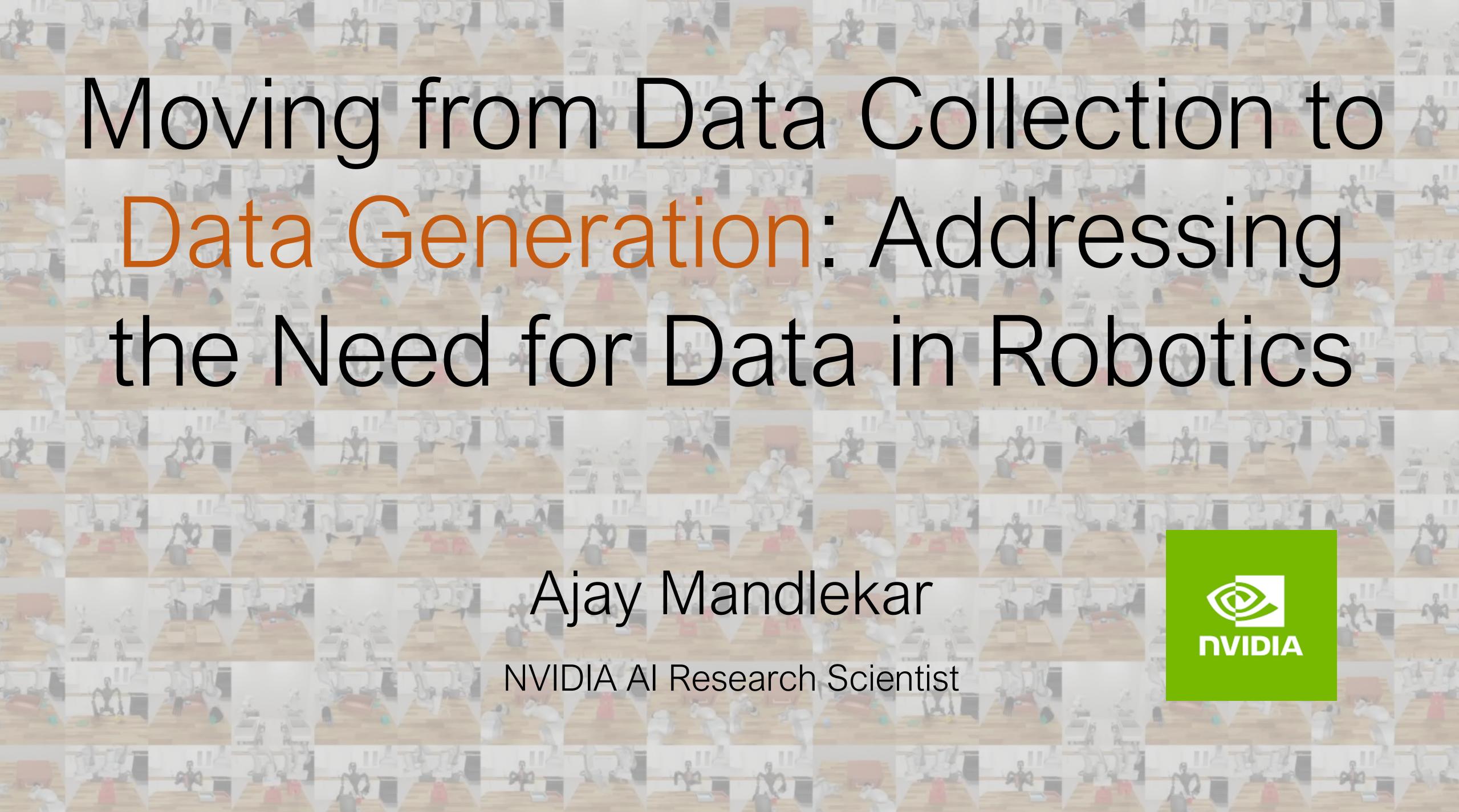
Moving from Data Collection to Data Generation: Addressing the Need for Data in Robotics

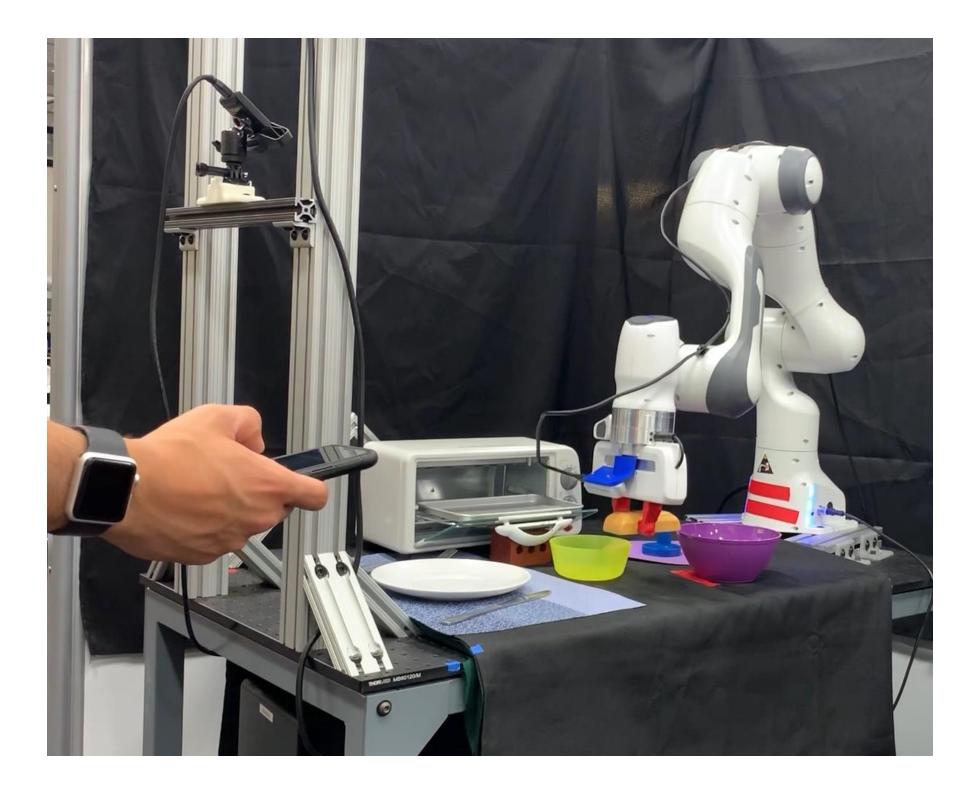
Ajay Mandlekar

NVIDIA AI Research Scientist



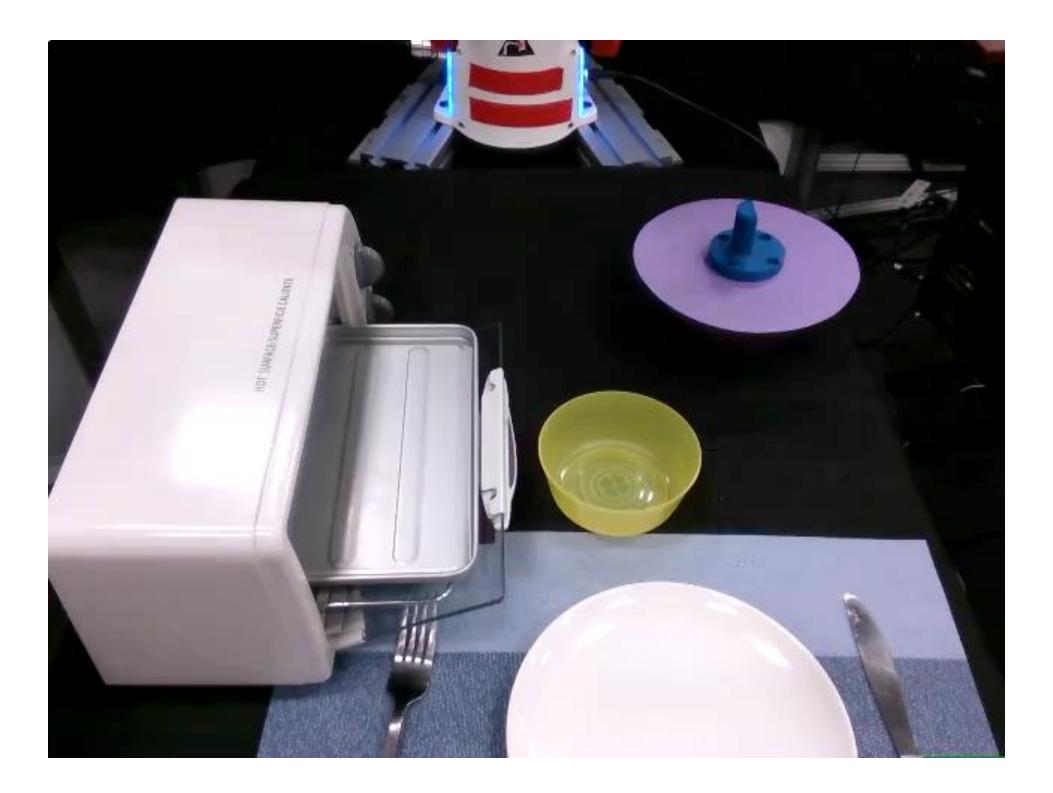
Imitation Learning from Human Demonstrations is a Promising Paradigm

Human teleoperates robot arm to collect data for tasks of interest

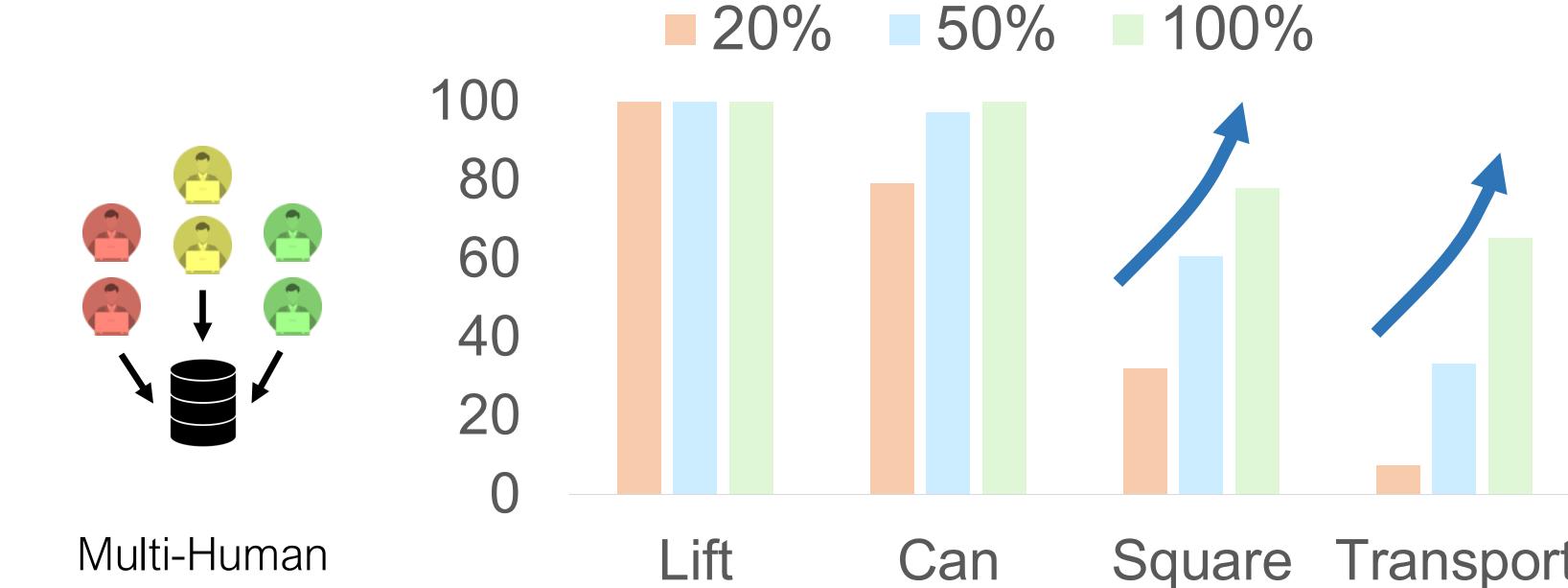


Mandlekar and Xu et al. "Learning to Generalize Across Long-Horizon Tasks from Human Demonstrations", RSS 2020

Robot learns from data to perform tasks autonomously



Simple Recipe for Skill Learning: Scale Data to Scale Performance



Mandlekar et al. "What Matters in Learning from Offline Human Demonstrations for Robot Manipulation", CoRL 2021

The robomimic study showed that robot performance scales with larger datasets

Square Transport

Simple Recipe for Skill Learning: Scale Data to Scale Performance

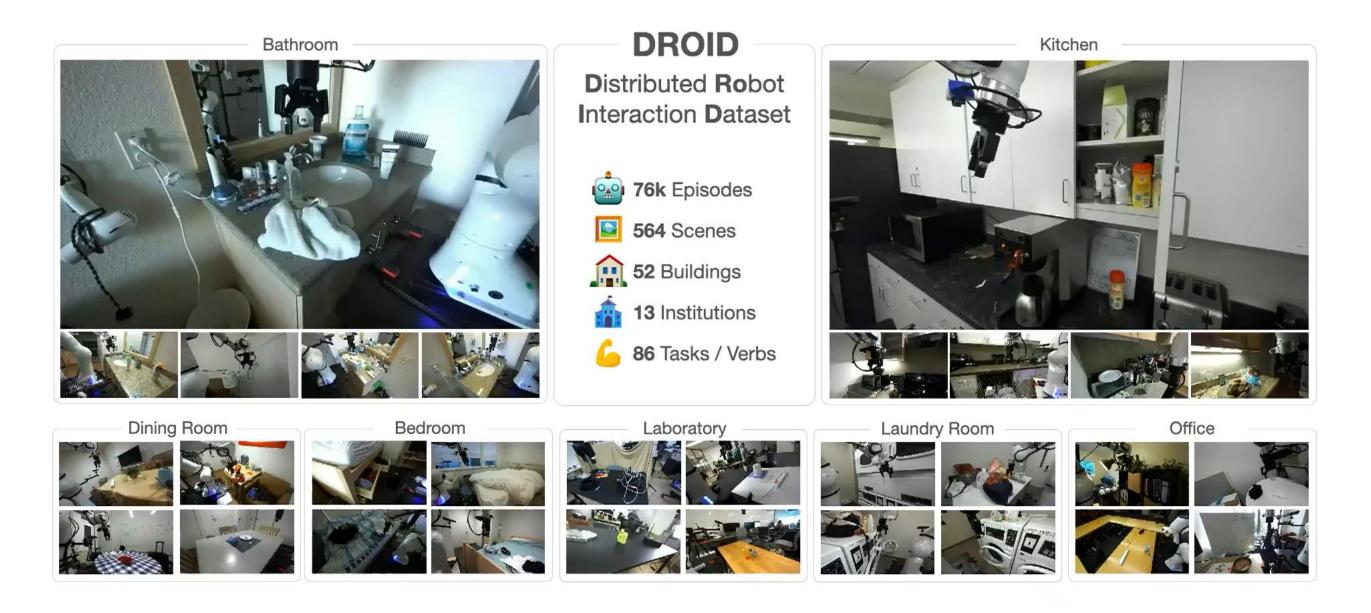
Brohan et al. "RT-1: Robotics Transformer for Real-World Control at Scale", 2022

18 months of data with a large team of human contractors and robots to achieve 97% success on rearrangement tasks

Robot learning is moving towards even larger data regimes DROID Open-X

Open X-Embodiment Collaboration "Open X-Embodiment: Robotic Learning Datasets and RT-X Models", 2023

20+ academic institutions, 22 robot embodiments, 500 skills, 150,000 tasks



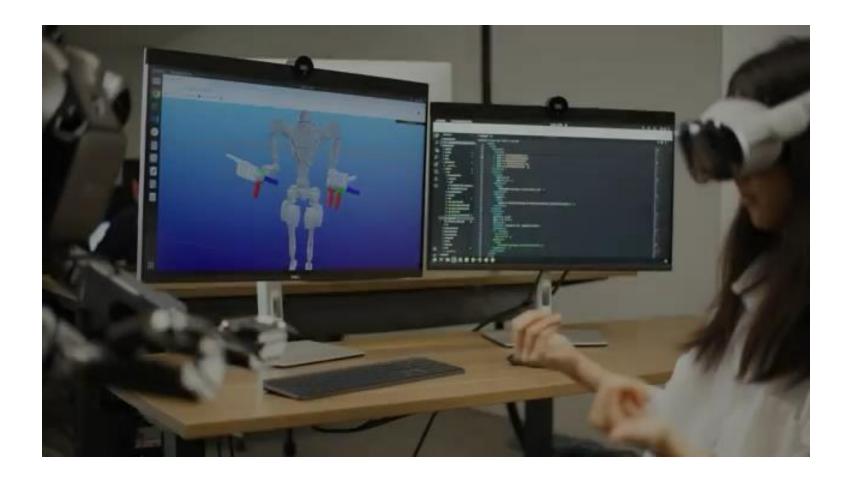
Khazatsky et al. "DROID: A Large-Scale In-the-Wild Robot Manipulation Dataset", 2024

76,000 episodes, 564 scenes, 52 buildings, 13 institutions, 86 tasks

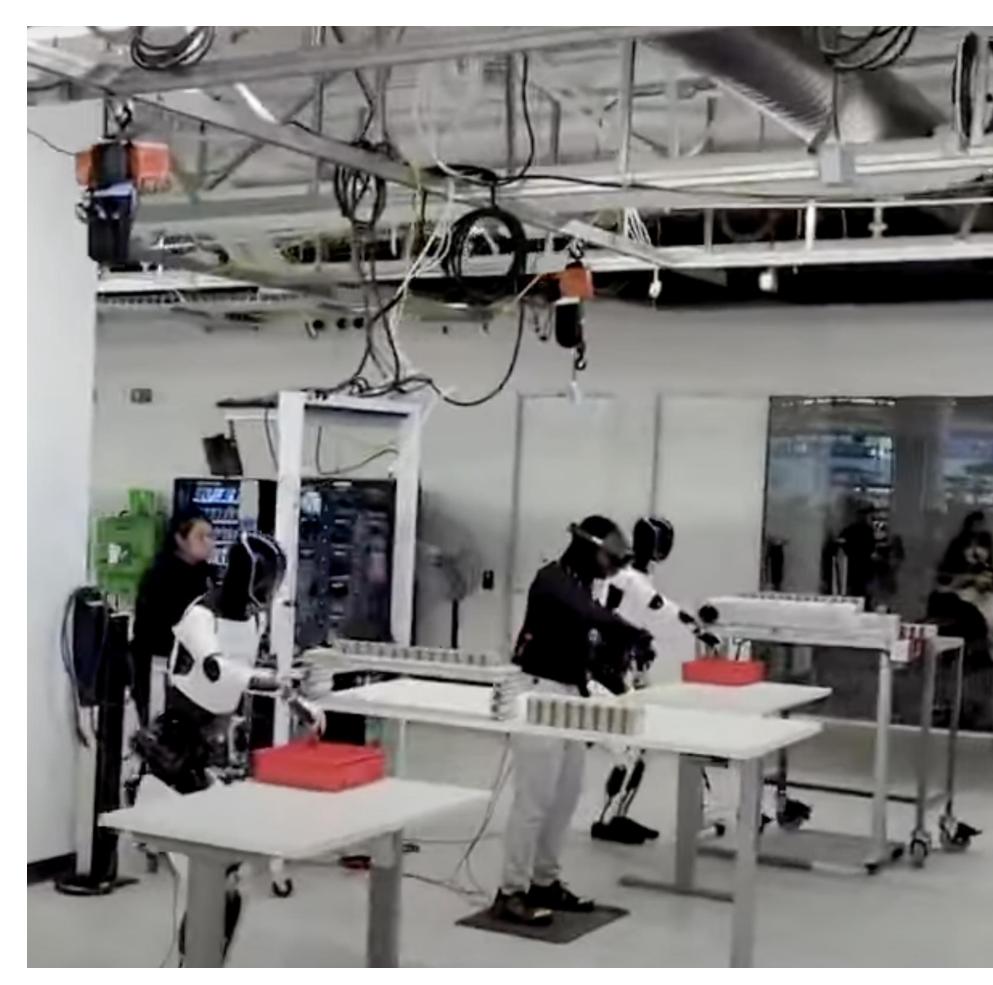
Robot learning is moving towards even larger data regimes Tesla

Physical Intelligence

NVIDIA Project GR00T



Scaling data collection requires extreme amounts of human effort



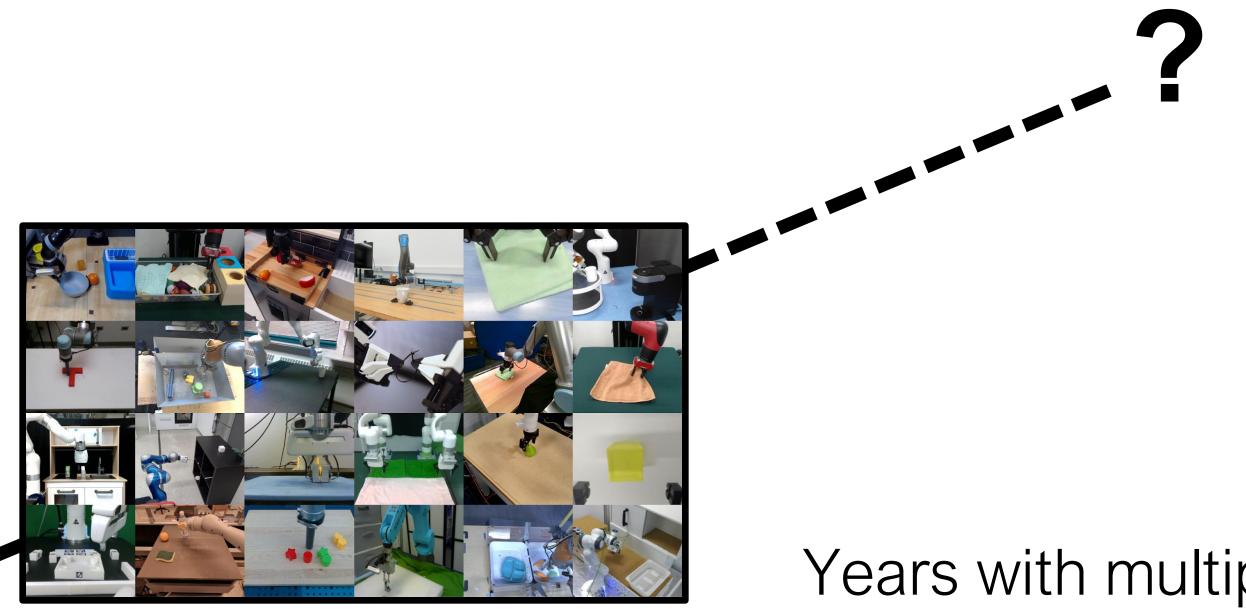
Tesla Optimus Robot Demo

Source: Tesla Data Collection Operator job posting

Requirements:

- Must be able to walk 7+ hours a day while carrying up to 30 lbs.
- Ability to wear and operate a motion capture suit and VR headset for extended periods of time.
- Continuous hand/eye coordination and fine manipulation, body coordination, and kinesthetic awareness and ability to walk up/downstairs.
- Must have the ability to stand, sit, walk, stoop, bend, reach, crouch, and twist throughout the day.
- Ability to work a flexible schedule: day/night shift and 1 weekend day + overtime when needed.

