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Robot Motion Sensor Information: Importance Sampling
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Probabilistic Robotics

Key idea: Explicit representation of

uncertainty
(using the calculus of probability theory)

® Perception = state estimation
e Action = utility optimization

Discrete Random Variables

e X denotes a random variable.

® X can take on a countable number of values
in {Xy, X3, ..., Xn}-

® P(X=x;), or P(x;), is the probability that the
random variable X takes on value x;.

e P(.) is called probability mass function.

®* E.g. P(Room)= <0.7,0.2,0.08,0.02>
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Joint and Conditional Probability
® P(X=x and Y=y) = P(x,y)

e If X and Y are independent then
P(x,y) = P(x) P(y)

® P(x | y) is the probability of x given y
P(x | y) = P(x,y) / P(y)
P(x,y) = P(x|y) P(y)

e If X and Y are independent then
P(x | y) = P(x)
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Law of Total Probability, Marginals

Discrete case Continuous case
> P(x)=1 jp(x)dx=1
P(x)=Y P(x,) p()= [ p(xy) dy

P(x)=Y P(x|»P(Y)  p(x)=[px|»)p()dy

Bayes Formula
P(x,y)=P(x| y)P(y) = P(y | x)P(x)

=
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P(y|x) P(x) likelihood - prior

P(y) evidence

e Often causal knowledge is easier to
obtain than diagnostic knowledge.

® Bayes rule allows us to use causal
knowledge.
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Simple Example of State Estimation

® Suppose a robot obtains measurement z
e What is P(open|z)?

S
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Example

P(zlopen)=0.6 P(z|—open)=0.3
P(open) = P(—open)=0.5

P(z | open)P(open)
P(z | open) p(open) + P(z | —open) p(—open)
0.6-0.5 2
0.6-05+0.3-05 3

P(open|z)=

P(open|z)=

0.67

* Z raises the probability that the door is open.
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Conditioning

® Bayes rule and background knowledge:
P(y|x,z) P(x|z)
P(x|y,z)=
P(y|z)

P(x|y) . j P(x|y,2)P(z) dz
= [P(x|7.2) Pz | ) dz

= [Px| y.2) P(y] 2) dz

Normalization
_P(y|x) P(x) _
P(x|y)= PO) n P(y|x)P(x)
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Algorithm:
Vx:aux, =P(y|x) P(x)

1
N=——
Z aux.,

Vx:P(x|y)=naux,,
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Conditional Independence

P(x,y

2)=P(x|2)P(y|z)

¢ Equivalent to

P(x|z)=P(x|z,y)
and

P(y|z)=P(y|z,x)
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Simple Example of State Estimation

® Suppose our robot obtains another
observation z,.

e What is P(open|z; z,)?

S
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Example: Second Measurement

P(z,1open)=05  P(z,|1—open)=0.6
P(openlz))=2/3  P(—openlz)=1/3

P(z, | open) P(open|z,)

P(open|z,,z,) =
P(z, |open) P(open| z,)+ P(z, | —open) P(—open| z,)

* Z, lowers the probability that the door is open.

Recursive Bayesian Updating

P(zn|x,21,...,20-1) P(x| 21,...,21-1)
P(zn| z1,...,20-1)

P(x|z1,...,2n) =

Markov assumption: z, is conditionally independent

of z;,...,z,_; given x.

P(zn|x) P(x|z1,...,2n-1)
P(zn|z1,...,20-1)

=1 P(zn|x) P(x|z1,...,2n-1)

=n,_, [] Pz:]x) P(x)

i=l..n

P(x|z1,...,z0) =
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Bayes Filters: Framework

® Given:
e Stream of observations z and action data u:
d ={u,z, ...,u,_,2,}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).
e Wanted:
e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel(x,)=P(x, |u;,z, ...,u, ,,z2,
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z = observation
u = action
x = state

Bayes Filters

Bel(x,)= P(x, |u,z, ...,u,,z,)
Bayes =n P(z, | x,,u,2,,....u,) P(x, |u,2,,...,u,)
Markov =n P(Zt |xt) P(x, |u1,Zl, ...,ut)

Total prob.

wanov =17 P(z,| %) [ PCx |, %) P(y [t,2,5000,) iy

=1 P(z,| %) [ P(x, |u,.x,,) Bel(x,,) dx,,

=n P(z, x,) JP(X, lu,,z,,....u,,%,_DP(x,_ lu,z,...,u,) dx,_
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Bayes Filters are Familiar!

Bel(x,)=n P(z,|x,) [ P(x, |u,%,,) Bel(x, ) dx,

e Kalman filters

e Particle filters

¢ Hidden Markov models

® Dynamic Bayesian networks

e Partially Observable Markov Decision
Processes (POMDPs)

Bel(x,)=n P(z,|%,) [ P(x,|u,,%,.,) Bel(x,.,) dx,

Algorithm Bayes_ filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z | x)Bel(x)
n=mn+ Bel'(x)
For all x do
Bel'(x) =1"'Bel'(x)
9. Else if d is an action data item u then
10. For all x do
11. Bel'(x)=JP(x|u,x') Bel(x") dx'
12. Return Bel’(x)

N
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Summary

® Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

e Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

® Bayes filters are a probabilistic tool
for estimating the state of dynamical
systems.
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