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Probabilistic Motion and
Sensor Models

Bel(x,)=n P(z,|x,) | P(x,|u,,x,,) Bel(x,,) dx,,
t t t t t t-1

Probabilistic Kinematics

* Robot moves from (x,7,6) to (x',5',8").
e Odometry information u =(5,,,,8,,,,,6

rotl> ~rot2?> trans> "

Spons = (E=X)2 +(7—F)?
o

rotl

5,,=0-0-65

70 rotl

= atan2(y'—y,x'-X)— 6

CSE-571 - Robotics

Noise Model for Motion

® The measured motion is given by the
true motion corrupted with noise.
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Sample Odometry Motion Model

1. Algorithm sample_motion_model(u, x):
u= <5ratl’§rot2’5rrans >’x = <x’ y50>
10 8, = 8, +sample(a; | 8, |+, S,

roi trans )

>

rans = Orans +SAMPIE(Qs 8y + @y (16,01 | 418,12 1))
3. rot2 = 5rat2 + Salnple(al | 5rot2 | ta, 5tmns)
x'=x+ 3,,m cos(d + 3,0,1)
5. Y'=y+0,,,sn(0+6,,)
0' = 0 + é‘rotl + 5Arot2

7. Return (x',y'.6')
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Examples (odometry based)
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Motion Model with Map

°-§ ©-§

P(x|u,x") P(x|u,x',m)= P(x|m) P(x|u,x")

e When does this approximation fail?

8
Sample-based Motion
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Probabilistic Sensor Models

Beam-based
Scan-based
Landmarks
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Sensors for Mobile Robots

® Contact sensors: Bumpers, touch sensors
® Internal sensors
e Accelerometers (spring-mounted masses)
e Gyroscopes (spinning mass, laser light)
e Compasses, inclinometers (earth magnetic field, gravity)
e Encoders, torque
® Proximity sensors
e Sonar (time of flight)
e Radar (phase and frequency)
e Laser range-finders (triangulation, tof, phase)
e Infrared (intensity)
® Visual sensors: Cameras, depth cameras
® Satellite-style sensors: GPS, MoCap
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Bel(x,)=n P(z,|x,) | P(x,|u,,x,,) Bel(x,,) dx,,
t t t t t t-1 t—1
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Proximity Sensors

® The central task is to determine P(z|x), i.e. the
probability of a measurement z given that the
robot is at position x in a known map.

® Question: Where do the probabilities come from?

e Approach: Let’s try to explain a measurement.
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Beam-based Sensor Model

® Scan z consists of K measurements.

z2={2,Zy5sZx }

® Individual measurements are independent
given the robot position and a map.

P(z|x,m)= ﬁP(zk | x,m)
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Beam-based Sensor Model

P(z|x,m)= HP(Zk | x,m)

See book Section 6.3.4 on exponential smoothing of model.
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Proximity Measurement

® Measurement can be caused by ...

e a known obstacle.

e cross-talk.

e an unexpected obstacle (people, furniture, ...).

e missing all obstacles (total reflection, glass, ...).
® Noise is due to uncertainty ...

e in measuring distance to known obstacle.

e in position of known obstacles.

e in position of additional obstacles.

e whether obstacle is missed.
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Beam-based Proximity Model

Measurement noise Unexpected obstacles

0 zé‘XD Zmax 0 zexp Zmax
1(2Zeyp)”
1 e _ =
ﬂi,(zlx,m):ng_ze 2 o Poo(zlXx,m)=n A ¢
no
4/4/24 CSE-571 - Robotics

22

22




Beam-based Proximity Model
Random measurement Max range
1
0 zexp Zmax 0 ZEXP ;mg)g
Pz x,m) = —— P, (z1xm)=n
max ZsmaII
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Approximation

e Maximize log likelihood of the data z:
P(z]z,)

e Search parameter space.

¢ EM to find mixture parameters
e Assign measurements to densities.
e Estimate densities using assignments.
e Reassign measurements.
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Mixture Density

T
it B, (z|x,m)
P(Z | X, m) = a““e"P . I’unexp (Z | X, m)
Frmax Pmax (Z | X, m)

rand P iz | x,m)

How can we determine the model parameters?
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Raw Sensor Data

Measured distances for expected distance of 300 cm.
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Approximation Results
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V4 P(lelm)
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Summary Beam-based Model

® Assumes independence between beams.
¢ Justification?
e Overconfident!

® Models physical causes for measurements.
e Mixture of densities for these causes.

® Implementation
e Learn parameters based on real data.

» Different models can be learned for different angles at
which the sensor beam hits the obstacle.

e Determine expected distances by ray-tracing.
e Expected distances can be pre-processed.
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Scan-based Model

® Beam-based model is ...
e not smooth for small obstacles and at edges
e not very efficient.

e [dea: Instead of following along the
beam, just check the end point.
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Scan-based Model Example

® Probability is a mixture of ...

e a Gaussian distribution with mean at
distance to closest obstacle,

e a uniform distribution for random

Likelihood field

measurements, and @
e a small uniform distribution for max
range measurements. Map m
¢ Independence between different
components is assumed. PClm)
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San Jose Tech Museum Scan Matching

e Extract likelihood field from scan and
use it to match different scan.

Occupancy grid map Likelihood field ‘e
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Scan Matching

e Extract likelihood field from first scan
and use it to match second scan.

~0.01 sec
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Properties of Scan-based Model

e Highly efficient, uses 2D tables only.

® Smooth w.r.t. to small changes in robot
position.

® Allows gradient descent, scan matching.

® Ignores physical properties of beams.
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Summary of Parametric Motion
and Sensor Models

e Explicitly modeling uncertainty in motion and sensing is key
to robustness.

e In many cases, good models can be found by the following
approach:

1. Determine parametric model of noise free motion or
measurement.

2. Analyze sources of noise.

3. Add adequate noise to parameters (eventually mix densities for
noise).

4. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically
comparing” the actual with the expected measurement.

e It is important to be aware of the underlying assumptions!
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