Can we scale data collection without scaling human effort?



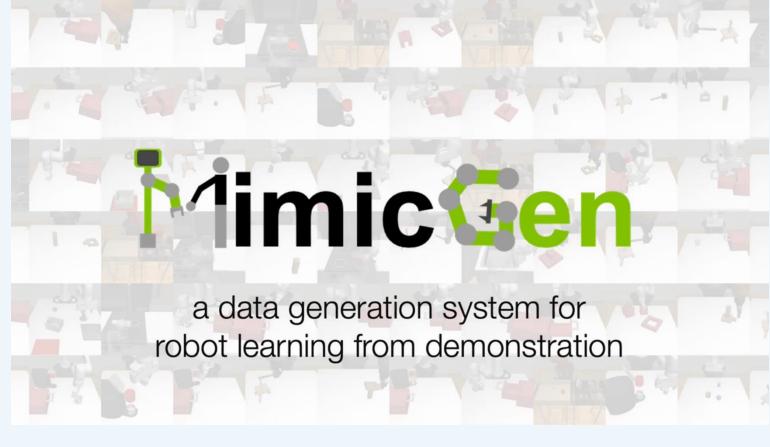
18 months with several human operators

Years with multiple academic institutions

Simulation is a compelling alternative to real-world data collection

Scalable data generation

Synthesize diverse, high-quality robot demonstrations autonomously



[Mandlekar et al. 2023]

Procedurally generate scenes, objects, tasks with the aid of generative AI tools

Infinite procedural generation

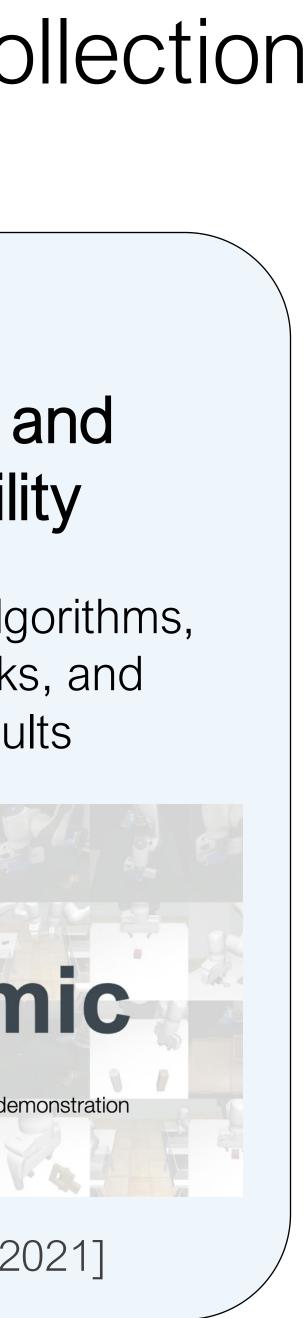
[Nasiriany et al. 2024]

Ease-of-use and reproducibility

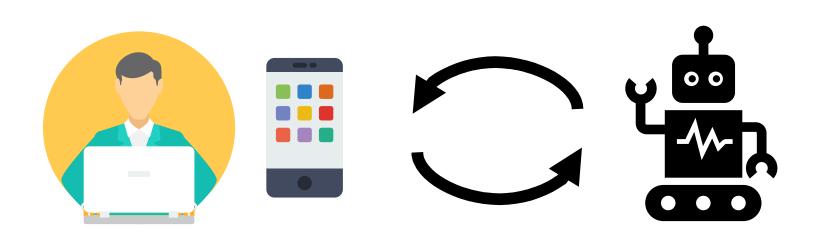
Reliably prototype algorithms, create benchmarks, and reproduce results

a framework for robot learning from demonstration

[Mandlekar et al. 2021]

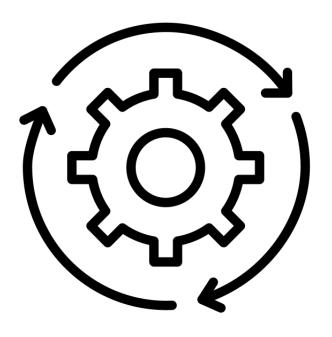


Data Collection



Months of persistent and costly human effort

Data Generation



Little to no human effort

Autonomous Data Generation Tools

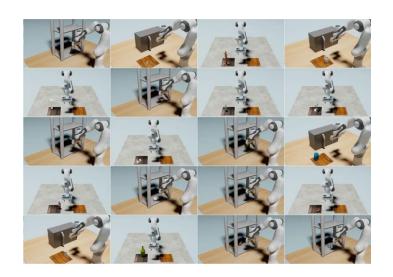
- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

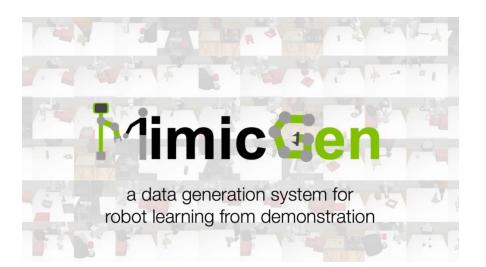
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

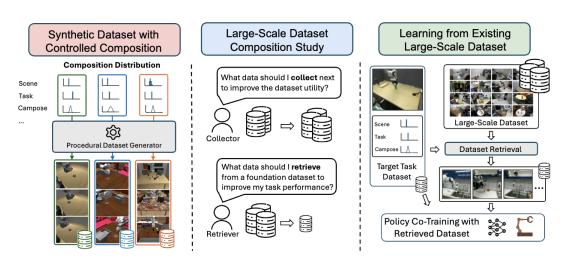


OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)



MimicGen (CoRL 2023)

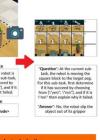


MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

Image: Constrained on the second on the se

SkillMimicGen (CoRL 2024) AHA (ICLR 2025)



Autonomous Data Generation Tools

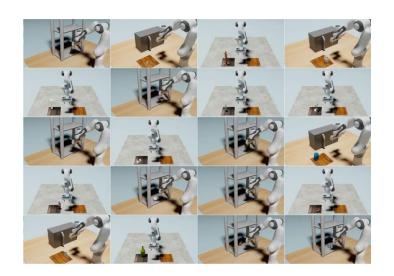
- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

Building More Powerful Data Generators

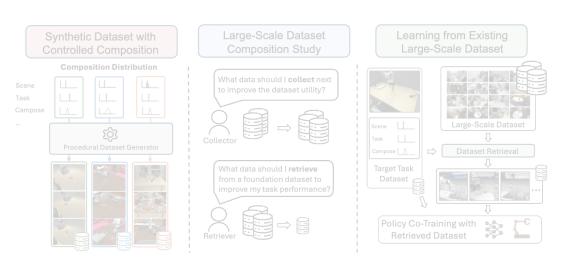
- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures



OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

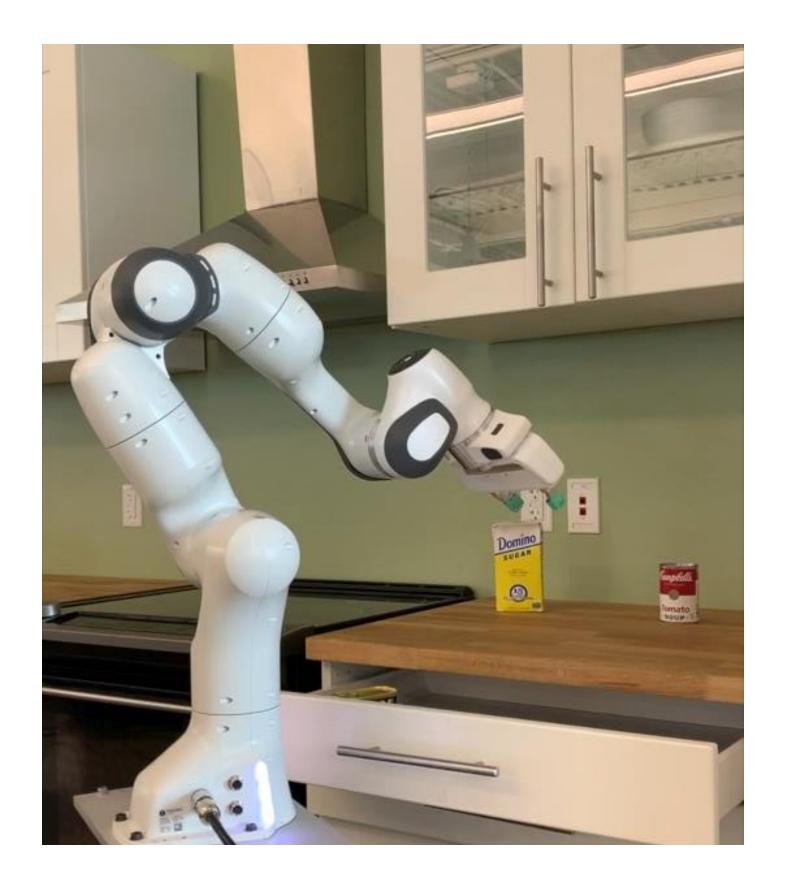
skill Mimic Gen

a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)

AHA (ICLR 2025)

Task and Motion Planning (TAMP) Solving Robot Manipulation with Optimization

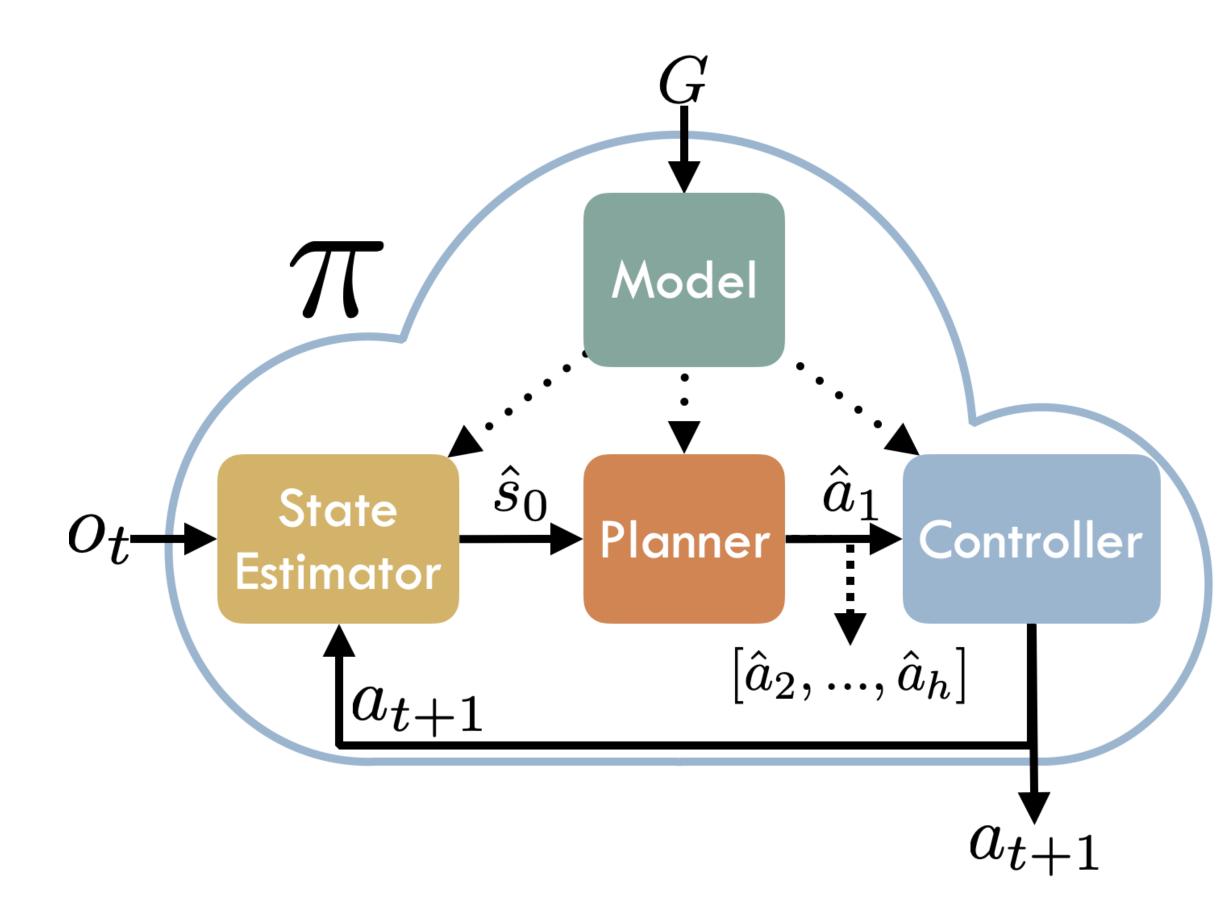


Garrett et al. "Integrated Task and Motion Planning", 2021

Use world models and optimization to solve long-term objectives

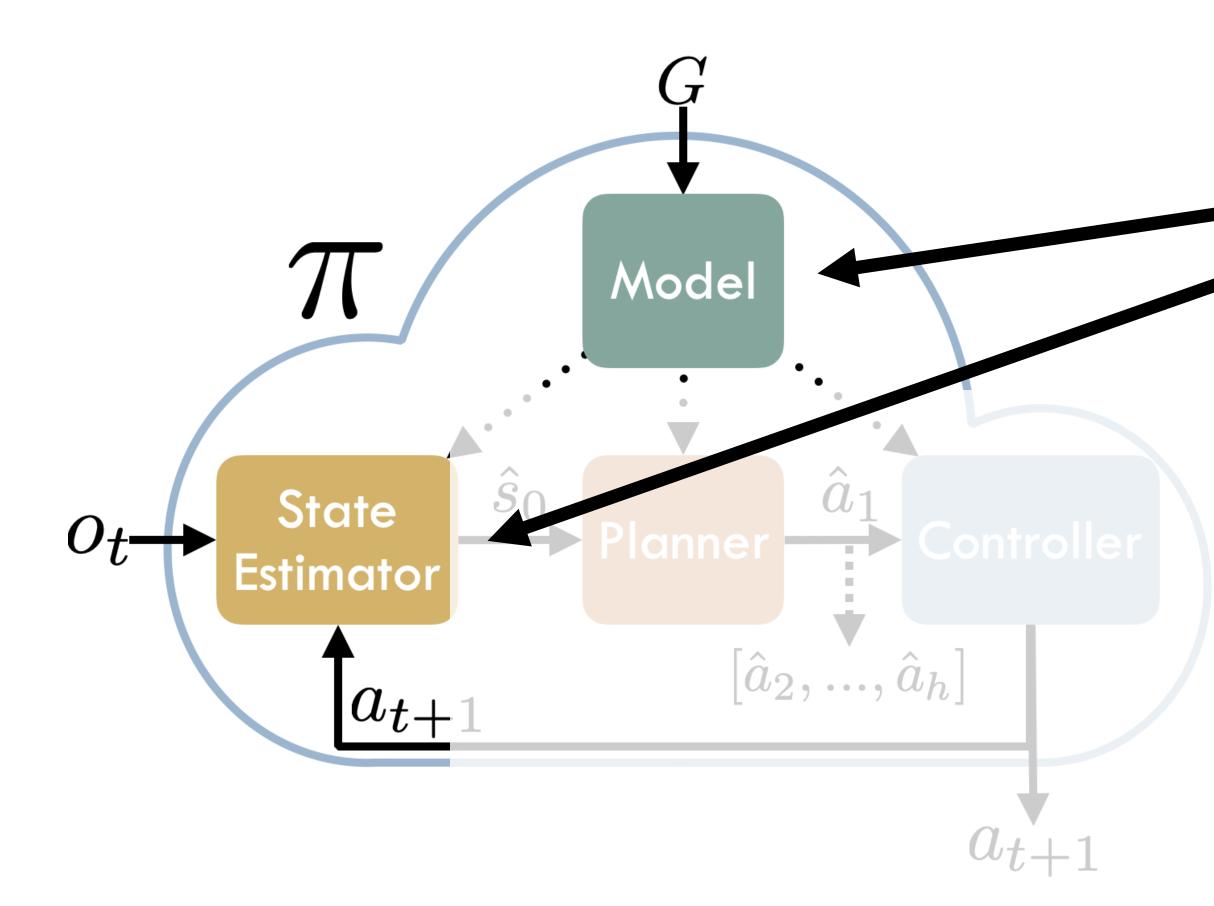
- Goal: move the can of spam from the drawer to the cabinet
- TAMP plans a sequence of robot motions to achieve this goal: open the cabinet, grasp the can, place can on table, re-grasp the can, place can in cabinet
- TAMP understands that different grasps are required at different parts of the task, so the can is placed on the table temporarily

Task and Motion Planning (TAMP) Solving Robot Manipulation with Optimization



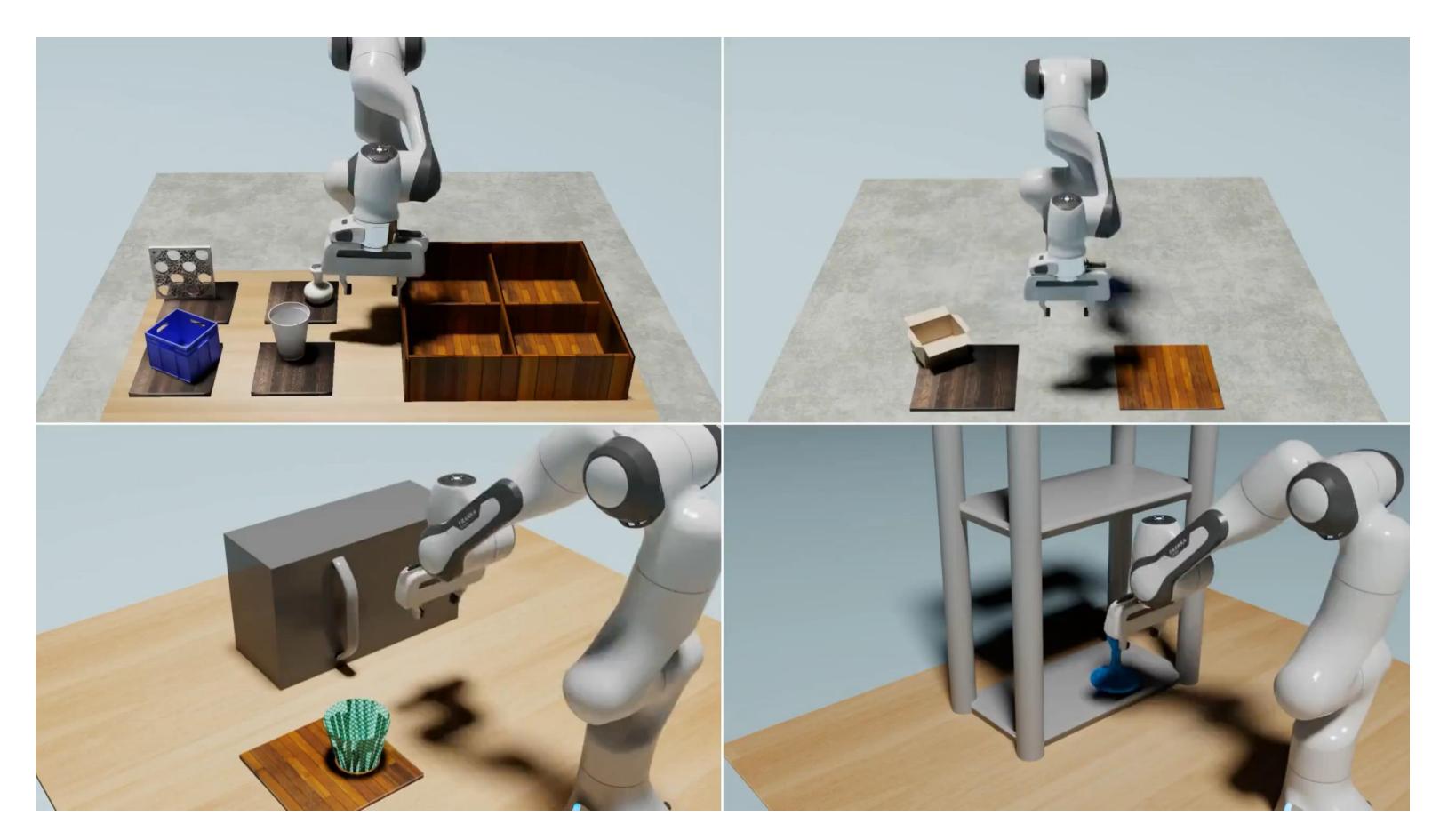
- Positives: easily applicable to a wide range of initial states, goal conditions, long-horizon tasks, and can handle substantial geometry variation.
- Requirements: a set of parametrized skills and knowledge of their effects (e.g. move, grasp, place, open, close), and some form of state estimation as well (meshes, poses, etc)

Task and Motion Planning (TAMP) Solving Robot Manipulation with Optimization



Readily available in simulation!

