotics

6

1

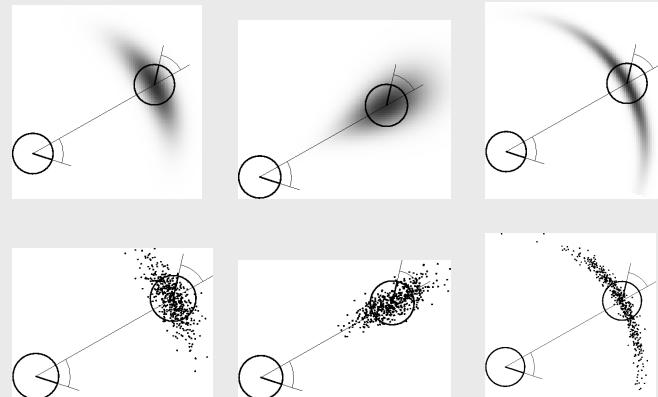
## Sample Odometry Motion Model

1. Algorithm **sample\_motion\_model**( $u, x$ ):  
 $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$
1.  $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 |\delta_{rot1}| + \alpha_2 \delta_{trans})$
2.  $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
3.  $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 |\delta_{rot2}| + \alpha_2 \delta_{trans})$
4.  $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
5.  $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
6.  $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
7. Return  $\langle x', y', \theta' \rangle$

CSE-571 - Robotics

8

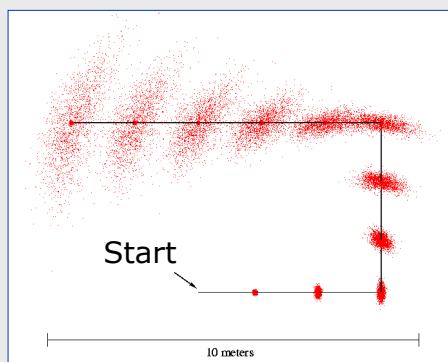
## Examples (odometry based)



CSE-571 - Robotics

9

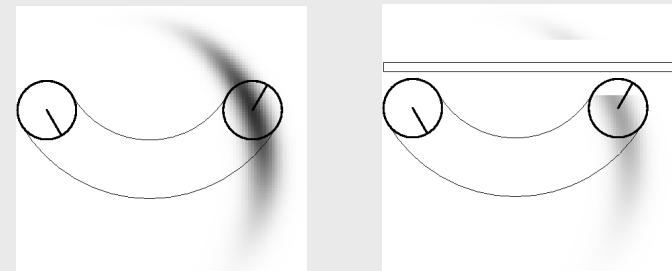
## Sample-based Motion



CSE-571 - Robotics

10

## Motion Model with Map



$P(x|u, x')$

$P(x|u, x', m) \approx P(x|m) P(x|u, x')$

- When does this approximation fail?

CSE-571 - Robotics

11

2

## Probabilistic Sensor Models

Beam-based  
Scan-based  
Landmarks

12

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

13

## Sensors for Mobile Robots

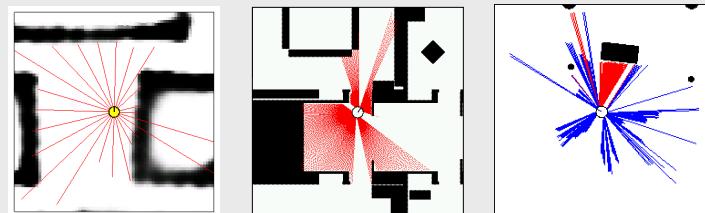
- **Contact sensors:** Bumpers, touch sensors
- **Internal sensors**
  - Accelerometers (spring-mounted masses)
  - Gyroscopes (spinning mass, laser light)
  - Compasses, inclinometers (earth magnetic field, gravity)
  - Encoders, torque
- **Proximity sensors**
  - Sonar (time of flight)
  - Radar (phase and frequency)
  - Laser range-finders (triangulation, tof, phase)
  - Infrared (intensity)
- **Visual sensors:** Cameras, depth cameras
- **Satellite-style sensors:** GPS, MoCap

1/7/26

CSE-571 - Robotics

14

## Proximity Sensors



- The central task is to determine  $P(z|x)$ , i.e. the probability of a measurement  $z$  given that the robot is at position  $x$  in a known map.
- **Question:** Where do the probabilities come from?
- **Approach:** Let's try to explain a measurement.

