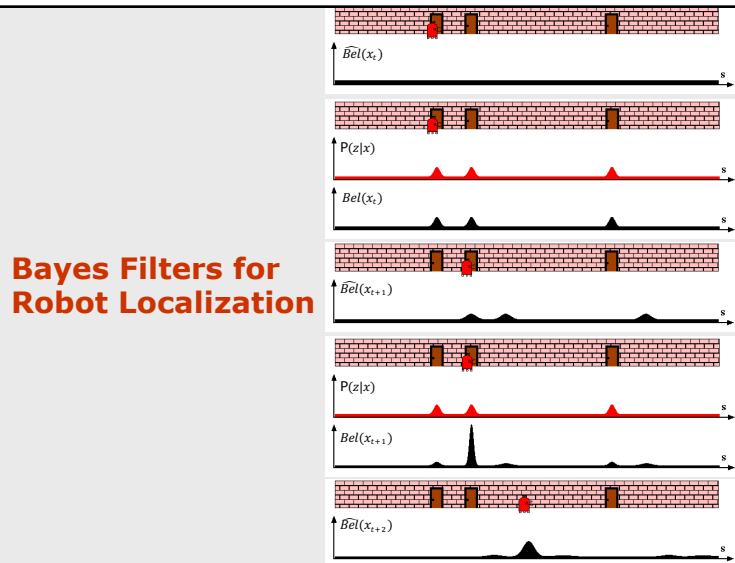


CSE-571 Robotics

Probabilistic Robotics

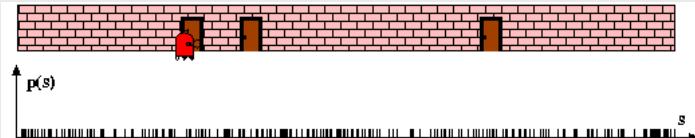
Probabilities
Bayes rule
Bayes filters

1



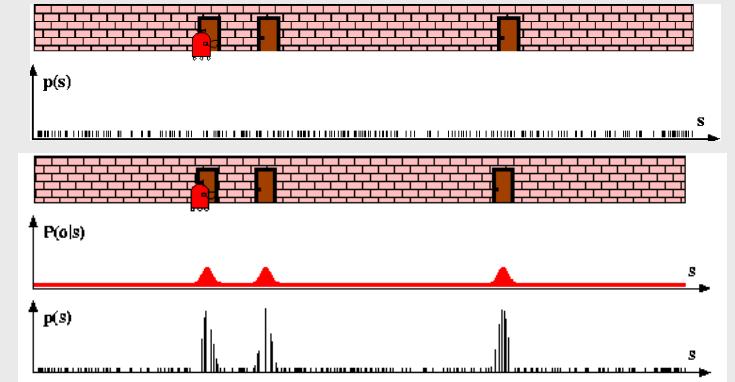
2

Particle Filters



3

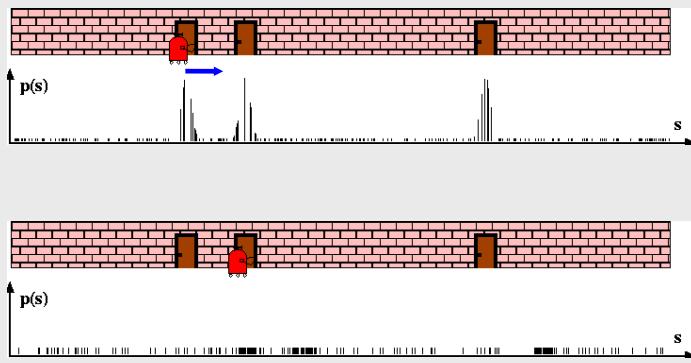
Sensor Information: Importance Sampling



4

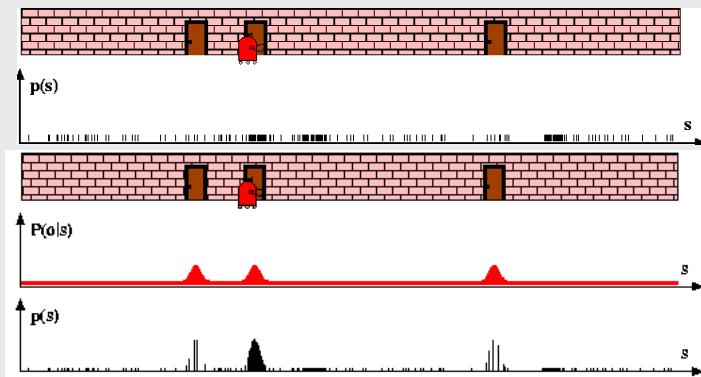
1

Robot Motion



5

Sensor Information: Importance Sampling



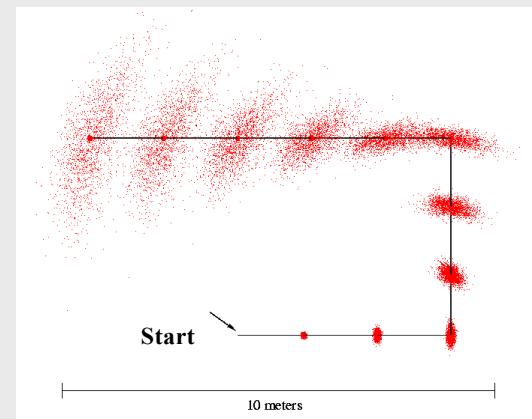
6

Robot Motion



7

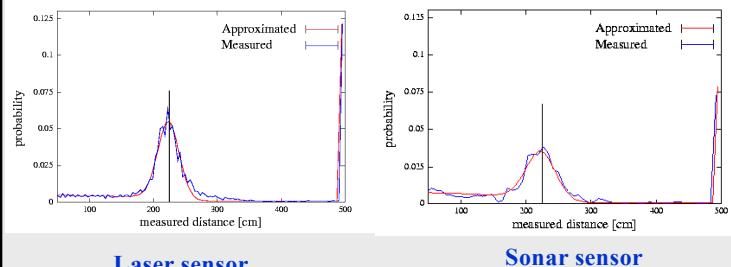
Motion Model



8

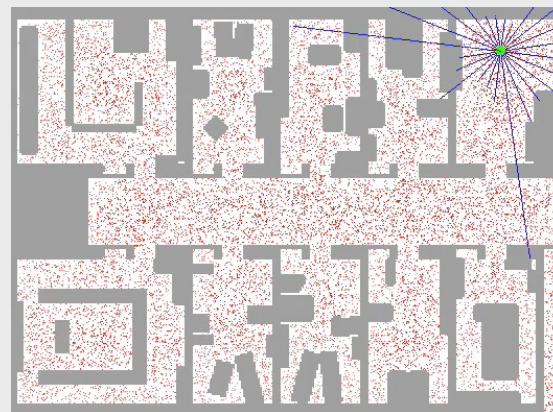
2

Proximity Sensor Model



9

Sample-based Localization (sonar)



1/7/26

Probabilistic Robotics

10

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

11

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\{x_1, x_2, \dots, x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .
- $P(\cdot)$ is called probability mass function.
- E.g. $P(\text{Room}) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$

12

Joint and Conditional Probability