Idea: Use TAMP as a data generator in simulation



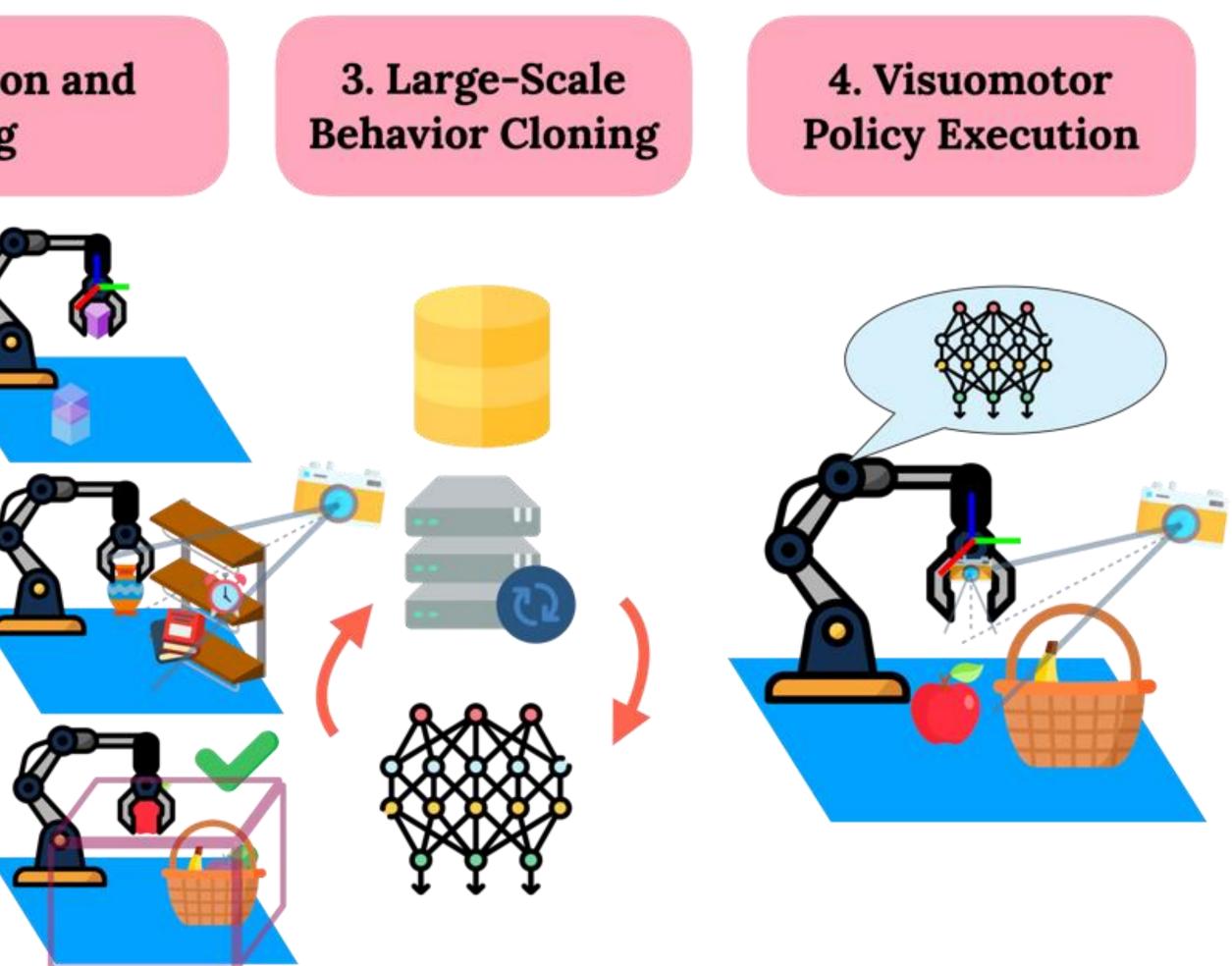
Dalal et al. "Imitating Task and Motion Planning with Visuomotor Transformers", CoRL 2023

Apply TAMP to several procedurally generated simulation environments for a rich source of demonstration data!

OPTIMUS: Offline Pretrained TAMP Imitation System

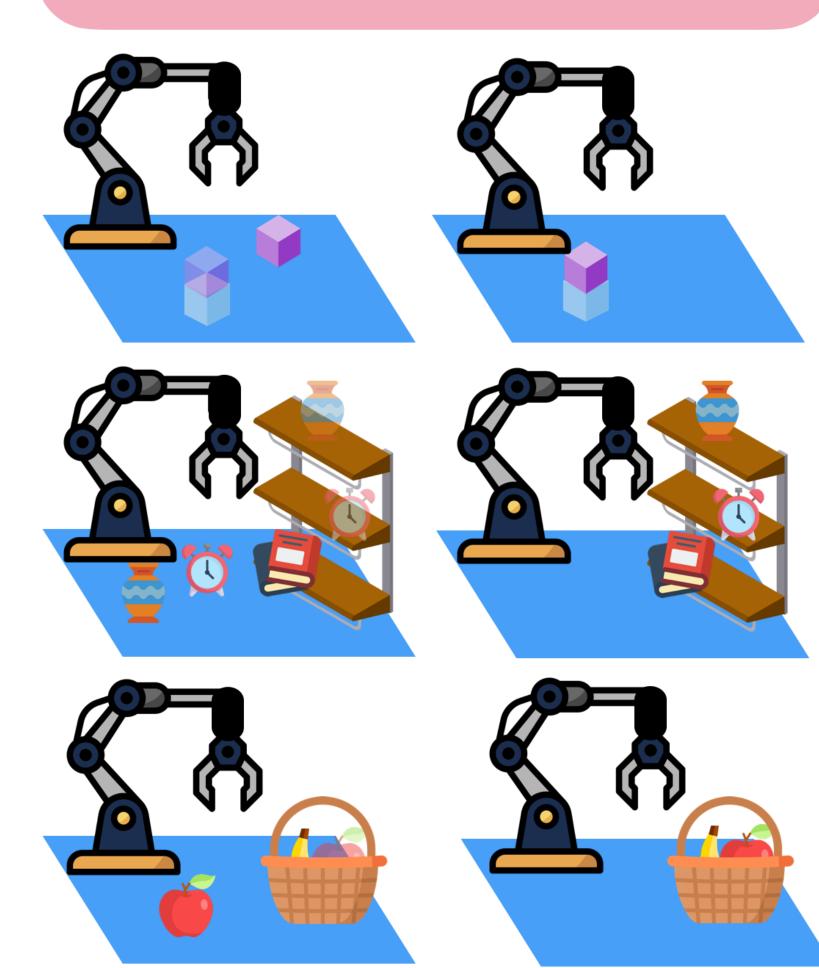
1. Procedural Environment 2. Data Curation and **Generation and TAMP Solution** Filtering

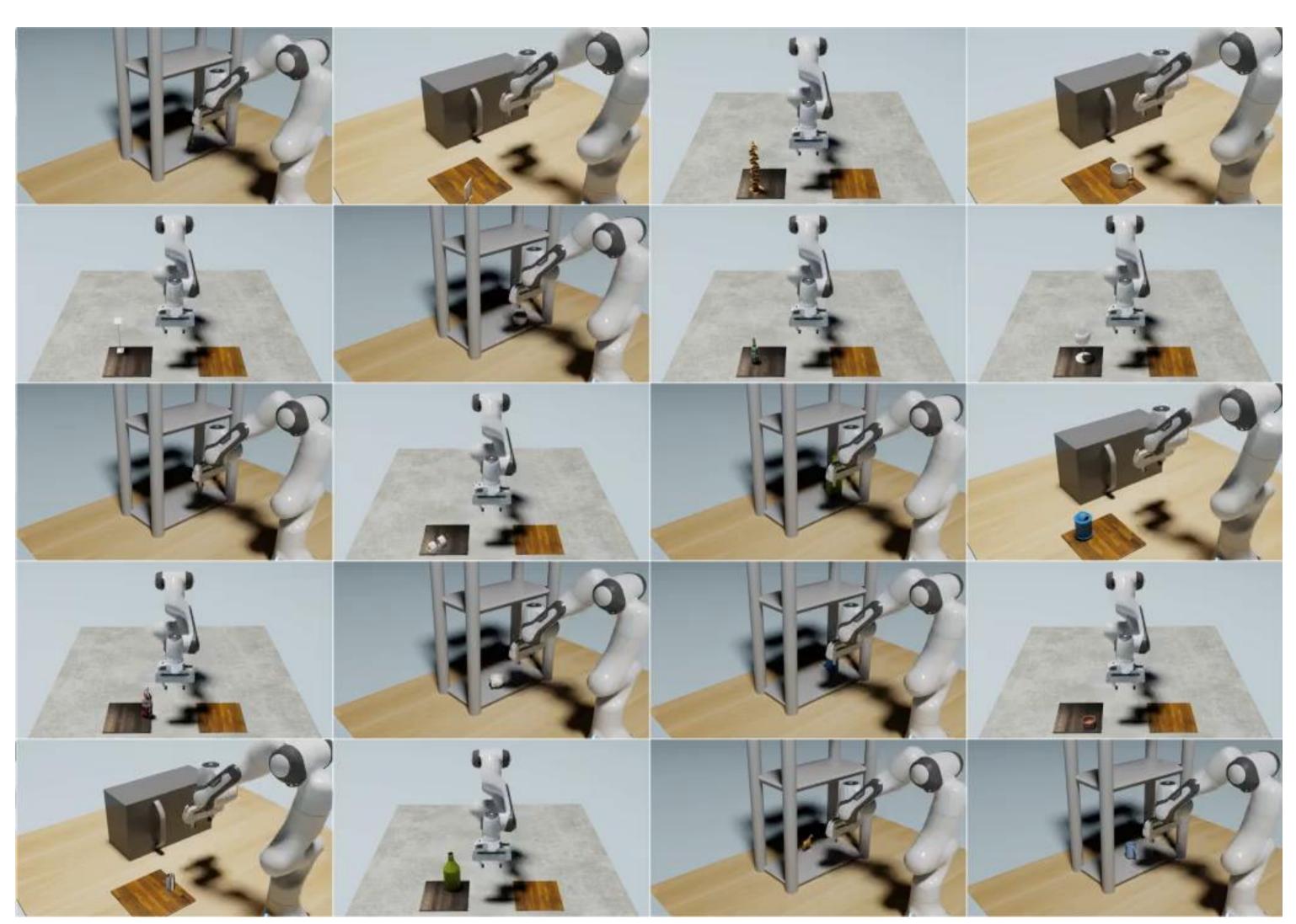
Dalal et al. "Imitating Task and Motion Planning with Visuomotor Transformers", CoRL 2023



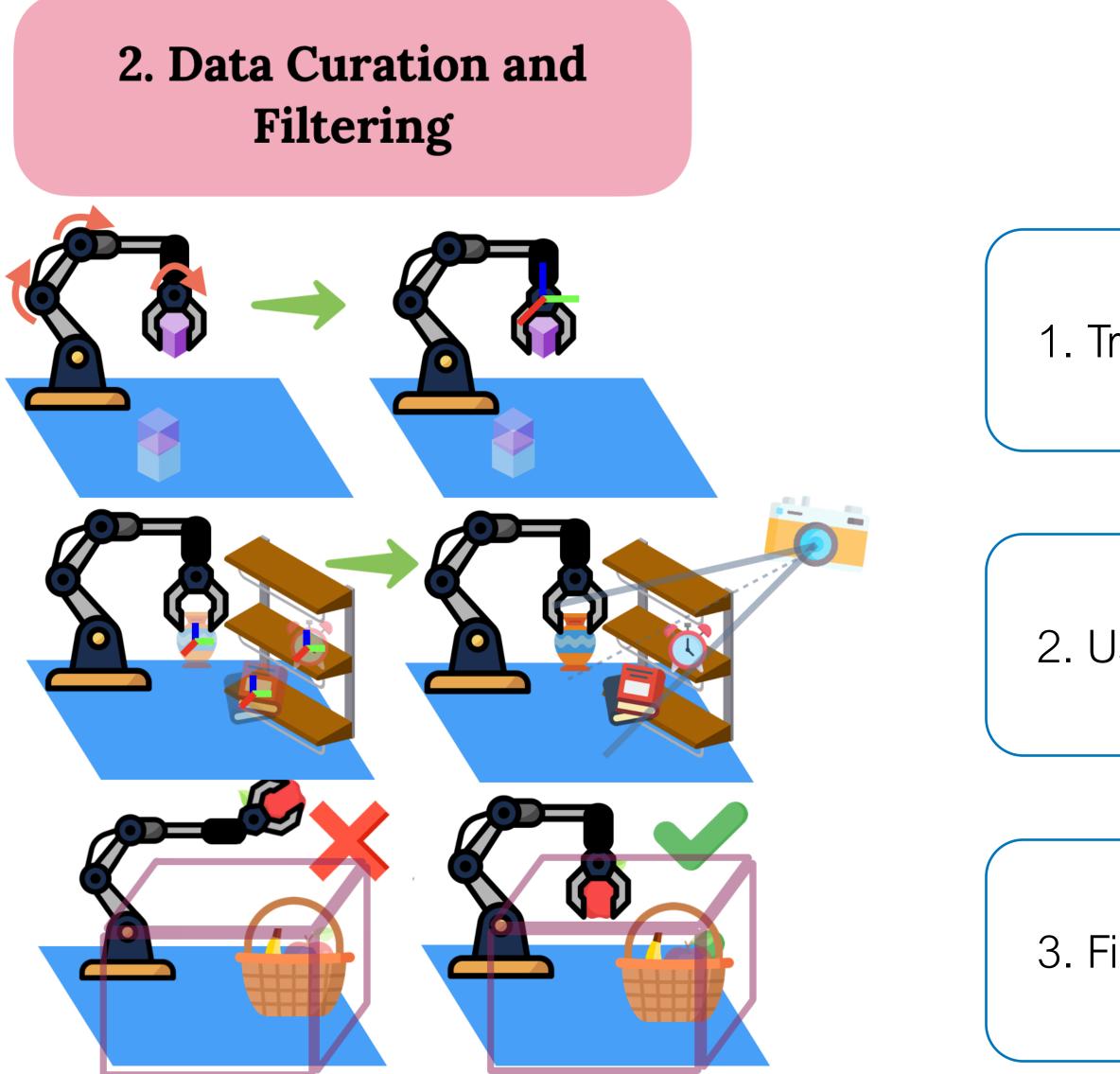
Procedural Environment and TAMP Solution Generation

1. Procedural Environment Generation and TAMP Solution





Curating TAMP demonstrations to enable Imitation Learning



1. Transform TAMP demonstrations into task space

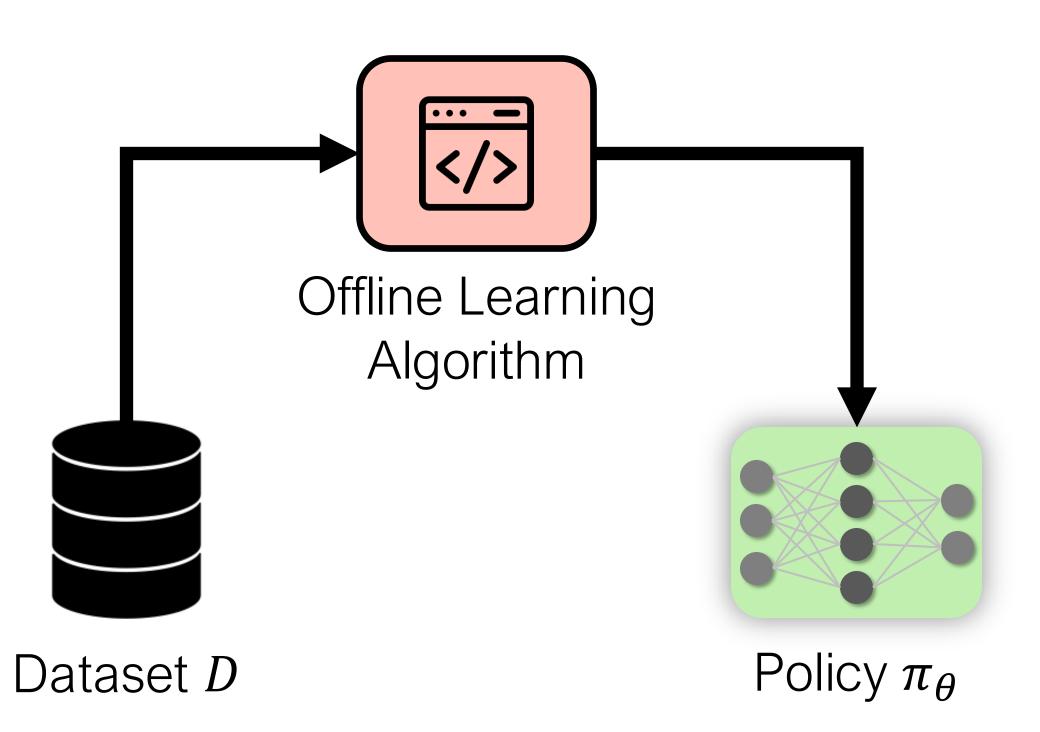
2. Use well-tuned camera views + wrist camera

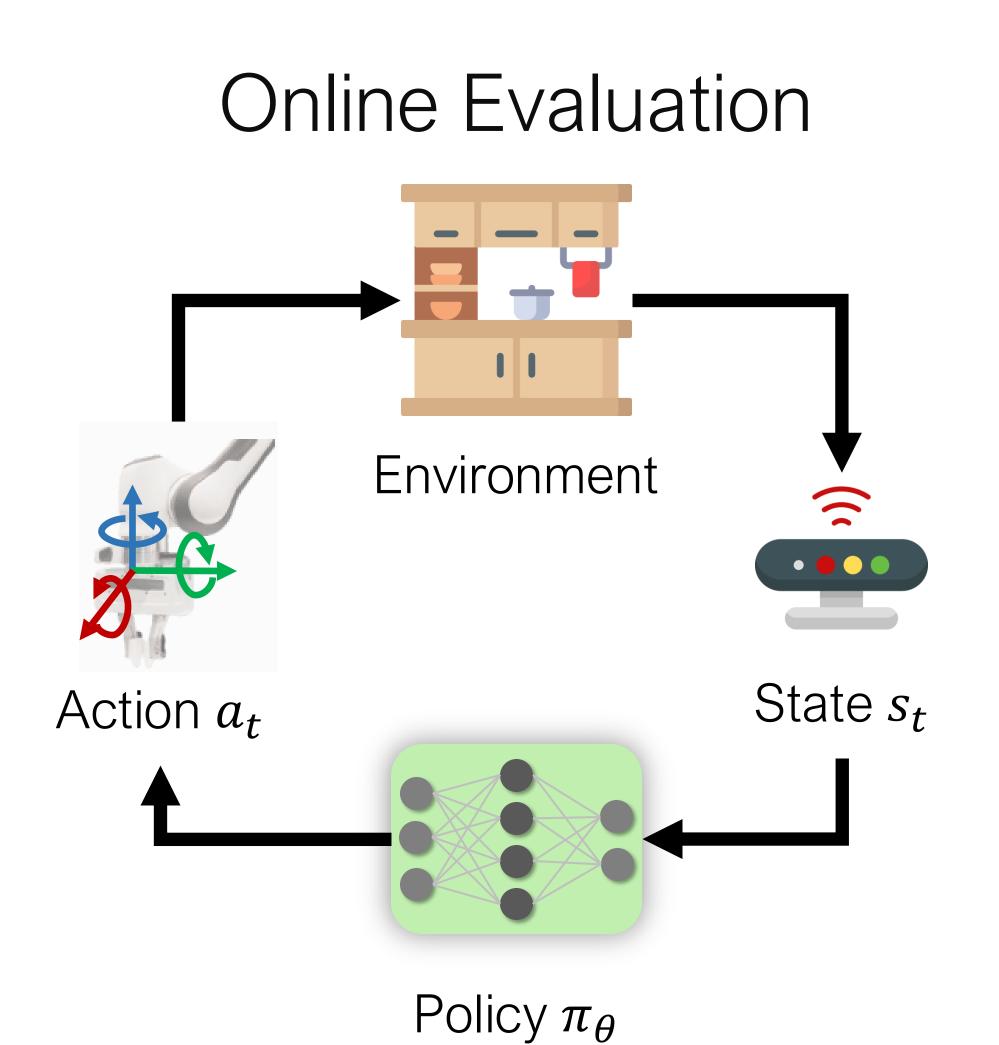
3. Filter out out-of-distribution TAMP trajectories

Offline Policy Learning

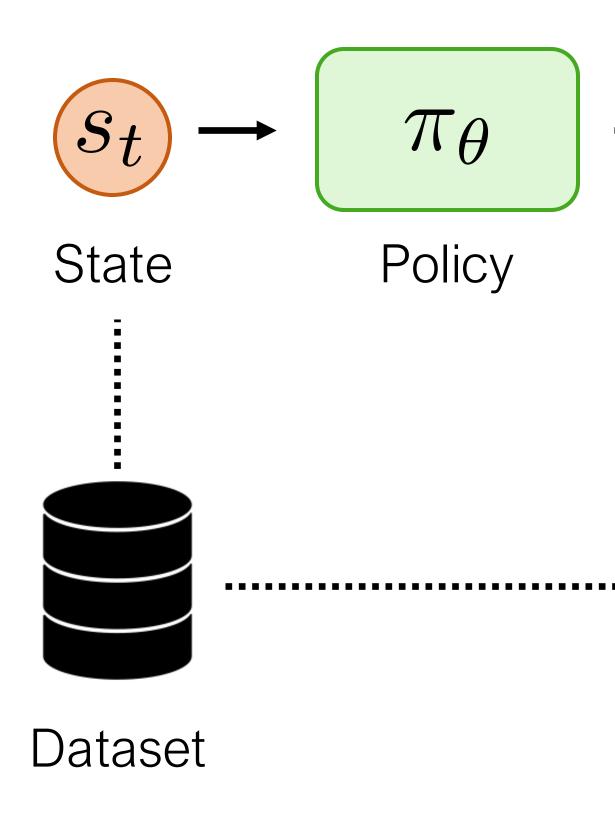
Goal: train closed-loop policy that performs well on task