1/7/26

CSE-571 - Robotics

15

14

15

## Beam-based Sensor Model

- Scan  $z$  consists of  $K$  measurements.

$$z = \{z_1, z_2, \dots, z_K\}$$

- Individual measurements are independent given the robot position and a map.

$$P(z | x, m) = \prod_{k=1}^K P(z_k | x, m)$$

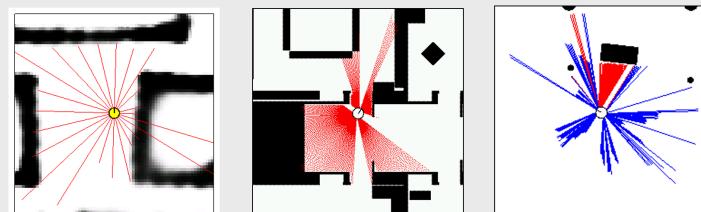
4/4/24

CSE-571 - Robotics

16

17

## Beam-based Sensor Model



$$P(z | x, m) = \prod_{k=1}^K P(z_k | x, m)$$

See book Section 6.3.4 on exponential smoothing of model.

4/4/24

CSE-571 - Robotics

19

19

## Proximity Measurement

- Measurement can be caused by ...
  - a known obstacle.
  - cross-talk.
  - an unexpected obstacle (people, furniture, ...).
  - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
  - in measuring distance to known obstacle.
  - in position of known obstacles.
  - in position of additional obstacles.
  - whether obstacle is missed.

1/7/26

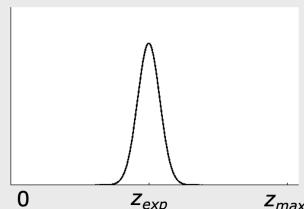
CSE-571 - Robotics

20

20

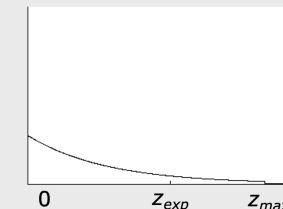
## Beam-based Proximity Model

Measurement noise



$$P_{hit}(z | x, m) = \eta \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(z-z_{exp})^2}{\sigma^2}}$$

Unexpected obstacles



$$P_{unexp}(z | x, m) = \eta \lambda e^{-\lambda z}$$

4/4/24

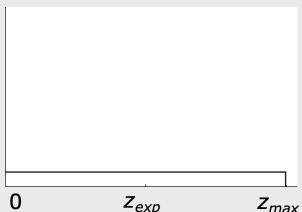
CSE-571 - Robotics

22

22

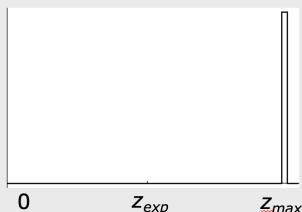
## Beam-based Proximity Model

Random measurement



$$P_{rand}(z|x,m) = \eta \frac{1}{z_{max}}$$

Max range



$$P_{max}(z|x,m) = \eta \frac{1}{z_{small}}$$

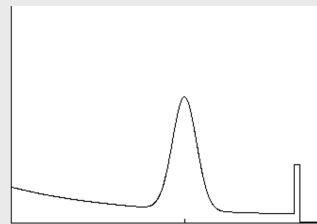
4/4/24

CSE-571 - Robotics

24

24

## Mixture Density



$$P(z|x,m) = \begin{pmatrix} \alpha_{hit} \\ \alpha_{unexp} \\ \alpha_{max} \\ \alpha_{rand} \end{pmatrix}^T \begin{pmatrix} P_{hit}(z|x,m) \\ P_{unexp}(z|x,m) \\ P_{max}(z|x,m) \\ P_{rand}(z|x,m) \end{pmatrix}$$

How can we determine the model parameters?

4/4/24

CSE-571 - Robotics

26

26

## Approximation

- Maximize log likelihood of the data  $z$ :  
 $P(z|z_{exp})$
- Search parameter space.
- EM to find mixture parameters
  - Assign measurements to densities.
  - Estimate densities using assignments.
  - Reassign measurements.

1/7/26

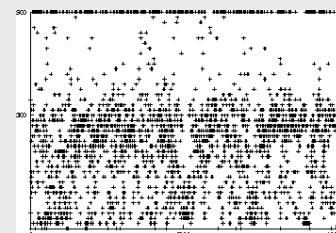
CSE-571 - Robotics

27

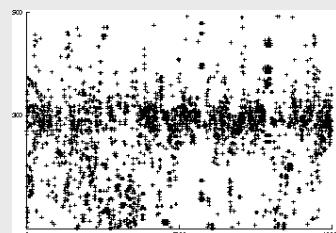
27

## Raw Sensor Data

Measured distances for expected distance of 300 cm.