- $P(X=x \text{ and } Y=y) = P(x,y)$
- If X and Y are **independent** then
 $P(x,y) = P(x) P(y)$
- $P(x | y)$ is the probability of **x given y**
 $P(x | y) = P(x,y) / P(y)$
 $P(x,y) = P(x | y) P(y)$
- If X and Y are **independent** then
 $P(x | y) = P(x)$

13

Law of Total Probability, Marginals

Discrete case

$$\sum_x P(x) = 1$$

$$P(x) = \sum_y P(x,y)$$

$$P(x) = \sum_y P(x | y) P(y)$$

Continuous case

$$\int p(x) dx = 1$$

$$p(x) = \int p(x,y) dy$$

15

Bayes Formula

$$P(x,y) = P(x | y) P(y) = P(y | x) P(x)$$

\Rightarrow

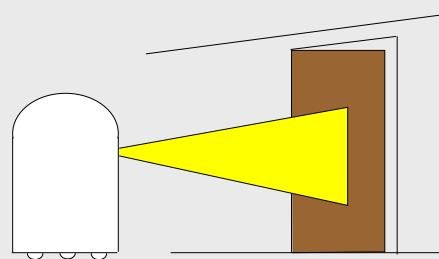
$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

- Often **causal** knowledge is easier to obtain than **diagnostic** knowledge.
- Bayes rule allows us to use causal knowledge.

17

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{open} | z)$?



18

Example

$$P(z \mid open) = 0.6 \quad P(z \mid \neg open) = 0.3$$

$$P(open) = P(\neg open) = 0.5$$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

- z raises the probability that the door is open.