Offline Training

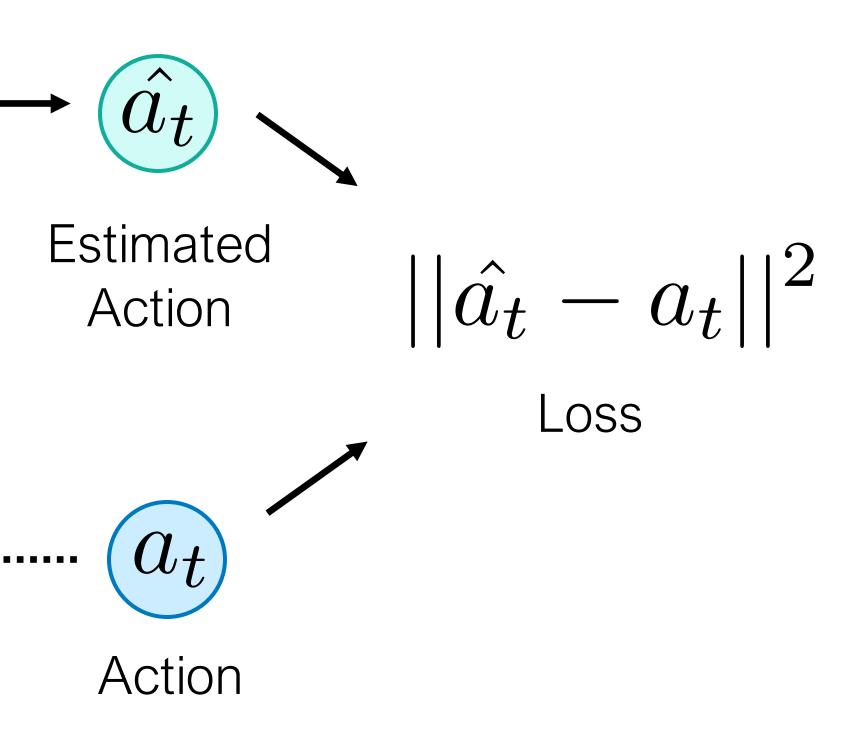




Imitation Learning: Behavioral Cloning Key Idea: Copy all actions



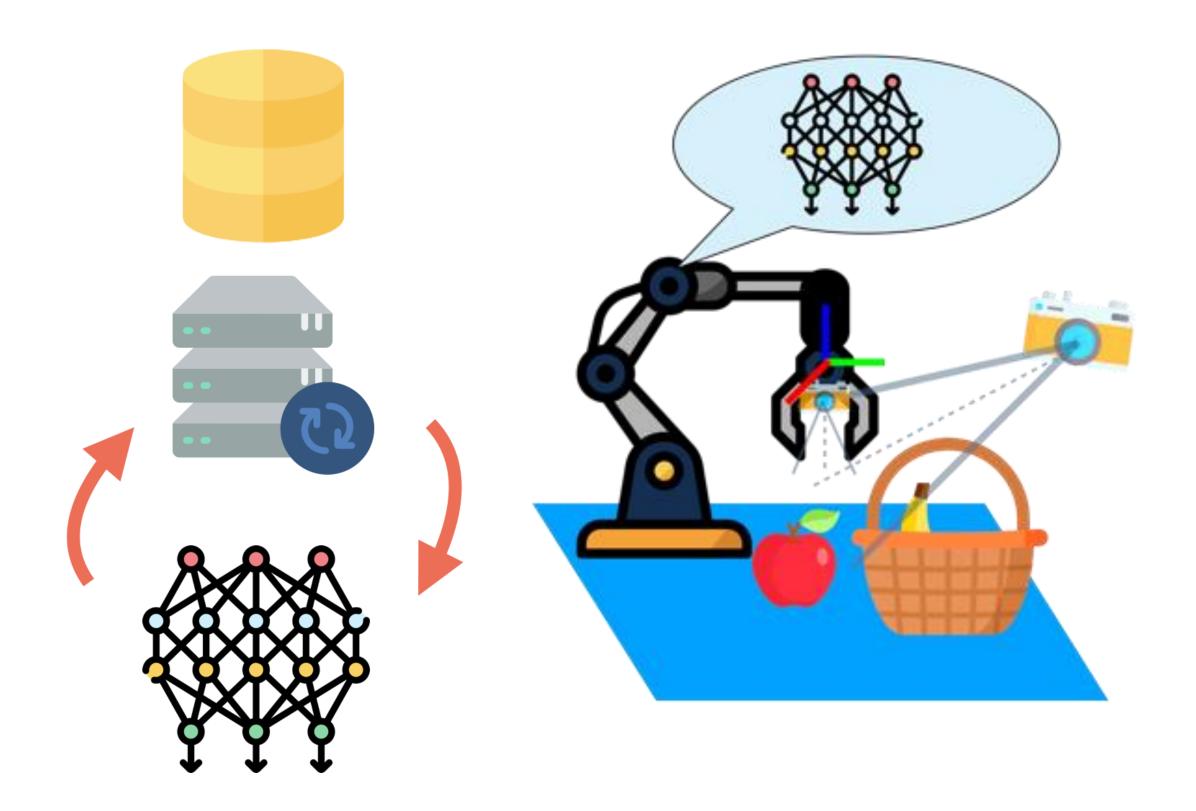
[Pomerleau et al. (1989)]



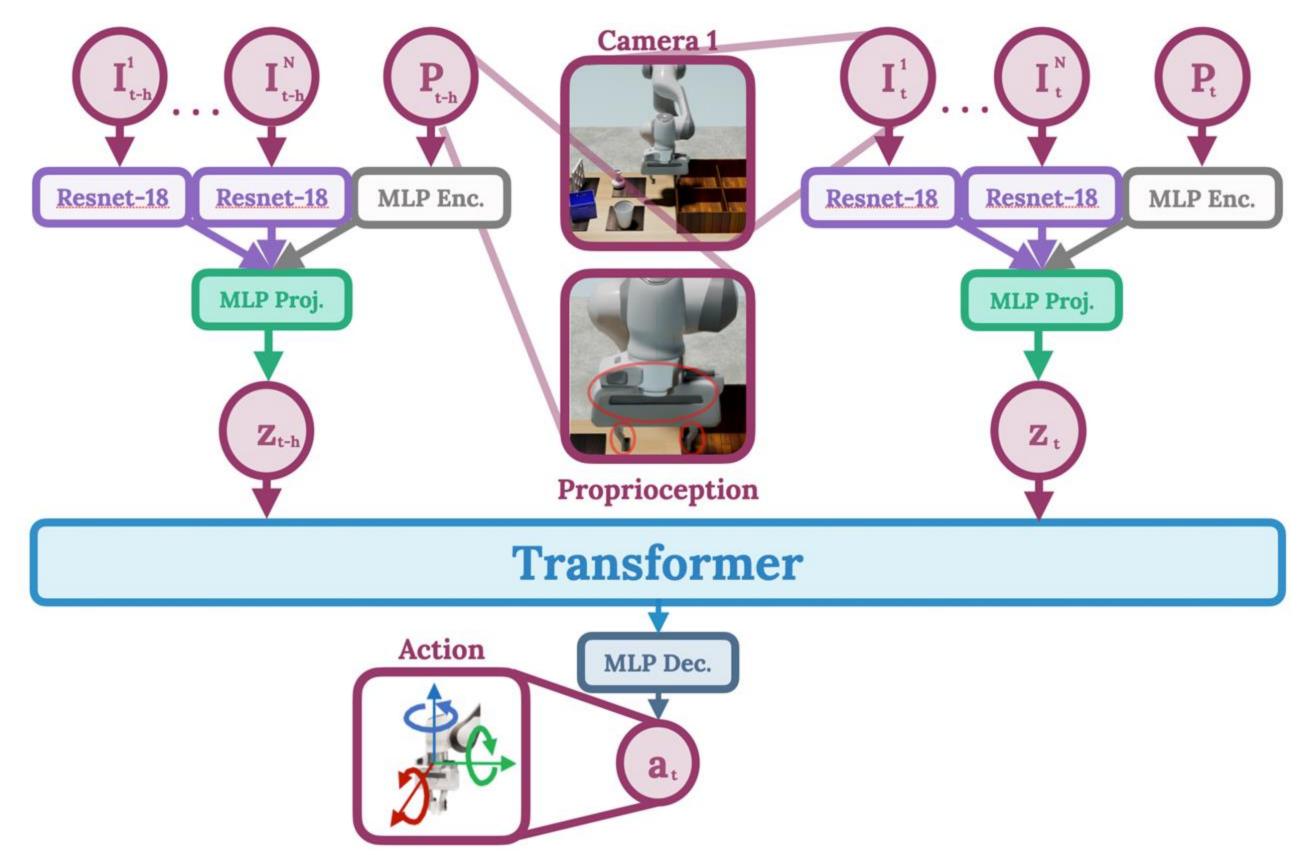
OPTIMUS Policy Architecture

3. Large-Scale Behavior Cloning

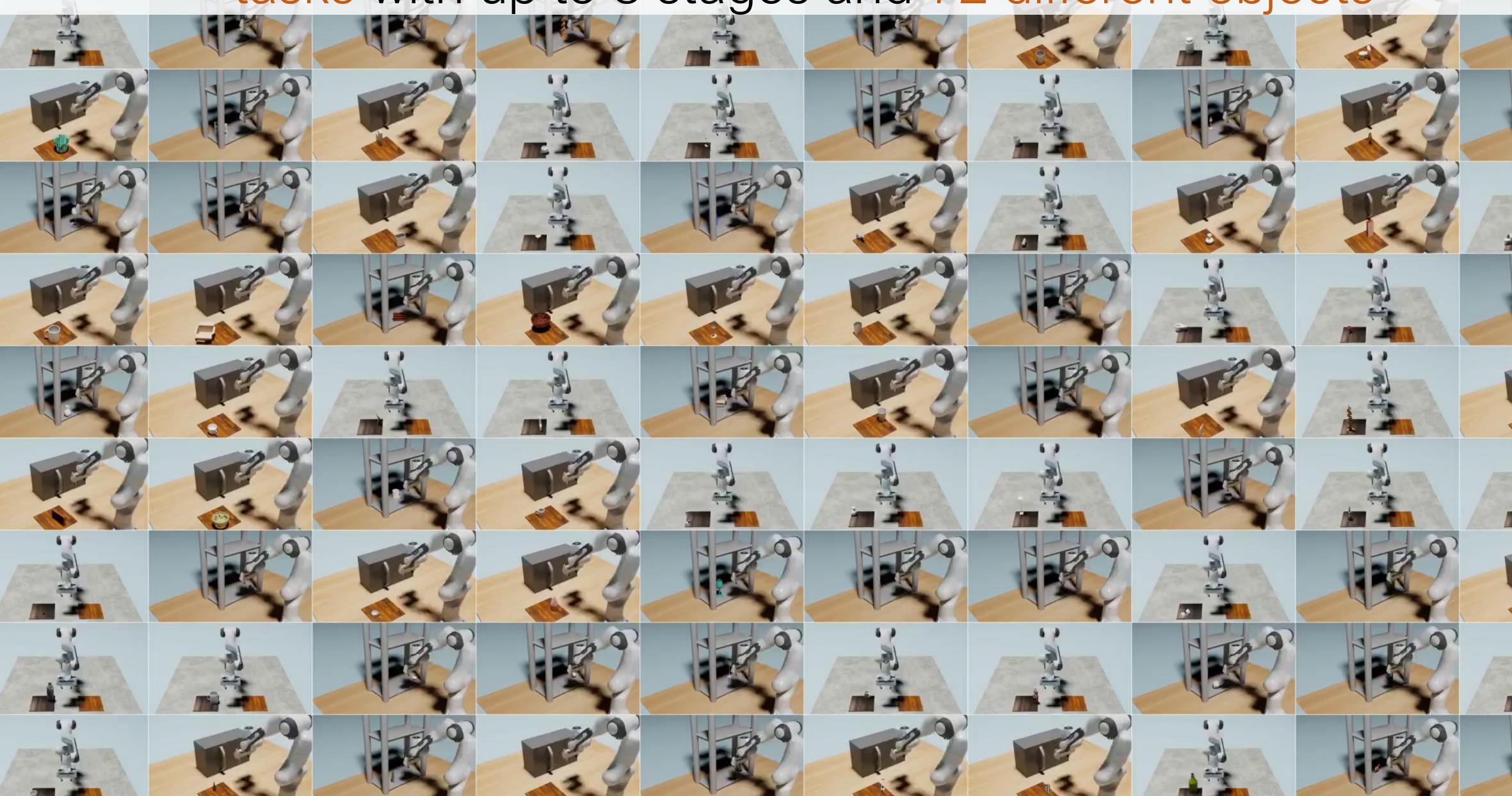
4. Visuomotor Policy Execution



Dalal et al. "Imitating Task and Motion Planning with Visuomotor Transformers", CoRL 2023



OPTIMUS produces policies that can solve over 300 manipulation tasks with up to 8 stages and 72 different objects



OPTIMUS can solve manipulation tasks with up to 8 stages PickPlaceFour: 60% Success Rate

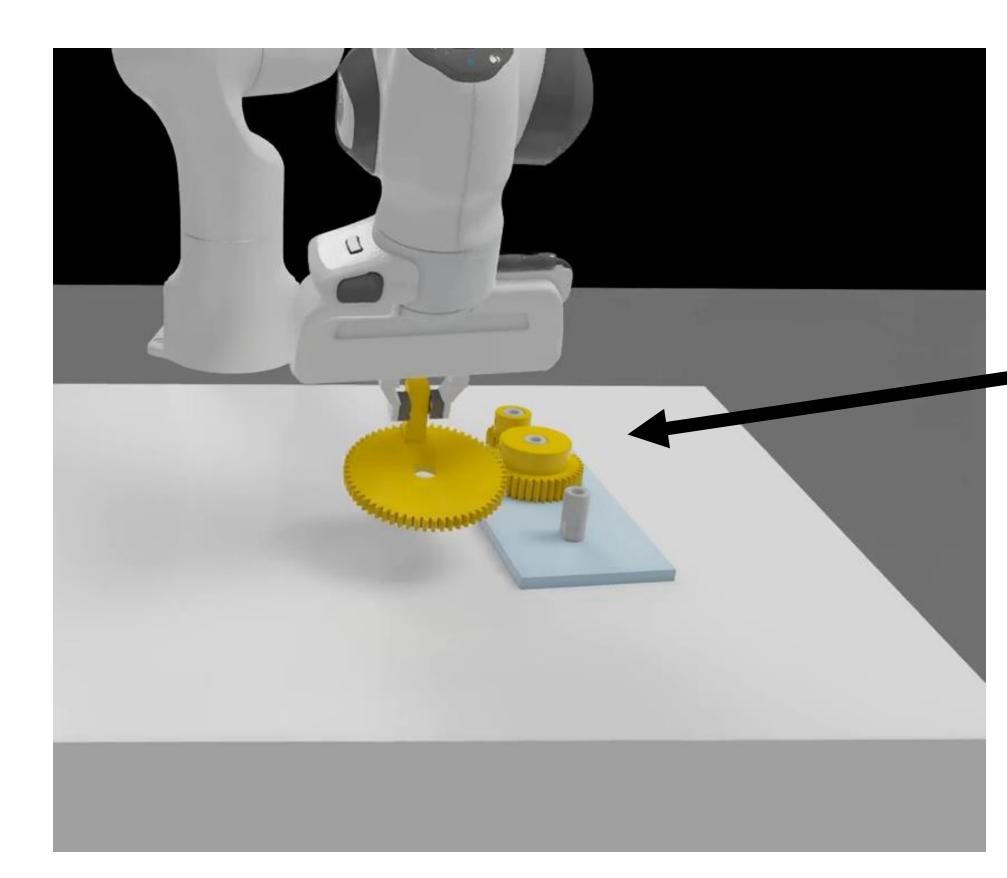
MicrowaveAdapt: 75%

OPTIMUS Scales to Many Different Objects and Tasks

Dataset	BC-MLP	BC-RNN	BeT	OPTIMUS
PickPlace-1	94	97	85	100
PickPlace-19	61	58	50	85
PickPlace-72	50	49	41	75
Shelf-1	91	88	70	91
Shelf-19	48	31	26	66
Shelf-72	30	36	13	48
Microwave-1	73	77	51	86
Microwave-19	24	41	31	61
Microwave-72	23	29	16	47

Dalal et al. "Imitating Task and Motion Planning with Visuomotor Transformers", CoRL 2023

Limitation: TAMP can struggle with contact-rich tasks



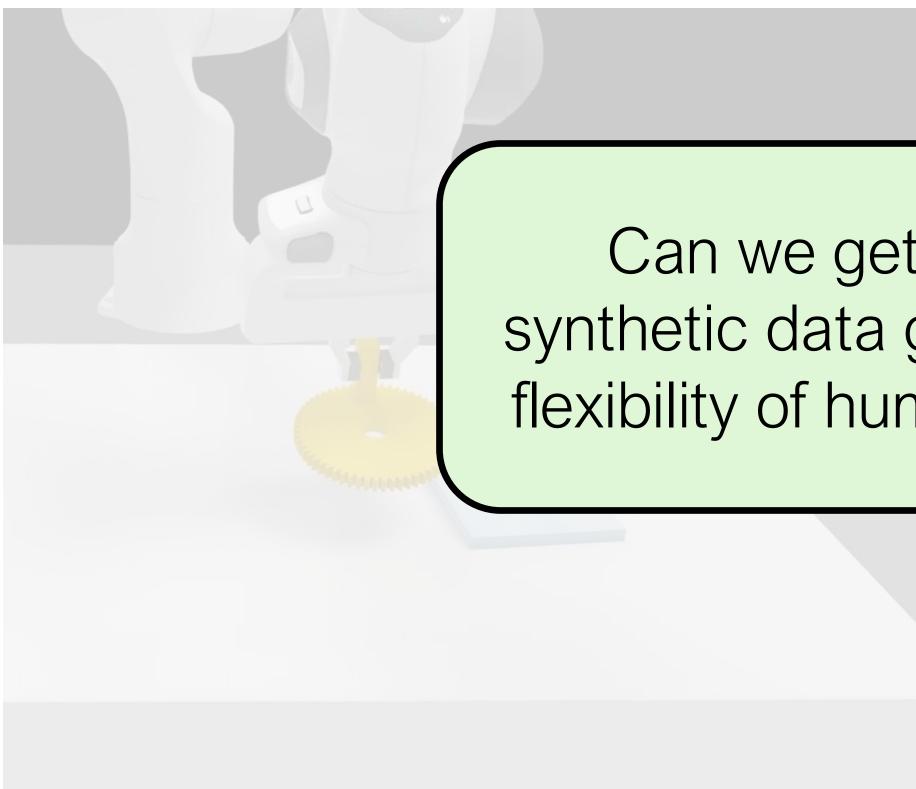
Recall: TAMP needs accurate world models and set of skills

Requires designing skills capable of millimeter-level precision!

Human teleoperation is more flexible: just demonstrate the skill!

Limitation: TAMP can struggle with contact-rich tasks

Recall: TAMP needs accurate world models and set of skills



Can we get the benefits of synthetic data generation with the flexibility of human teleoperation?

esigning skills capable of eter-level precision!

Human teleoperation is more flexible: just demonstrate the skill!

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

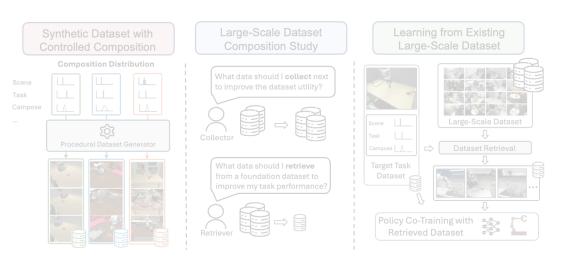
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



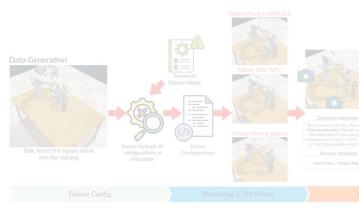
MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

skill Mimic Gen

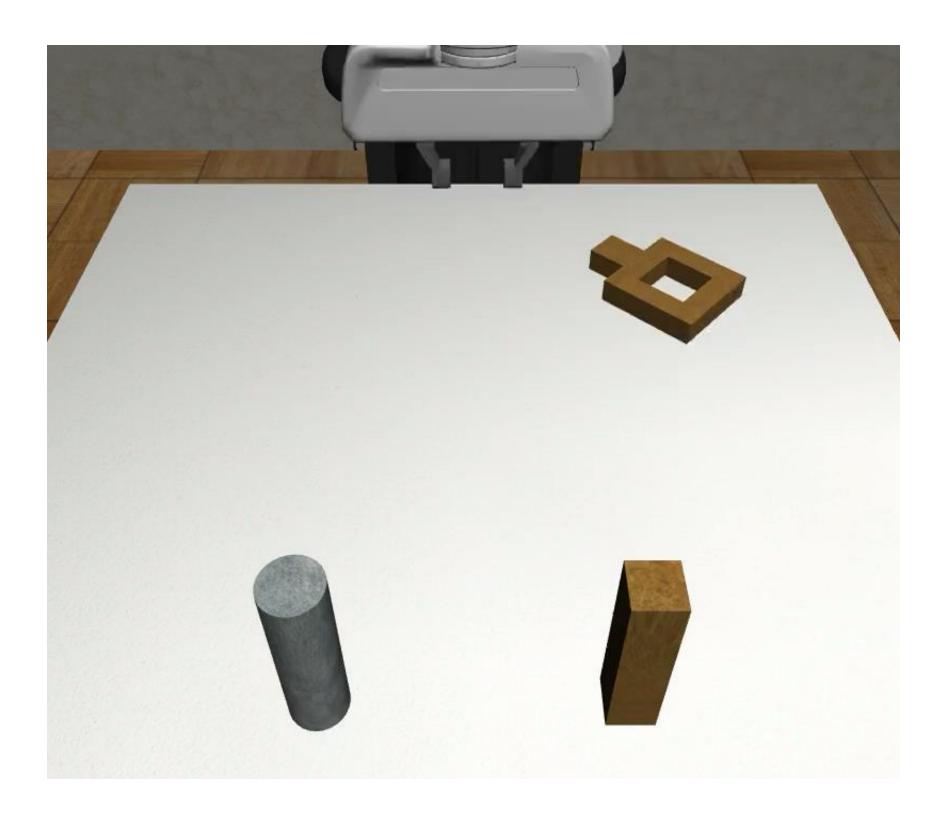
a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)



AHA (ICLR 2025)

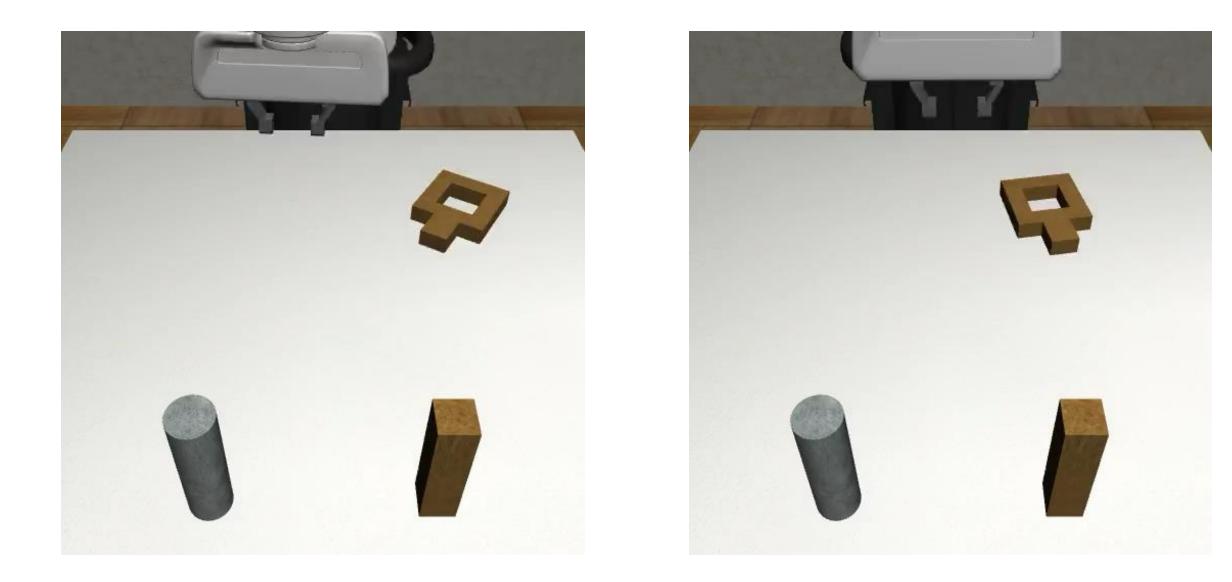
Single task learning requires too much human effort