Sonar



Laser

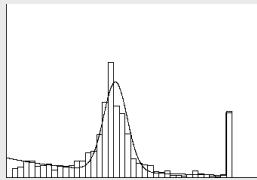
1/7/26

CSE-571 - Robotics

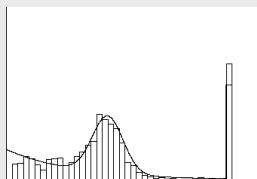
28

28

## Approximation Results

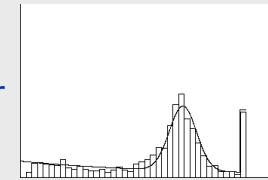


Laser



Sonar

300cm



400cm

1/7/26

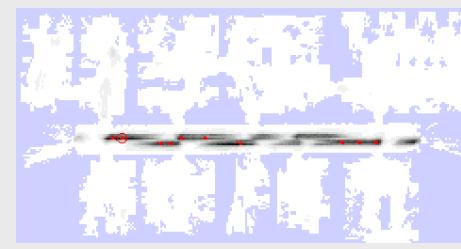
CSE-571 - Robotics

29

## Example



$z$



$P(z|x,m)$

1/7/26

CSE-571 - Robotics

30

## Summary Beam-based Model

- Assumes independence between beams.
  - Justification?
  - Overconfident!
- Models physical causes for measurements.
  - Mixture of densities for these causes.
- Implementation
  - Learn parameters based on real data.
  - Different models can be learned for different angles at which the sensor beam hits the obstacle.
  - Determine expected distances by ray-tracing.
  - Expected distances can be pre-processed.

1/7/26

CSE-571 - Robotics

31

## Scan-based Model

- Beam-based model is ...
  - not smooth for small obstacles and at edges
  - not very efficient.
- **Idea:** Instead of following along the beam, just check the end point.

1/7/26

CSE-571 - Robotics

32

31

32

## Scan-based Model

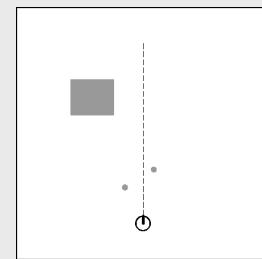
- Probability is a mixture of ...
  - a Gaussian distribution with mean at **distance to closest obstacle**,
  - a uniform distribution for random measurements, and
  - a small uniform distribution for max range measurements.
- Independence between different components is assumed.

1/7/26

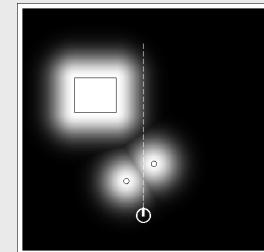
CSE-571 - Robotics

33

## Example



Map  $m$



Likelihood field

$$P(z|x,m)$$

1/7/26

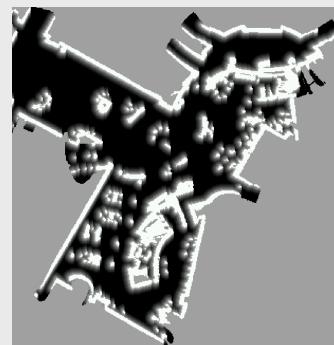
CSE-571 - Robotics

34

## San Jose Tech Museum



Occupancy grid map



Likelihood field

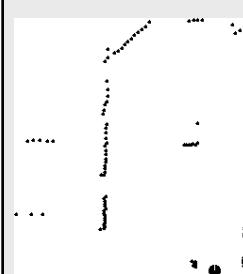
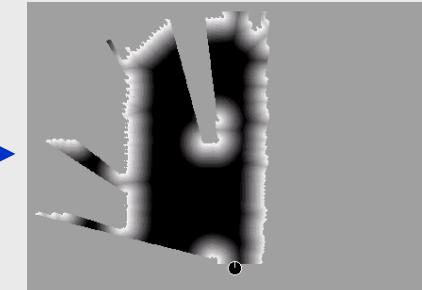
1/7/26

CSE-571 - Robotics

35

## Scan Matching

- Extract likelihood field from scan and use it to match different scan.



1/7/26

CSE-571 - Robotics

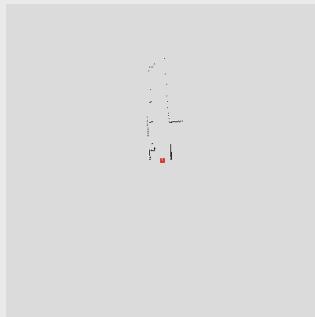
36

35

36

## Scan Matching

- Extract likelihood field from first scan and use it to match second scan.



1/7/26

CSE-571 - Robotics

37

37

## Properties of Scan-based Model

- Highly efficient, uses 2D tables only.
- Smooth w.r.t. to small changes in robot position.
- Allows gradient descent, scan matching.
- Ignores physical properties of beams.

1/7/26

CSE-571 - Robotics

38

38

## Summary of Parametric Motion and Sensor Models

- Explicitly modeling uncertainty in motion and sensing is key to robustness.
- In many cases, good models can be found by the following approach:
  1. Determine parametric model of noise free motion or measurement.
  2. Analyze sources of noise.
  3. Add adequate noise to parameters (eventually mix densities for noise).
  4. Learn (and verify) parameters by fitting model to data.
  5. Likelihood of measurement is given by “probabilistically comparing” the actual with the expected measurement.
- It is important to be aware of the underlying assumptions!

1/7/26

CSE-571 - Robotics

39

39