20

Normalization

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta P(y \mid x) P(x)$$

$$\eta = P(y)^{-1} = \frac{1}{\sum_{x'} P(y \mid x') P(x')}$$

Algorithm:

$$\forall x: \text{aux}_{x \mid y} = P(y \mid x) P(x)$$

$$\eta = \frac{1}{\sum_x \text{aux}_{x \mid y}}$$

$$\forall x: P(x \mid y) = \eta \text{ aux}_{x \mid y}$$

22

Conditioning

- Bayes rule and [background knowledge](#):

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

$$\begin{aligned} P(x \mid y) &= \int P(x \mid y, z) P(z) dz \\ &= \int P(x \mid y, z) P(z \mid y) dz \\ &= \int P(x \mid y, z) P(y \mid z) dz \end{aligned}$$

23

Conditional Independence

$$P(x, y \mid z) = P(x \mid z) P(y \mid z)$$

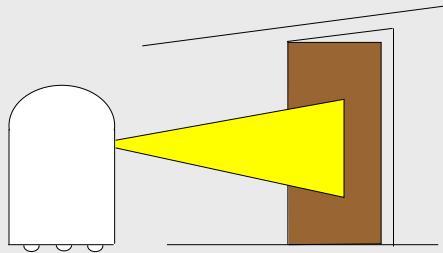
- Equivalent to

$$\begin{aligned} P(x \mid z) &= P(x \mid z, y) \\ \text{and } P(y \mid z) &= P(y \mid z, x) \end{aligned}$$

26

Simple Example of State Estimation

- Suppose our robot obtains another observation z_2 .
- What is $P(\text{open} | z_1, z_2)$?



27

Recursive Bayesian Updating

$$P(x | z_1, \dots, z_n) = \frac{P(z_n | x, z_1, \dots, z_{n-1}) P(x | z_1, \dots, z_{n-1})}{P(z_n | z_1, \dots, z_{n-1})}$$

Markov assumption: z_n is conditionally independent of z_1, \dots, z_{n-1} given x .

$$\begin{aligned} P(x | z_1, \dots, z_n) &= \frac{P(z_n | x) P(x | z_1, \dots, z_{n-1})}{P(z_n | z_1, \dots, z_{n-1})} \\ &= \eta P(z_n | x) P(x | z_1, \dots, z_{n-1}) \\ &= \eta_{1 \dots n} \prod_{i=1 \dots n} P(z_i | x) P(x) \end{aligned}$$

29

Example: Second Measurement

$$P(z_2 | \text{open}) = 0.5 \quad P(z_2 | \neg\text{open}) = 0.6$$

$$P(\text{open} | z_1) = 2/3 \quad P(\neg\text{open} | z_1) = 1/3$$

$$\begin{aligned} P(\text{open} | z_2, z_1) &= \frac{P(z_2 | \text{open}) P(\text{open} | z_1)}{P(z_2 | \text{open}) P(\text{open} | z_1) + P(z_2 | \neg\text{open}) P(\neg\text{open} | z_1)} \\ &= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{5}{8} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625 \end{aligned}$$

- z_2 lowers the probability that the door is open.

31

Bayes Filters: Framework

• Given:

- Stream of observations z and action data u :
 $d_t = \{u_1, z_2, \dots, u_{t-1}, z_t\}$
- Sensor model $P(z|x)$.
- Action model $P(x|u, x')$.
- Prior probability of the system state $P(x)$.

• Wanted:

- Estimate of the state X of a **dynamical system**.
- The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_2, \dots, u_{t-1}, z_t)$$

32

Bayes Filters

z = observation
 u = action
 x = state

$$\begin{aligned}
 \text{Bel}(x_t) &= P(x_t | u_1, z_1, \dots, u_t, z_t) \\
 \text{Bayes} &= \eta P(z_t | x_t, u_1, z_1, \dots, u_t) P(x_t | u_1, z_1, \dots, u_t) \\
 \text{Markov} &= \eta P(z_t | x_t) P(x_t | u_1, z_1, \dots, u_t) \\
 \text{Total prob.} &= \eta P(z_t | x_t) \int P(x_t | u_1, z_1, \dots, u_t, x_{t-1}) P(x_{t-1} | u_1, z_1, \dots, u_t) dx_{t-1} \\
 \text{Markov} &= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) P(x_{t-1} | u_1, z_1, \dots, u_t) dx_{t-1} \\
 &= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \text{Bel}(x_{t-1}) dx_{t-1}
 \end{aligned}$$

34

$$\text{Bel}(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \text{Bel}(x_{t-1}) dx_{t-1}$$

1. Algorithm **Bayes_filter**($\text{Bel}(x), d$):
2. $n=0$
3. If d is a **perceptual** data item z then
 4. For all x do
 5. $\text{Bel}'(x) = P(z | x) \text{Bel}(x)$
 6. $\eta = \eta + \text{Bel}'(x)$
 7. For all x do
 8. $\text{Bel}'(x) = \eta^{-1} \text{Bel}'(x)$
9. Else if d is an **action** data item u then
 10. For all x do
 11. $\text{Bel}'(x) = \int P(x | u, x') \text{Bel}(x') dx'$
12. Return $\text{Bel}'(x)$

36

Bayes Filters are Familiar!

$$\text{Bel}(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \text{Bel}(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

37

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamical systems.

38