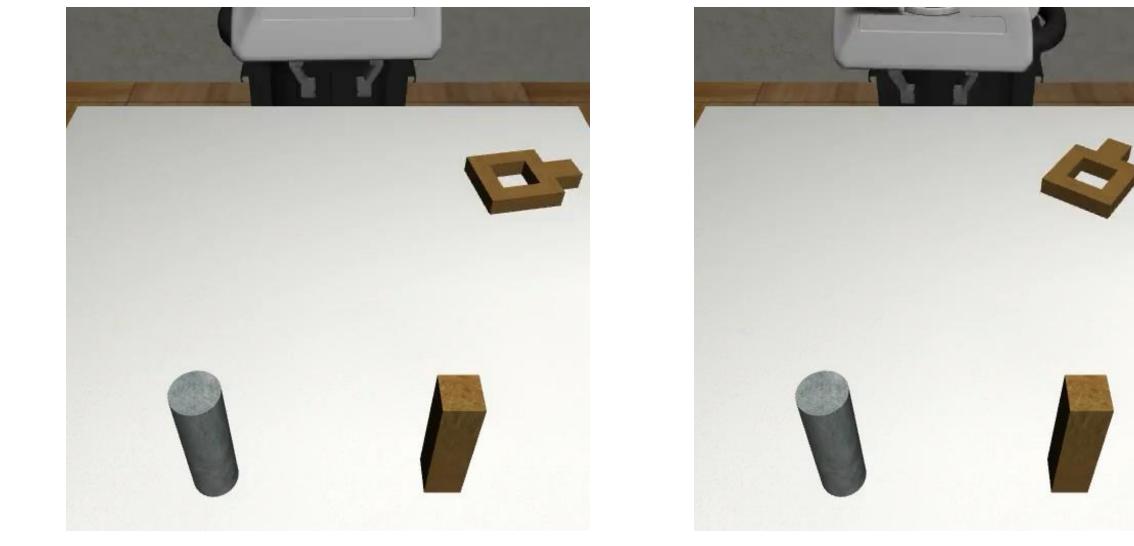
Mandlekar et al. "What Matters in Learning from Offline Human Demonstrations for Robot Manipulation", CoRL 2021

200 human demonstrations ~1 hour of human operator time 84% agent success rate

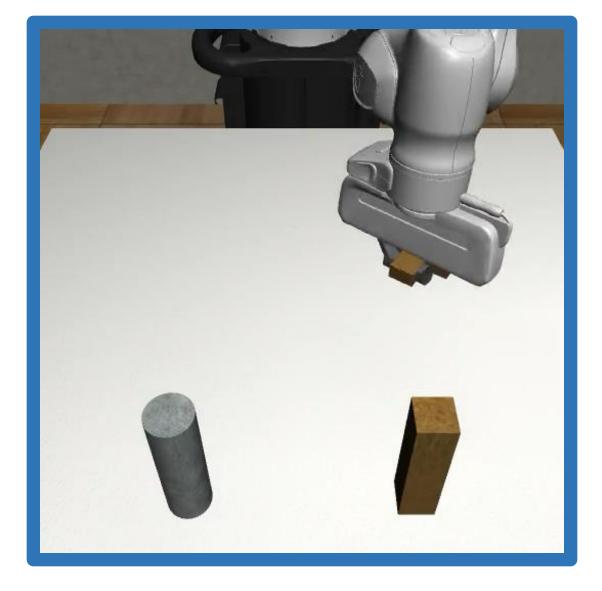
Key Insight: Human datasets can consist of similar, possibly redundant behaviors

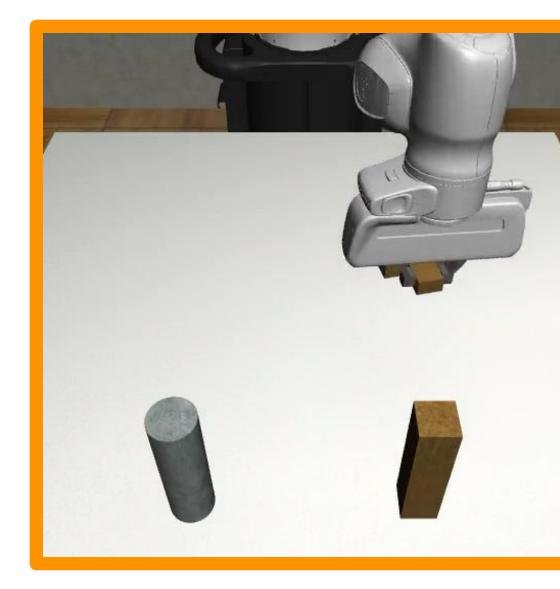


Mandlekar et al. "MimicGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations", CoRL 2023



Key Idea: Transform existing human data to generate new data with no human effort



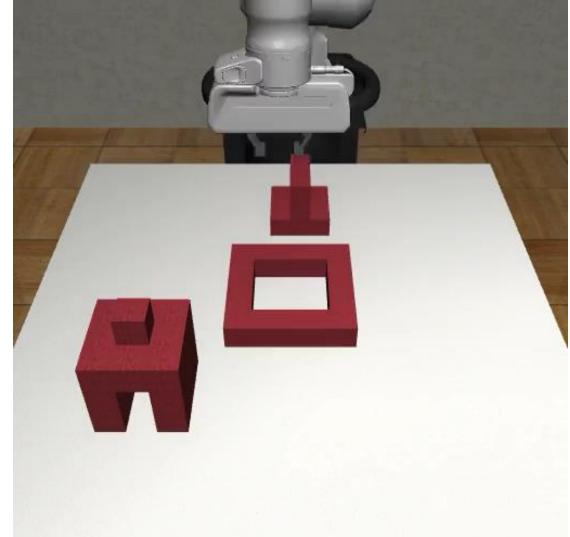


Mandlekar et al. "MimicGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations", CoRL 2023

a data generation system for robot learning from demonstration

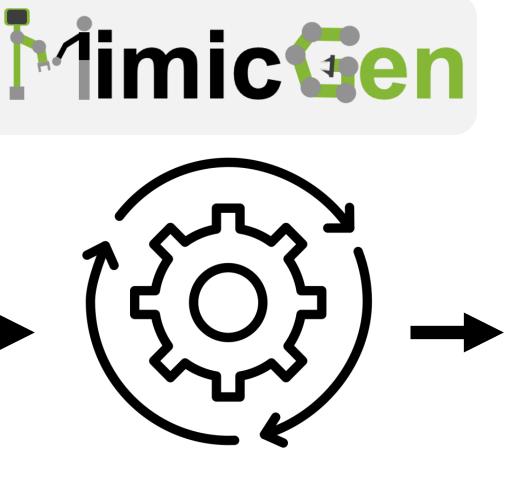
MimicGen generates large datasets from few human demos

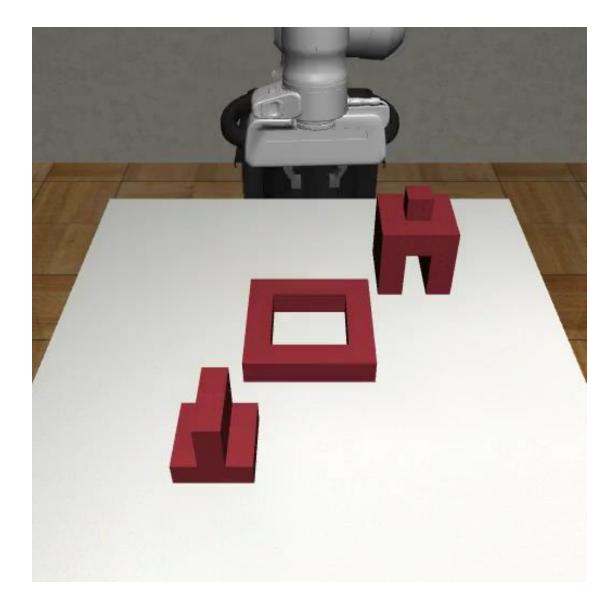
10 human demos



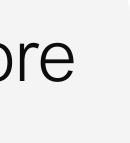
Human collects small number of teleoperated demonstrations

1000 generated demos

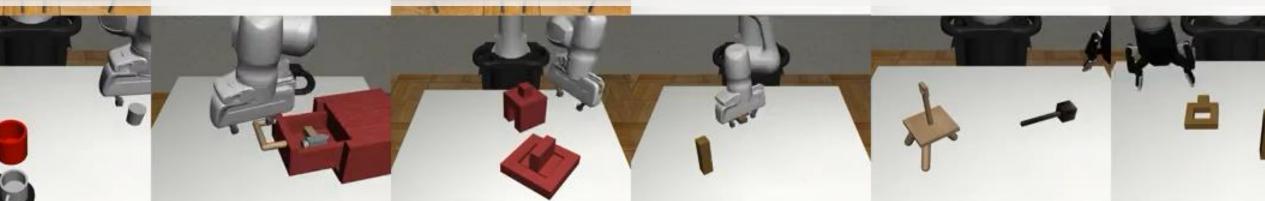




MimicGen generates lots more autonomously!



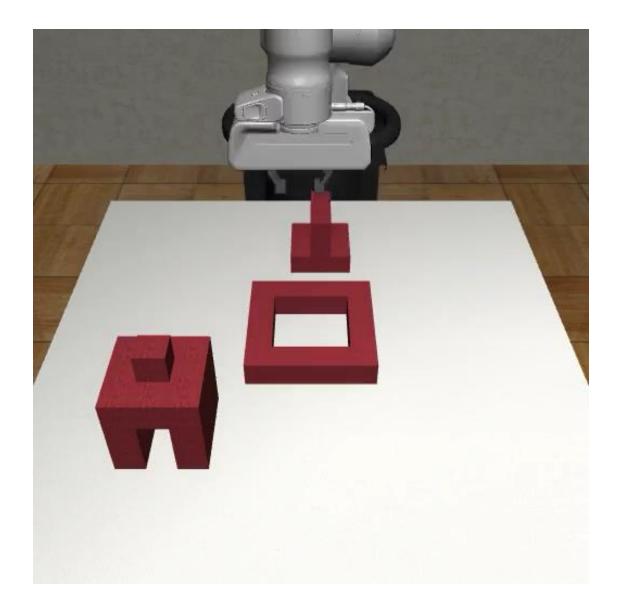
MimicGen: Large Datasets with Low Effort

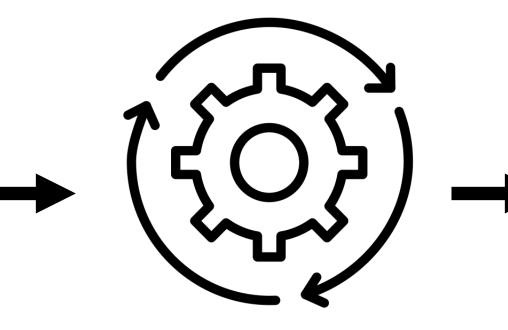


50K generated demos from 200 human demos across 18 tasks, 2 simulators, and real-world

MimicGen: Diverse Datasets from Handful of Human Demos

10 human demos



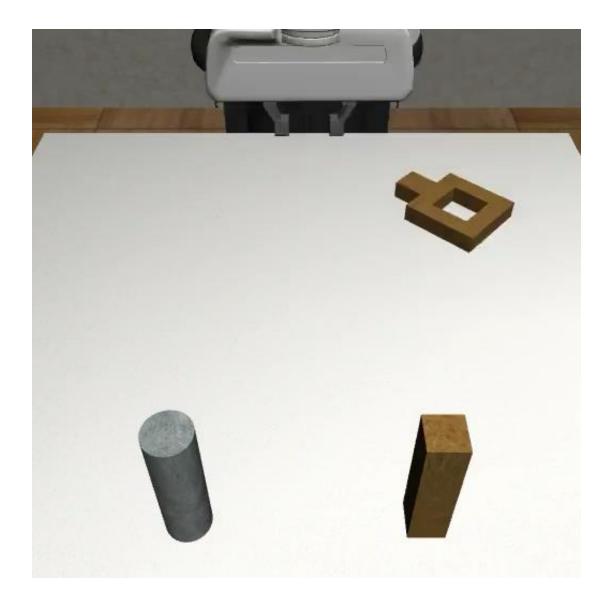


1000 generated demos

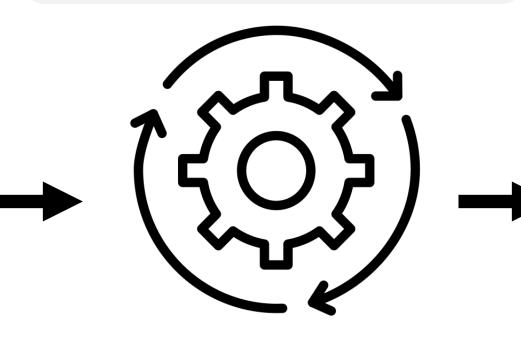
New Object Configurations

MimicGen: Diverse Datasets from Handful of Human Demos

10 human demos on Panda

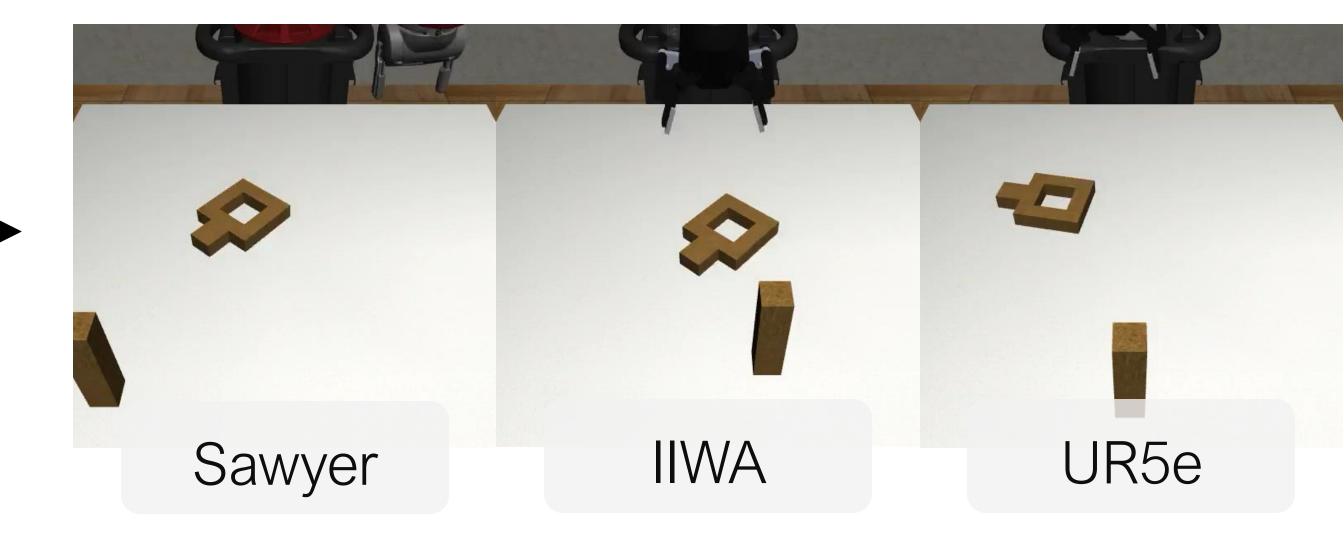


Mimic Gen



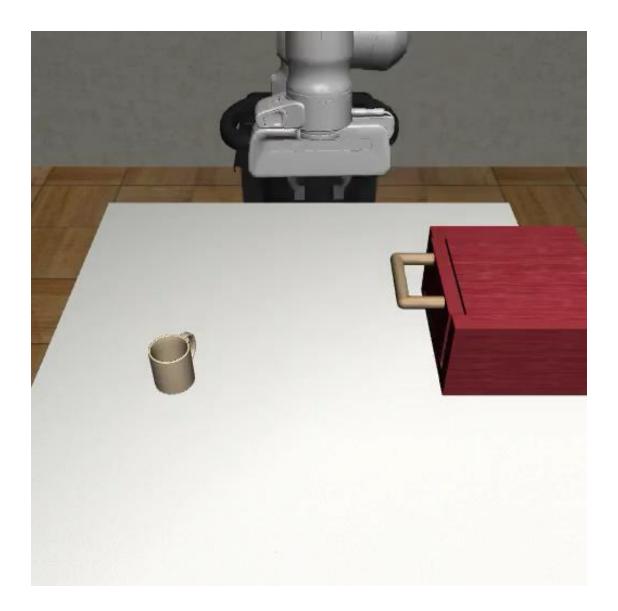
New Robot Arms

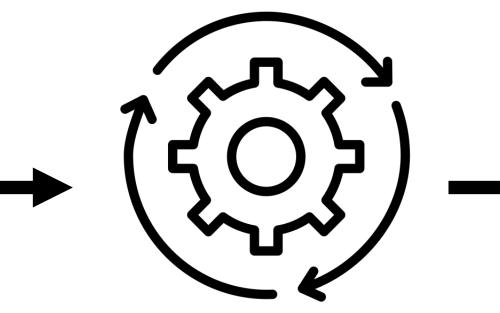
1000 demos on multiple robot arms



MimicGen: Diverse Datasets from Handful of Human Demos

10 human demos (1 mug)





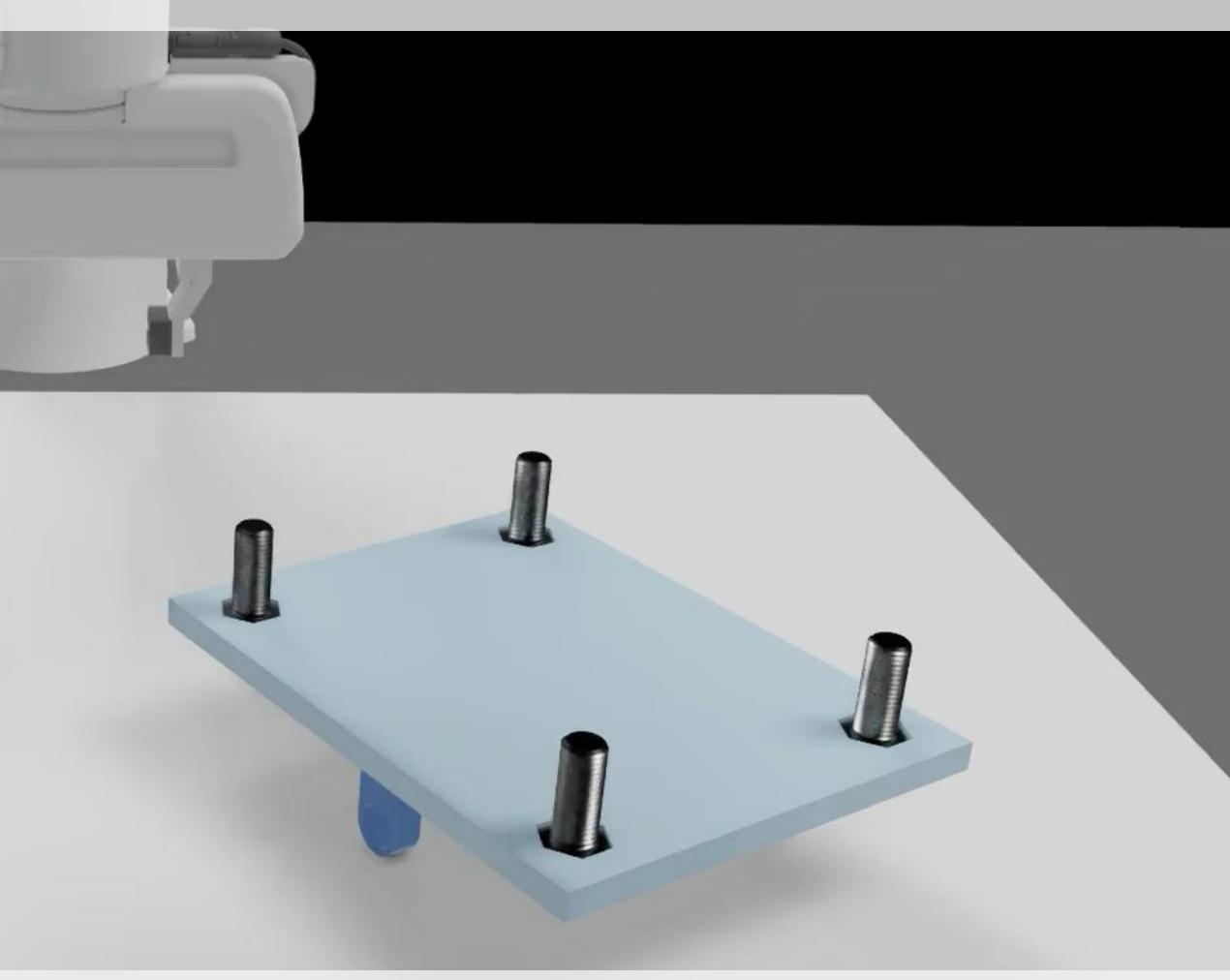
1000 generated demos (12 mugs)

MimicGen is Broadly Applicable to Different Tasks

Contact-Rich (mm-precision) tasks in Isaac Gym Factory

MimicGen is Broadly Applicable to Different Tasks

Contact-Rich (mm-precision) tasks in Isaac Gym Factory



MimicGen is Broadly Applicable to Different Tasks

Long-Horizon tasks

Simple BC on MimicGen data trains performant policies

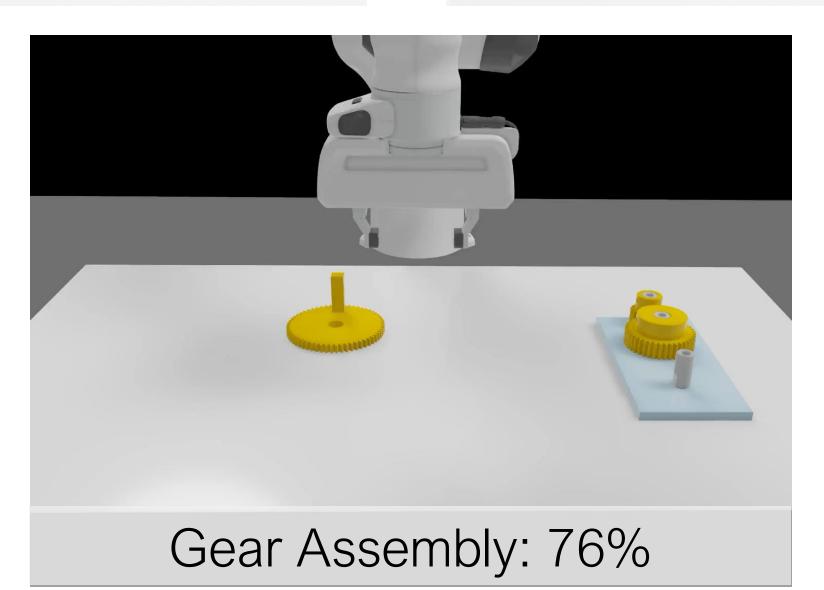


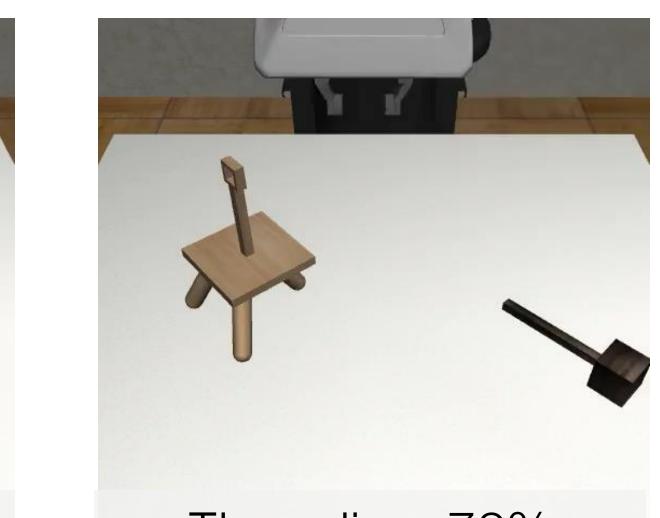


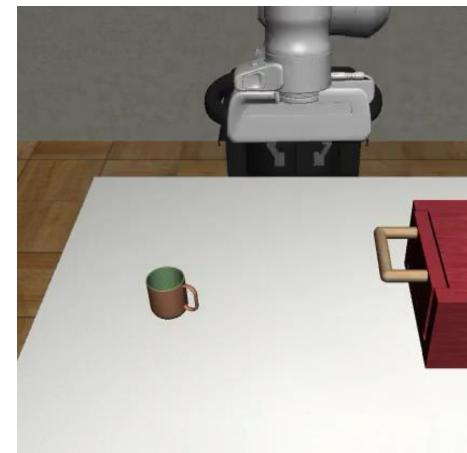
Coffee: 93%



Mobile Kitchen: 77%

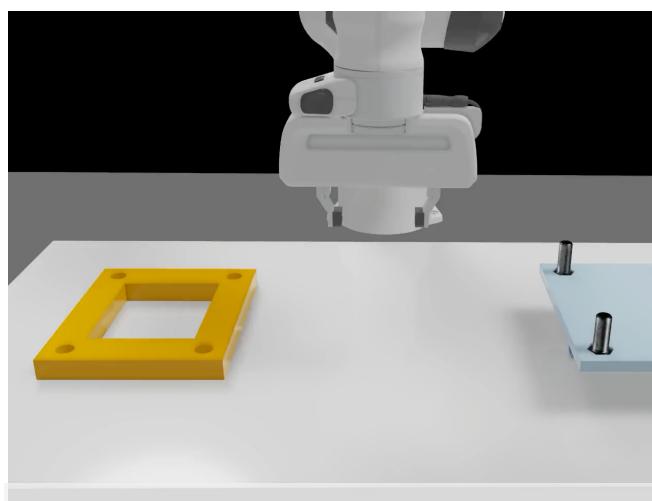




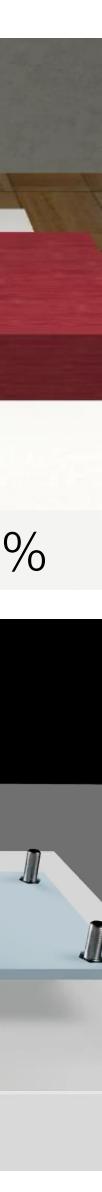


Threading: 72%

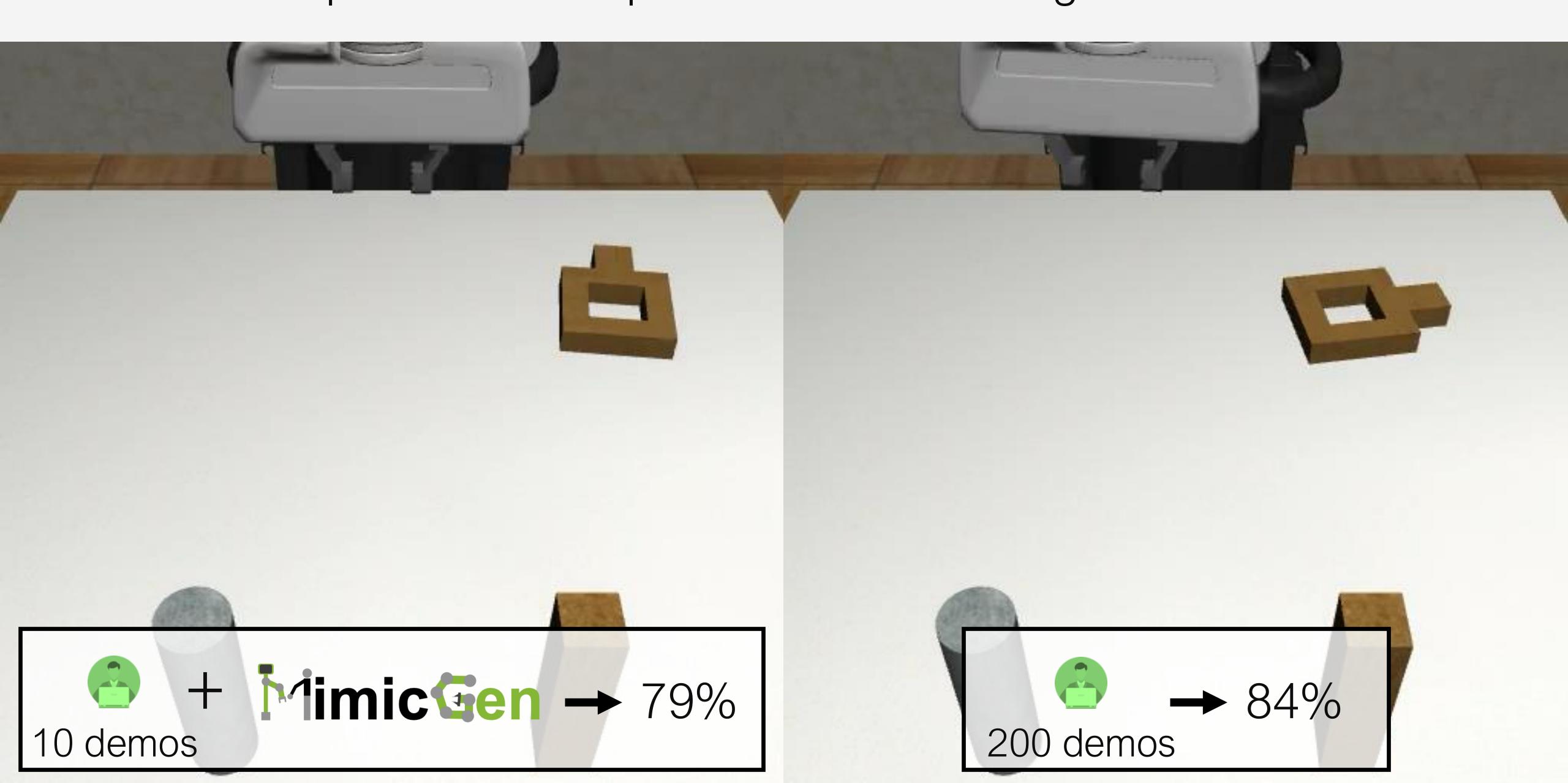
Mug Cleanup: 82%



Frame Assembly: 71%

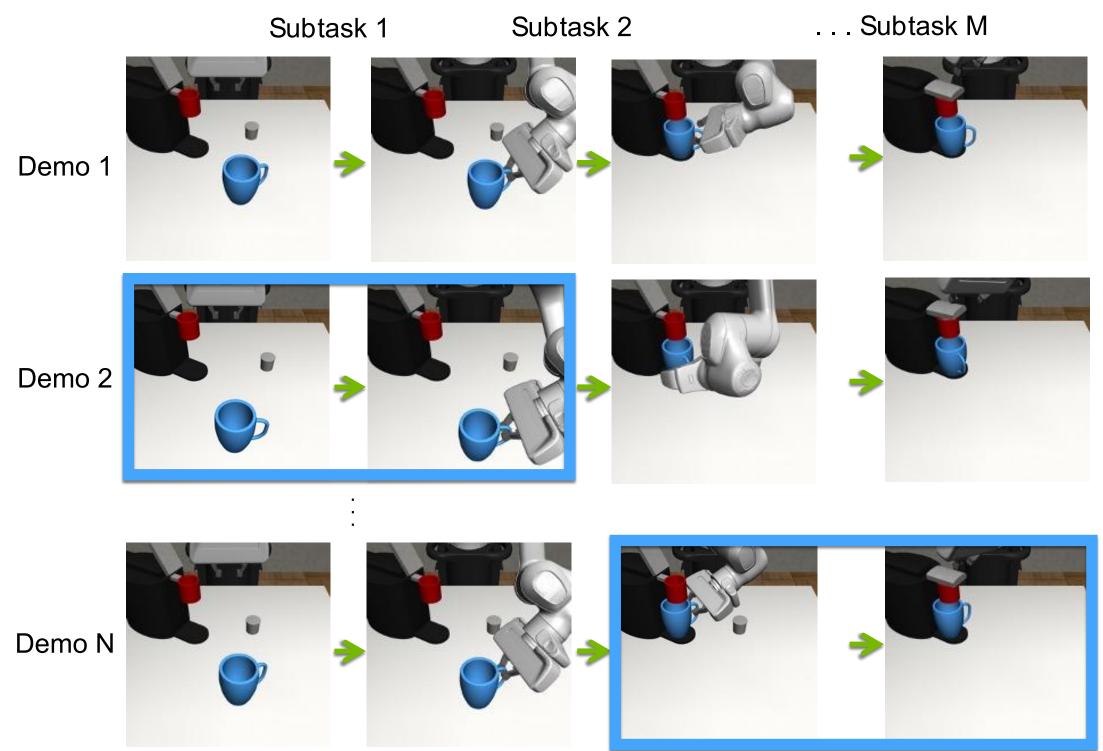


MimicGen produces comparable results to larger human datasets



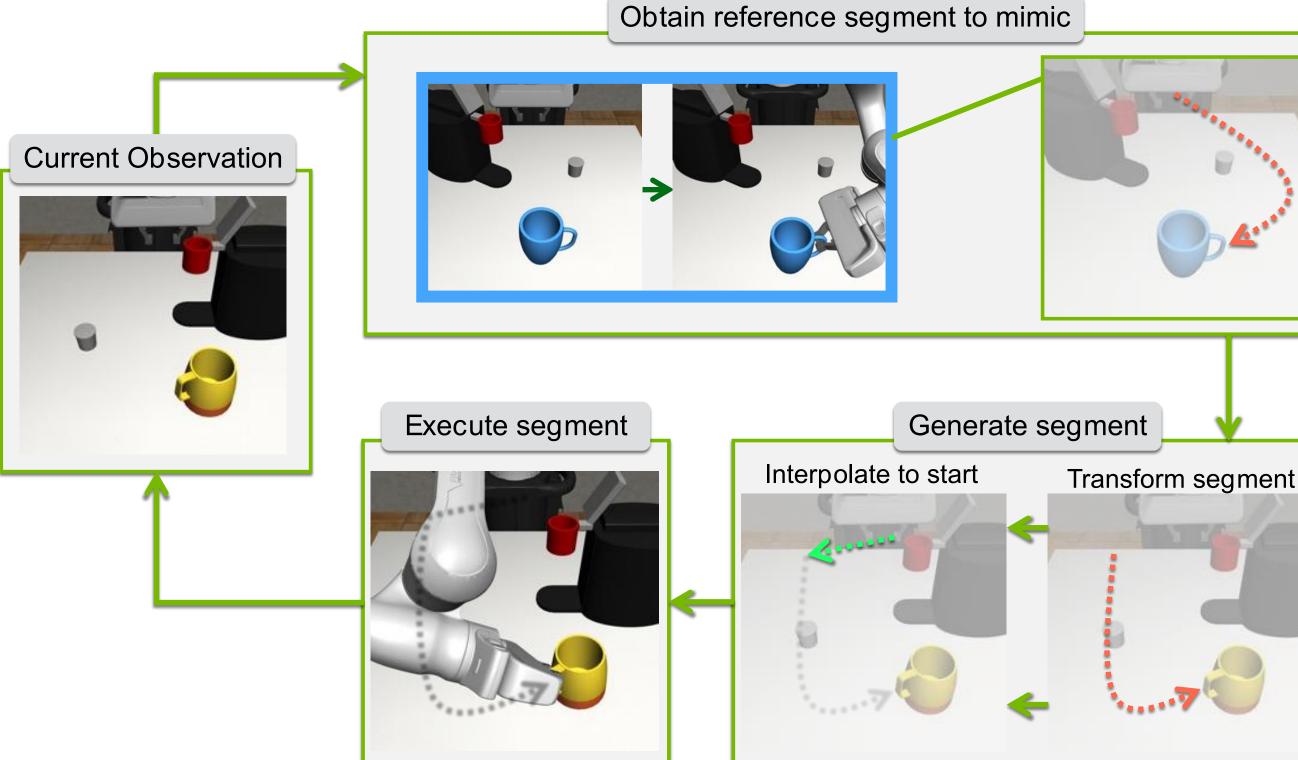
MimicGen Data Generation Overview

Parse source demonstrations into segments



Source demos are split into object-centric pieces

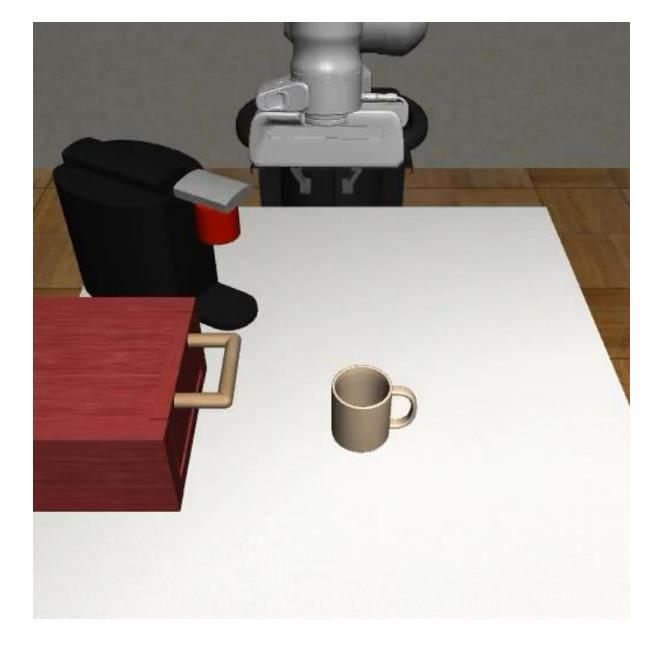
Pipeline for generating new trajectories



Source demo pieces are transformed and replayed in the new scene one by one

MimicGen: Data Generation Example

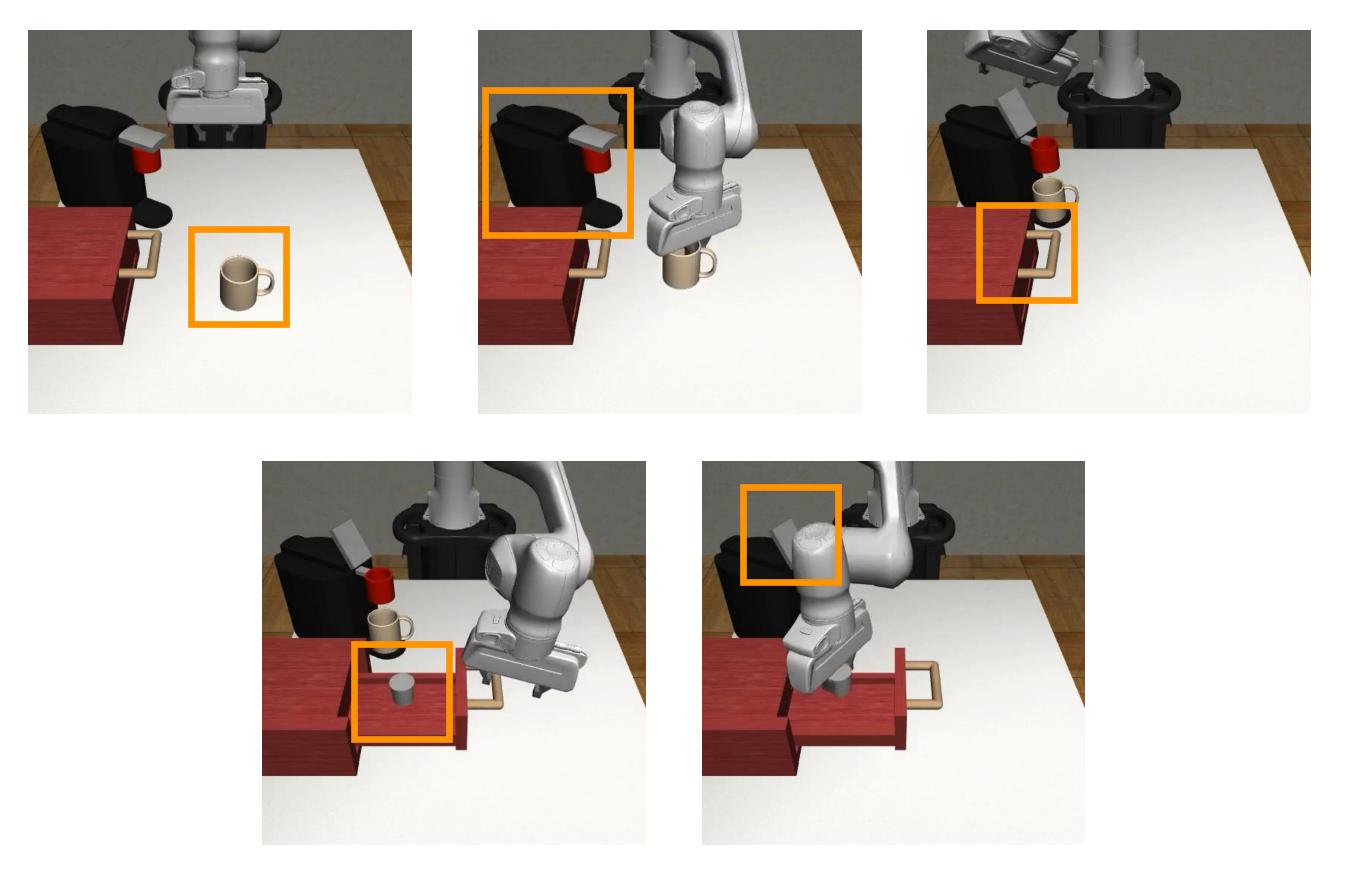
Source Dataset Trajectory



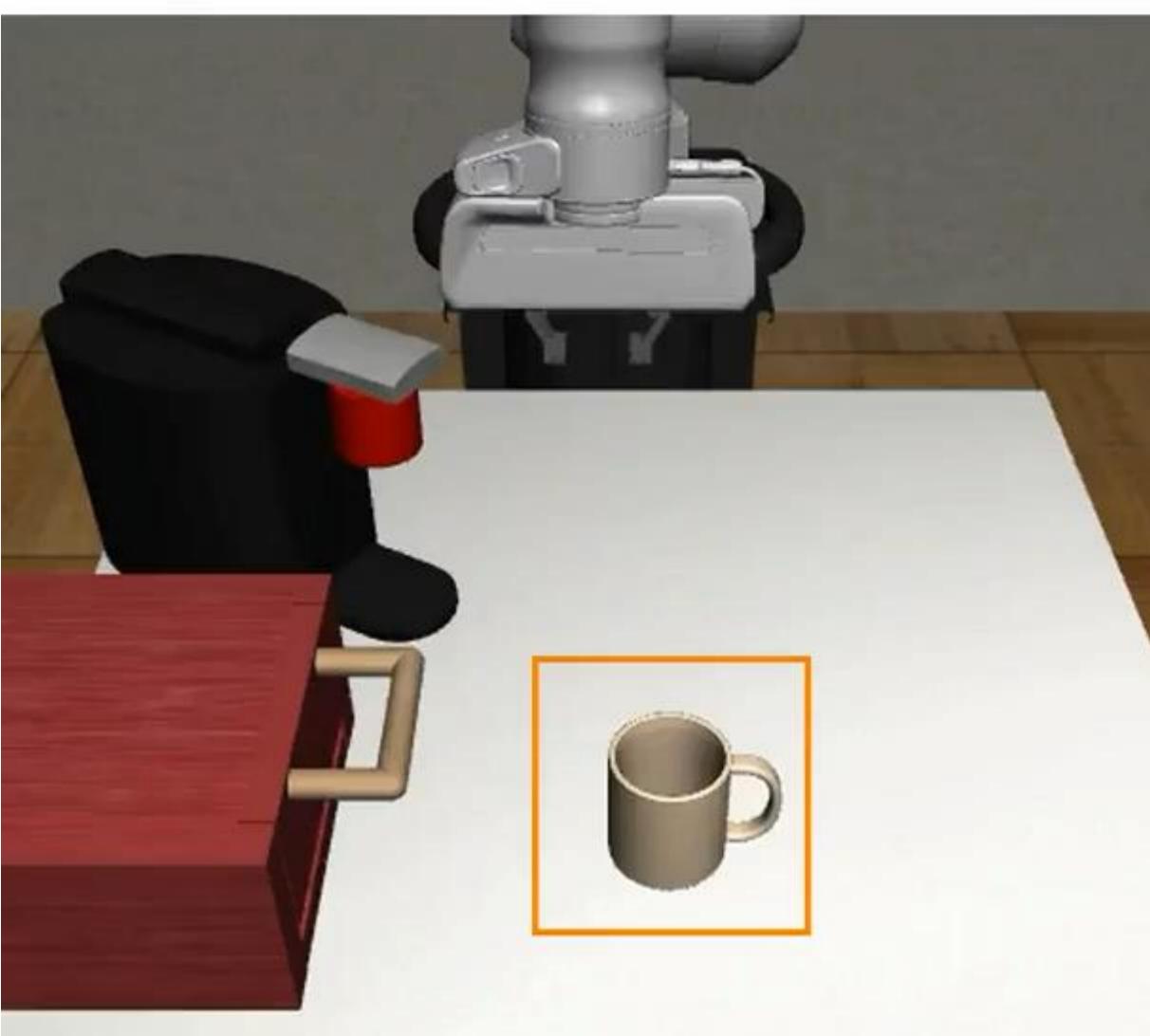
Split using subtask boundaries

Mandlekar et al. "MimicGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations", CoRL 2023

Object-Centric Subtask Segments



MimicGen: Data Generation Example



Source Dataset

Interpolation to relative pose from source dataset

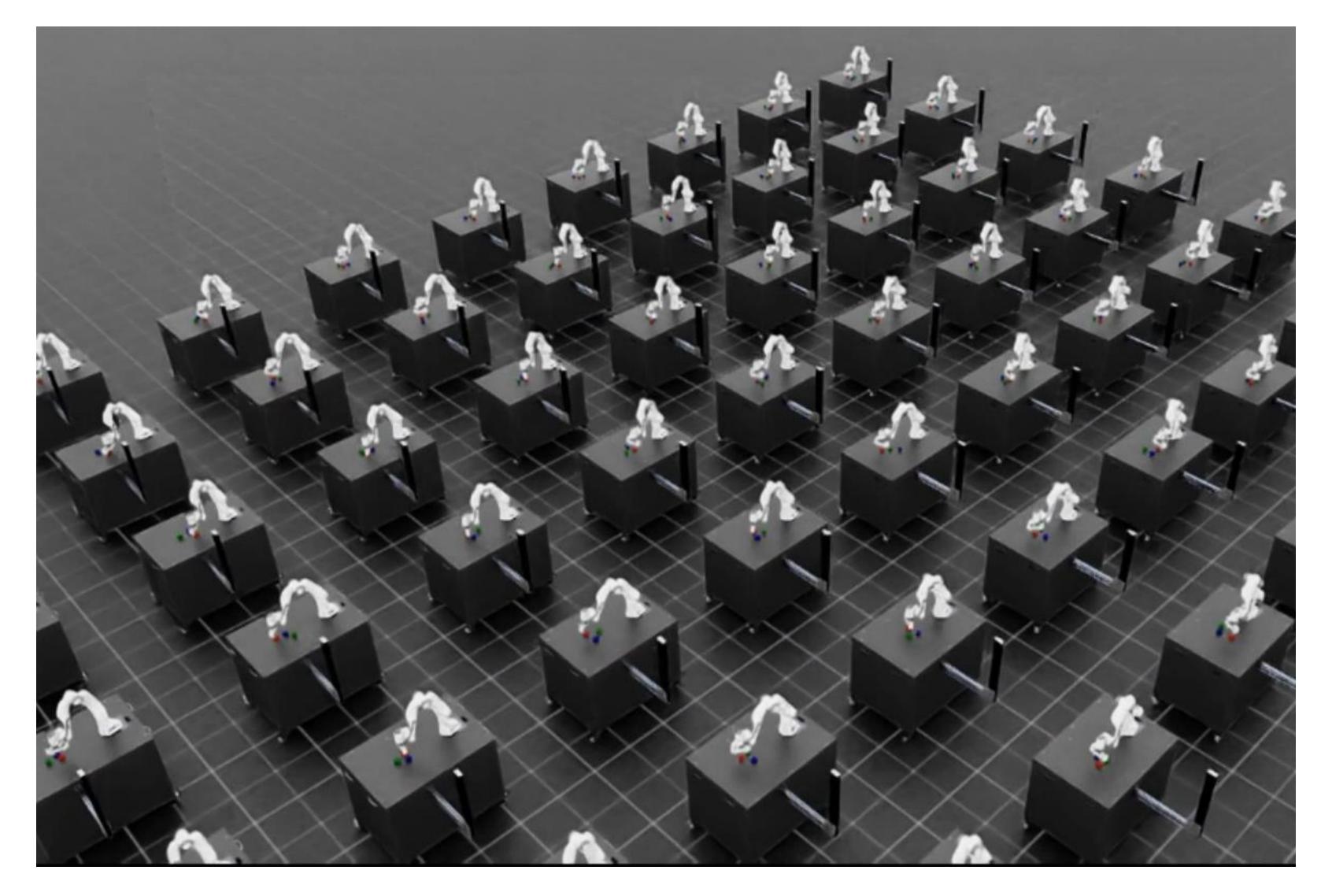
Generated Trajectory

Try MimicGen out yourself!

🛢 😑 🌍 NVlabs/mimicgen: This code 🗆 🗙 🕂				
- → C 🖙 github.com/NVlabs/mimicgen		⊈ ☆	O 🔺 🐵	🕫 🤝 🍺 🌄 🎦 🛛 🔺 Finish update 🗄
NVlabs / mimicgen ♦ Code ⊙ Issues 1 \$\$ Pull requests 3 €	Actions 🕕 Security 🖂 Insights	Q ·	Type 🕖 to search	+ • (0) II @ .
			⊙ Unwatch (12) –	약 Fork 58 - ☆ Star 328 -
ੀ P main 🚽 ਿ 1 Branch 🛇 2 Tags	Q Go to file	t Add file 🔹	<> Code -	About ෯
amandlek Merge pull request #36 from NVlabs/f	ix_docs 🚥	125e1aa · last month	🕚 32 Commits	This code corresponds to simulation environments used as part of the
.github/ISSUE_TEMPLATE	Update issue templates		last year	MimicGen project.
docs	minor docs update		last month	따 Readme 화 View license
mimicgen	add fix for xmls that have old mimicgen i	repo asset paths	2 months ago	-^- Activity
🗋 .gitignore	adding docs structure (wip)		4 months ago	 Custom properties 328 stars
	initial commit		last year	 O 12 watching
README.md	deprecate google drive in favor of huggi	ngface	2 months ago	<mark>ዮ 58</mark> forks
requirements-docs.txt	some docs updates		4 months ago	Report repository
🗅 setup.py	deprecate google drive in favor of huggi	ngface	2 months ago	Releases 2
README Icense			Ø ∷≣	<pre> v1.0.0 Latest on Jul 9 + 1 release </pre>

Mandlekar et al. "MimicGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations", CoRL 2023

MimicGen is in NVIDIA Isaac Lab too!



NVIDIA Isaac Lab v2.0

Moving from data collection to data generation

Autonomous Data Generation Tools

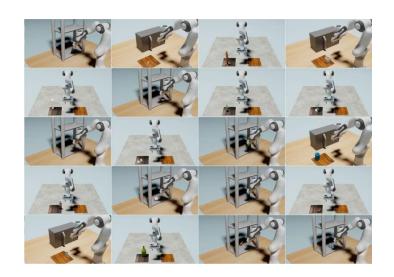
- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

Building More Powerful Data Generators

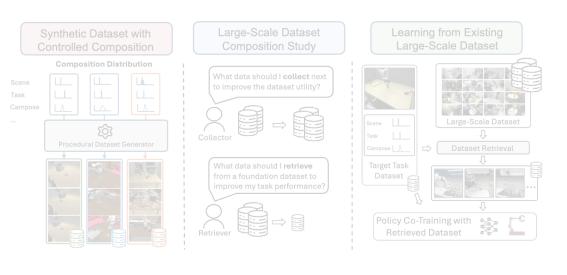
- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures



OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

Skill Mimic Gen

a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)

AHA (ICLR 2025)

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

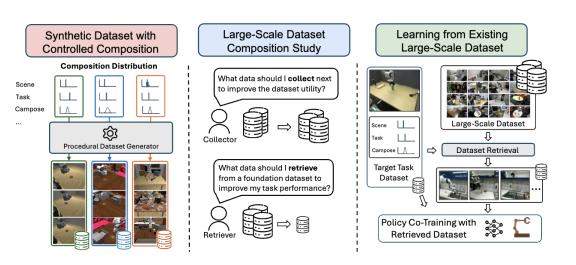
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

Dexterious Manipulation via Imitation Learning

DexMimicGen (ICRA 2025)

Skill Mimic Gen

a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)

AHA (ICLR 2025)

Redntroducing RoboCasanes

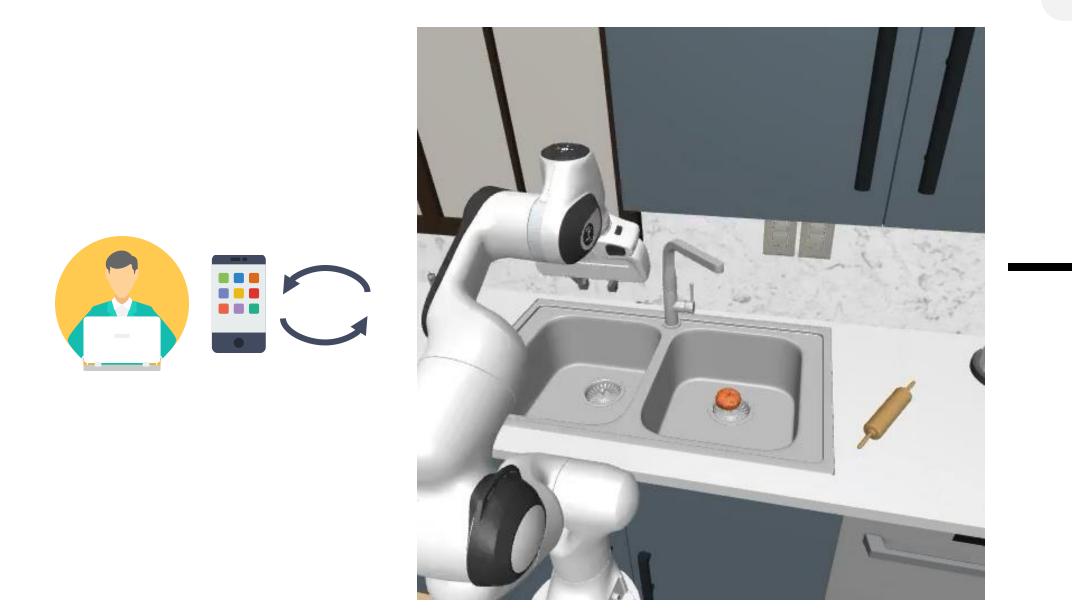
Interactable Furniture and Appliances

NESPRESSO

Creating diverse object assets with text-to-3D models

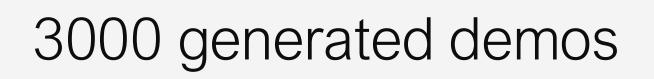
Combining diverse simulation with scalable synthetic data generation

50 human demos



Human collects small number of teleoperated demonstrations

Nasiriany et al. "RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots", RSS 2024





MimicGen generates lots more autonomously!

Pick and place

1.1

Opening and closing doors

2

C

Turning levers

7 8 9

0 \$15.87

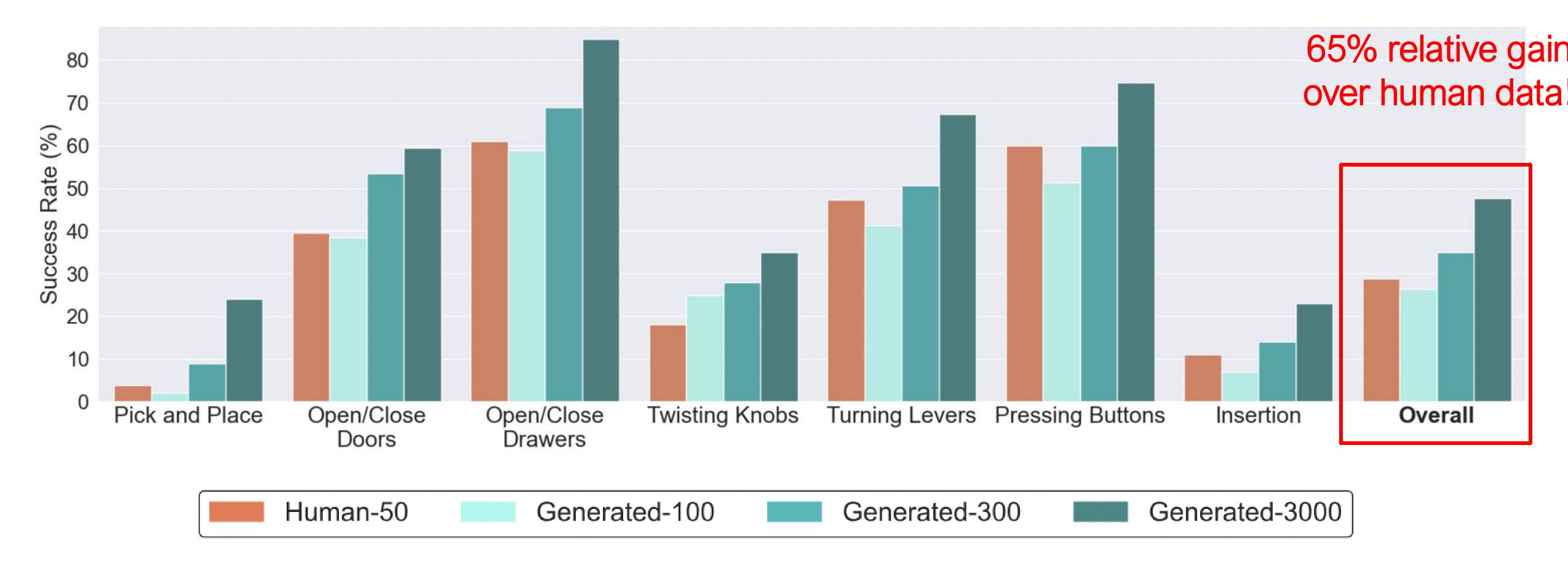
Twisting knobs

Pressing buttons

...

Multi-Task Policy Performance Scales with Synthetic Data

Multi-task imitation learning evaluation



Nasiriany et al. "RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots", RSS 2024

Synthetic MimicGen data can aid in transfer to real world tasks

Nasiriany et al. "RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots", RSS 2024

Training on real-world tasks with 50 demonstrations

Real-world only training: 13.6%

Co-training with MimicGen data: 24.4%

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

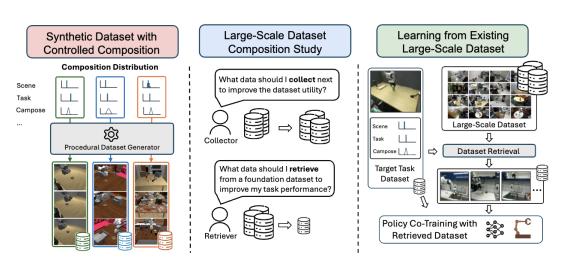
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



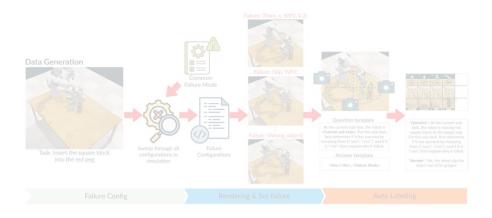
MimicLabs (ICLR 2025)

Dexension of a Binanual Dexterous Manipulation via Imitation Learning

DexMimicGen (ICRA 2025) Skill Mimic Gen

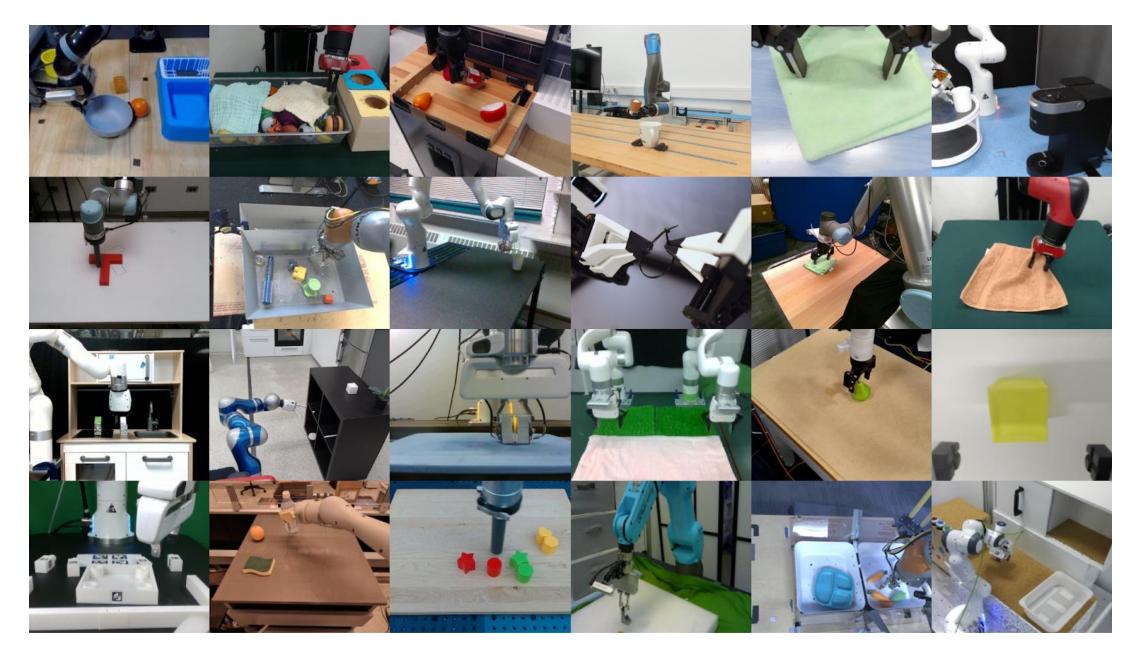
a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)



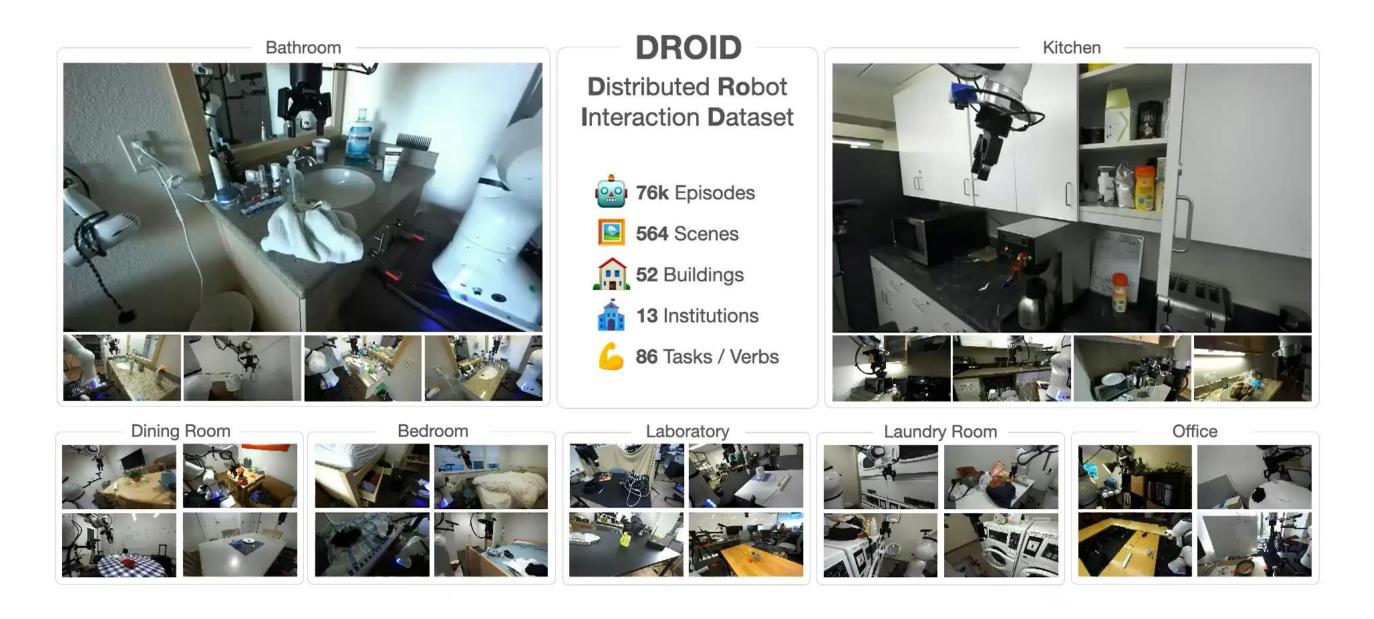
AHA (ICLR 2025)

Imitation Learning from Large-Scale Multi-Task Datasets Open-X DROID



Open X-Embodiment Collaboration "Open X-Embodiment: Robotic Learning Datasets and RT-X Models", 2023

20+ academic institutions, 22 robot embodiments, 500 skills, 150,000 tasks



Khazatsky et al. "DROID: A Large-Scale In-the-Wild Robot Manipulation Dataset", 2024

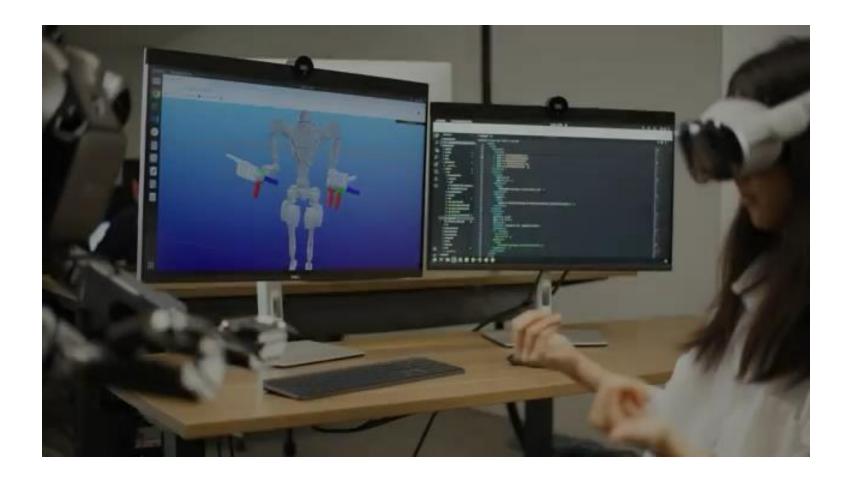
76,000 episodes, 564 scenes, 52 buildings, 13 institutions, 86 tasks

Imitation Learning from Large-Scale Multi-Task Datasets Tesla

Physical Intelligence

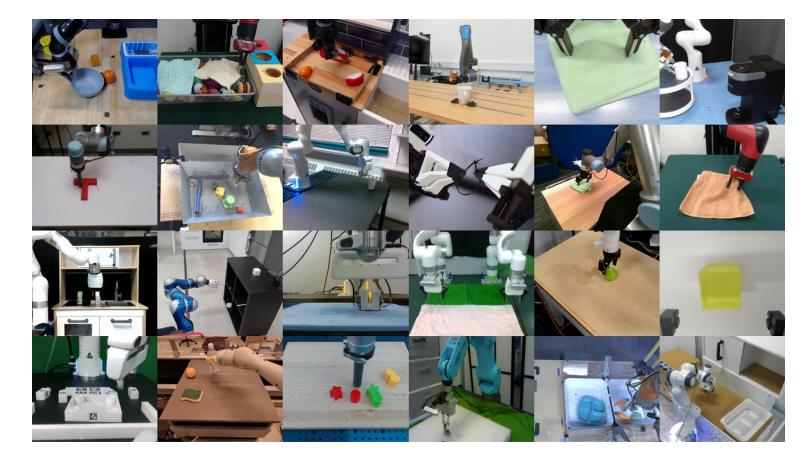
1X

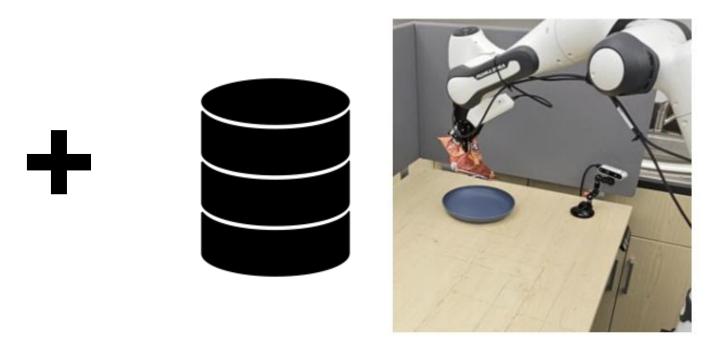
NVIDIA Project GR00T



Using Large-Scale Multi-Task Datasets for Downstream Tasks

Large Co-Training Data

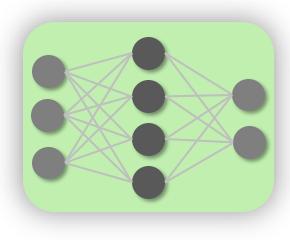




Goal: train closed-loop policy for your robot and task with much less task-specific data by using co-training data

Small Task-Specific Data

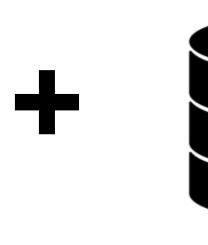
Policy π_{θ}



Using Large-Scale Multi-Task Datasets for Downstream Tasks

How does co-training data composition affect downstream task performance?

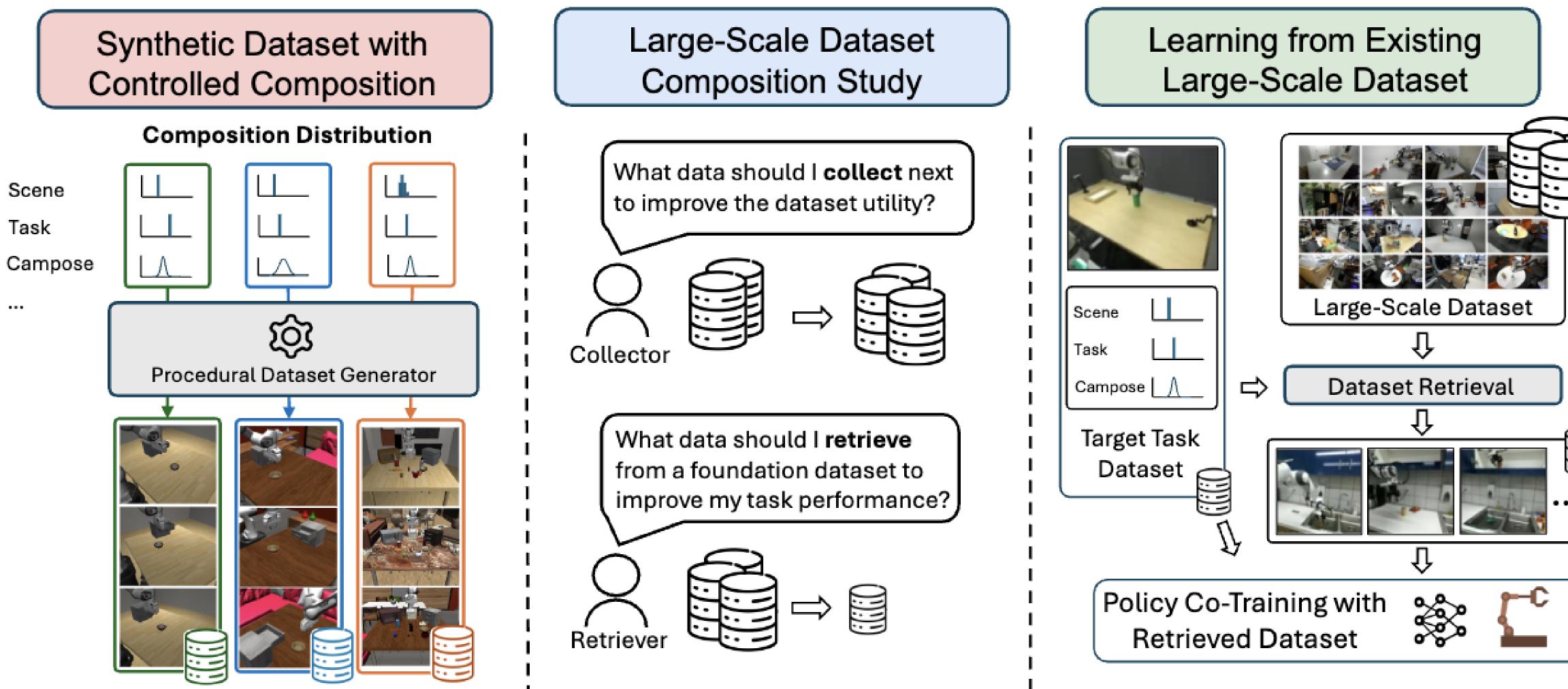
Large Co-Training Data

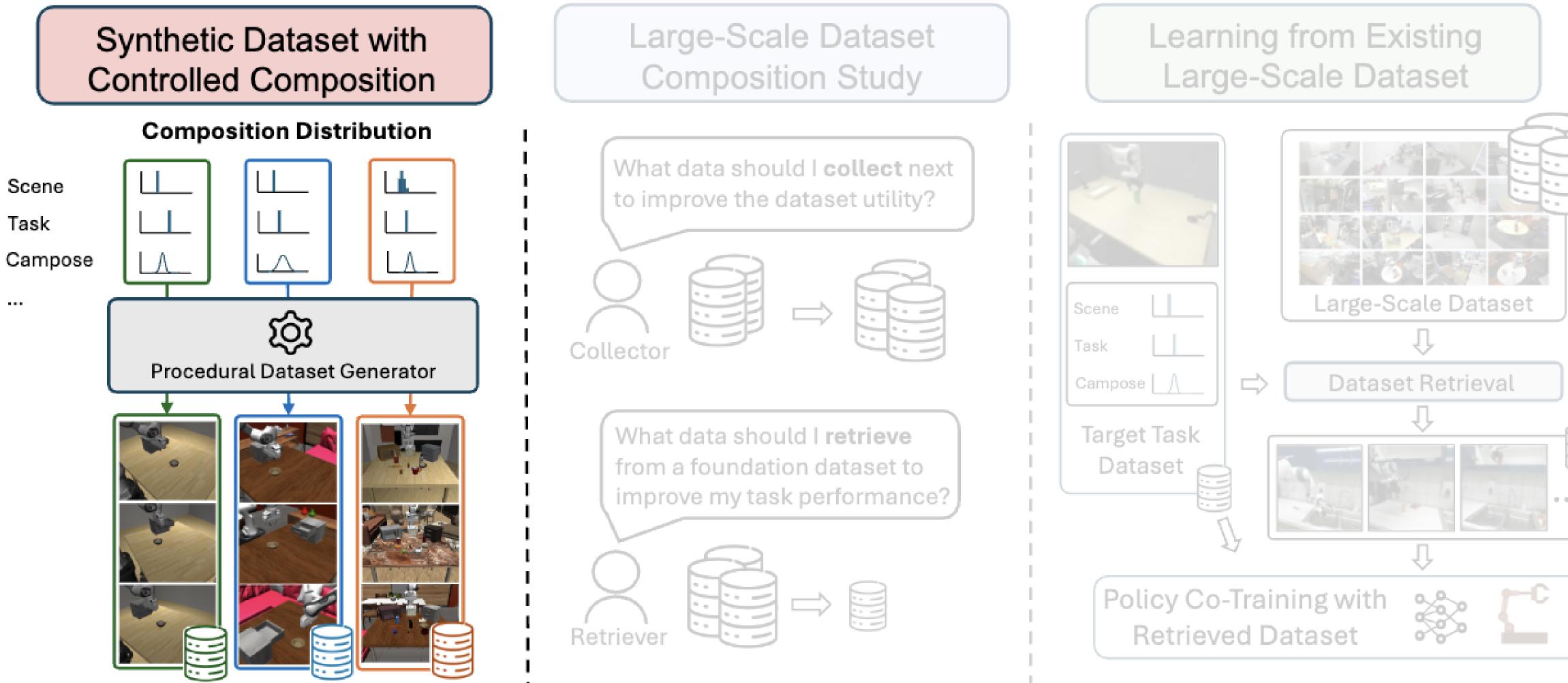


We can't easily test different co-training datasets – they take months to collect!

Idea: use synthetic data generation and simulation to conduct a study!

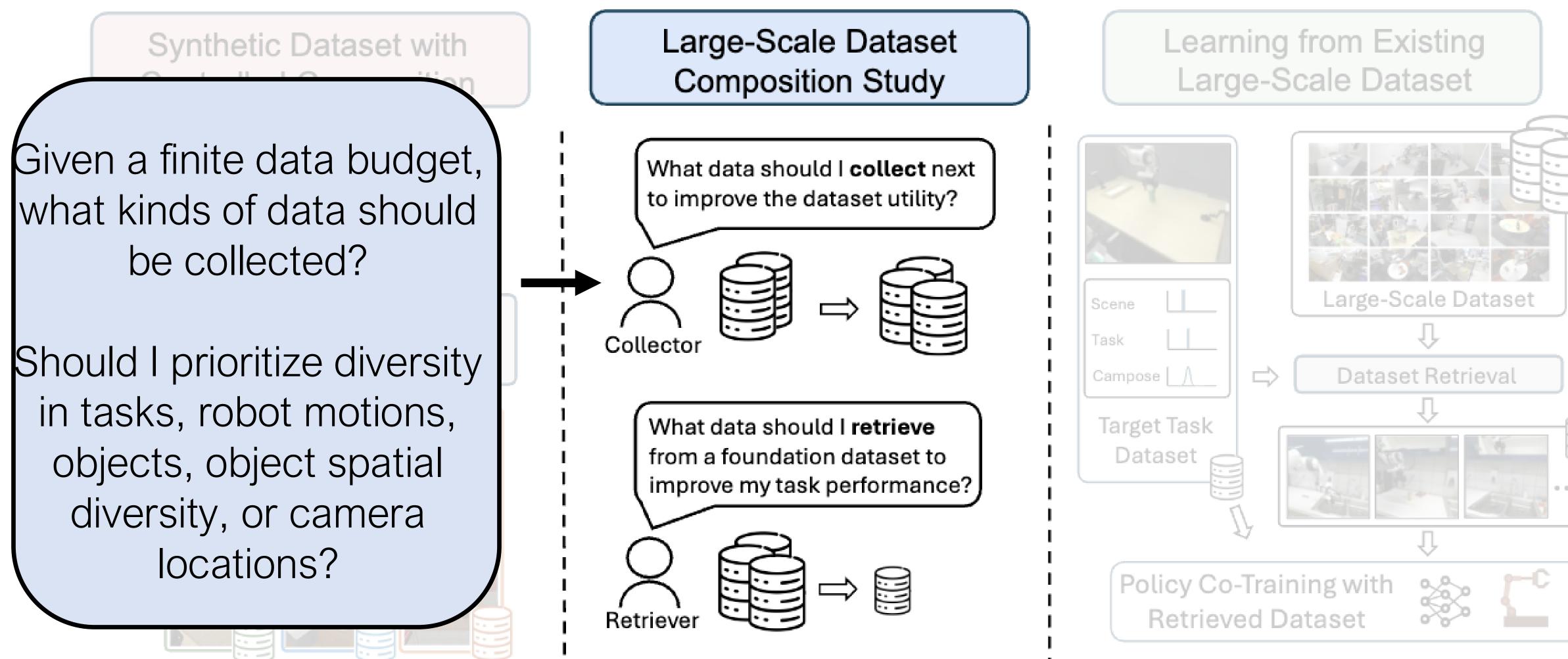
Small Task-Specific Data Policy π_{θ}





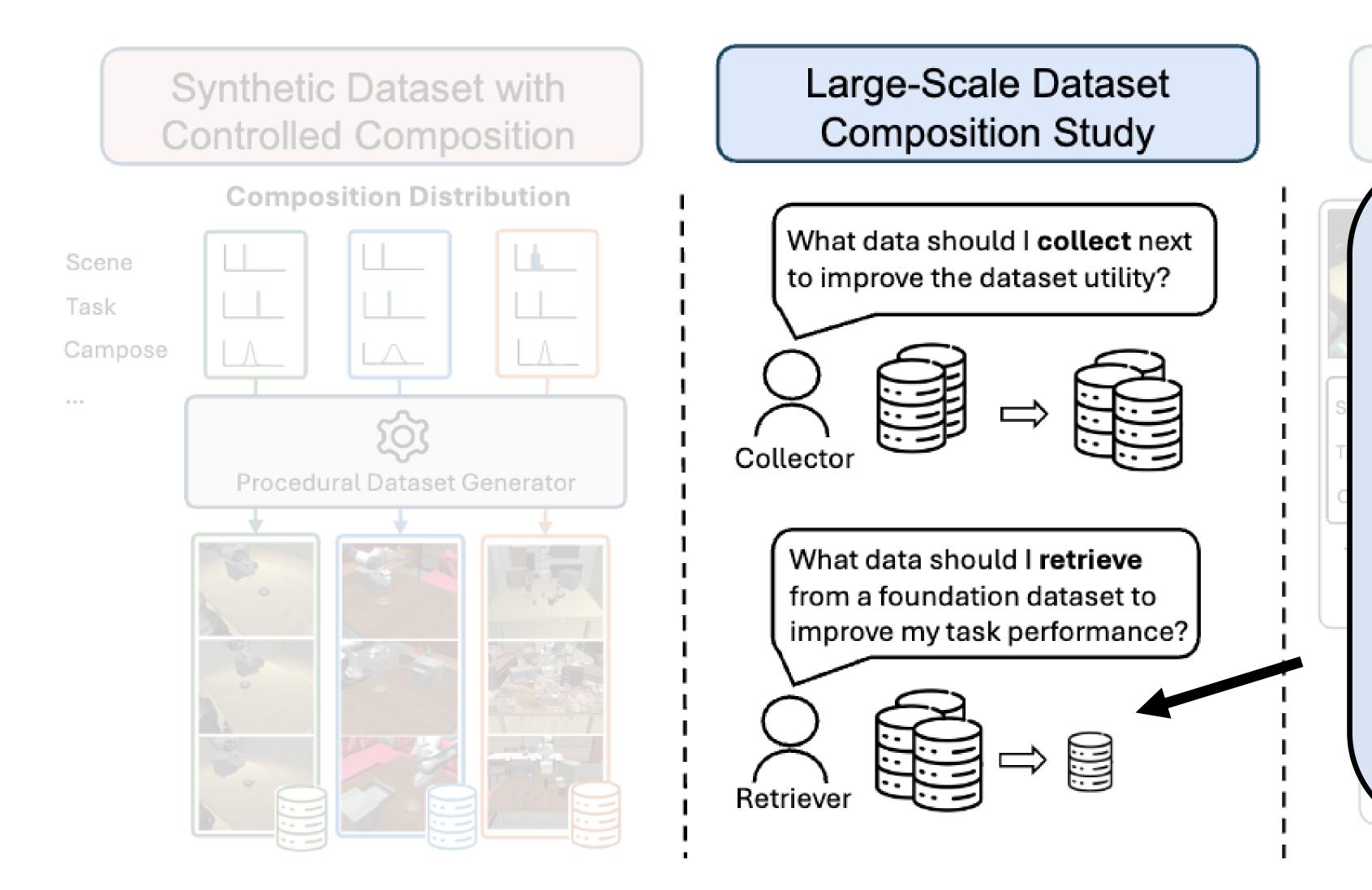
	1	ų						
,		ø						
					1	4		
						ė		
						,		
					e	ė		
				,	ė	e		
			1	1		f		
	•			1	1	1		
							e	

÷			28
۰.			÷
		-	۰.
1			
10			
÷.,			
110			
10			
N.,			
-			
	•		



	1	ų						
,		ø						
					1	4		
						ė		
						,		
					e	ė		
				,	ė	e		
			1	1		f		
	•			1	1	1		
							e	

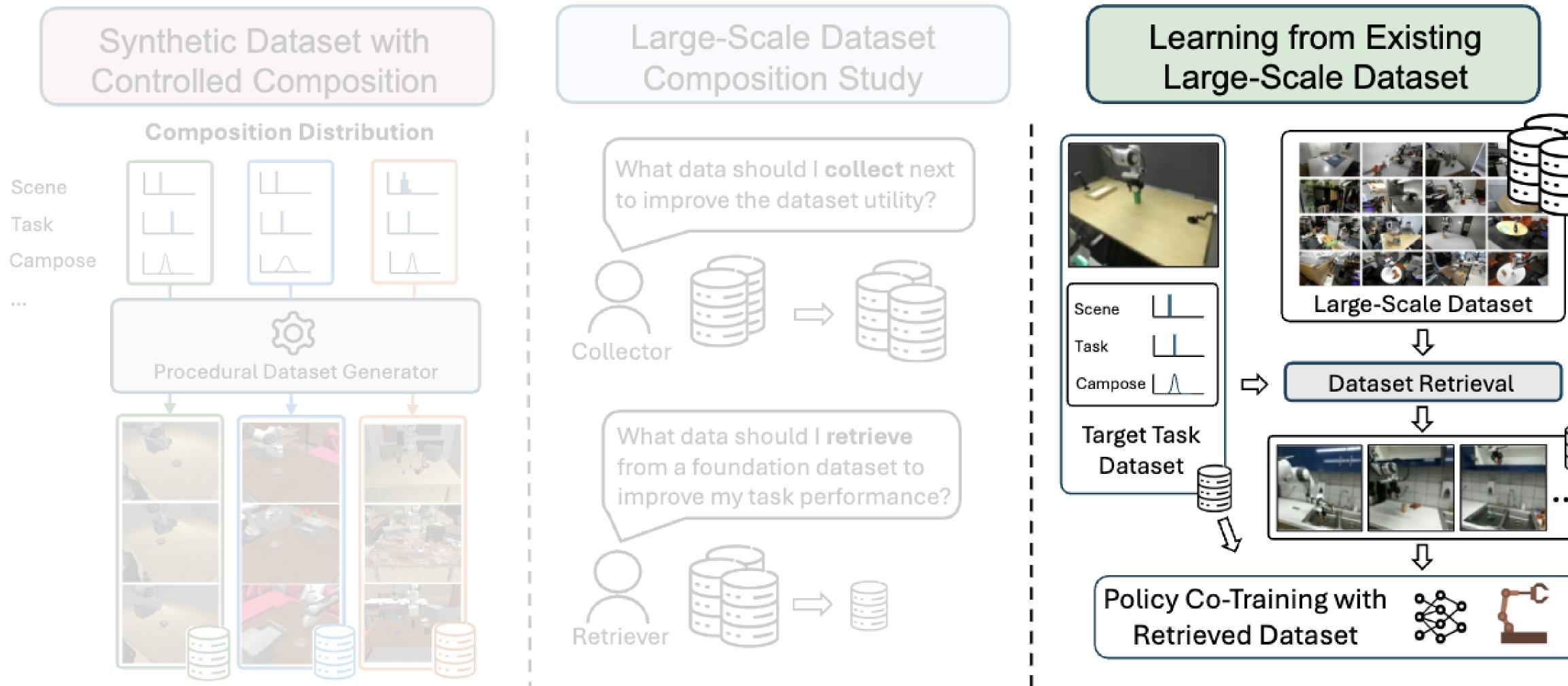
÷			28
۰.			÷
		-	۰.
1			
10			
÷.,			
110			
10			
N.,			
-			
	•		

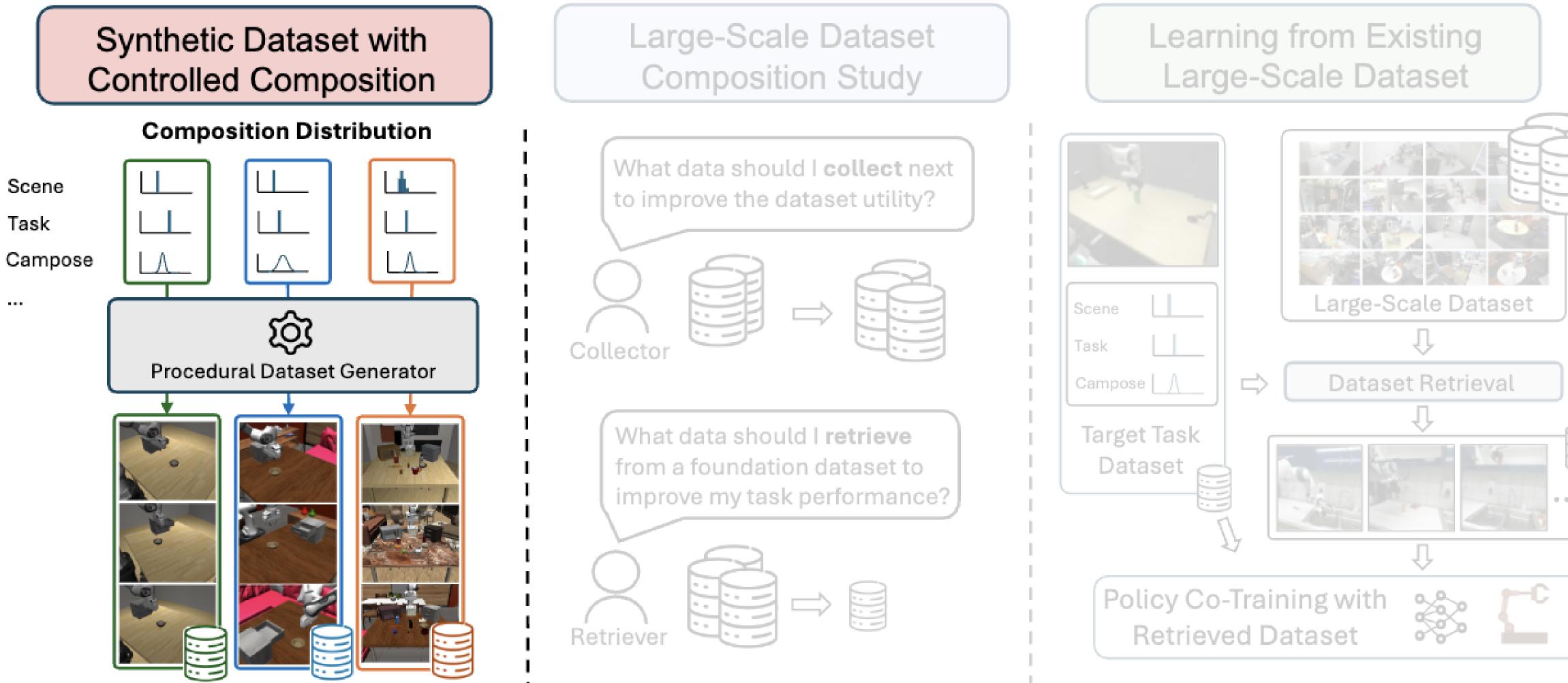


Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

Learning from Existing Large-Scale Dataset

If someone has already collected a large-scale dataset, how should I retrieve specific subsets of it that are most useful for my specific robot and task setup?





	1	ų						
,		ø						
					1	4		
						ė		
						,		
					e	ė		
				,	ė	e		
			1	1		f		
	•			1	1	1		
							e	

÷			
۰.			÷
		-	
1			
10			
		-	
÷.,			
110			
10			
N.,			
-			
	•		

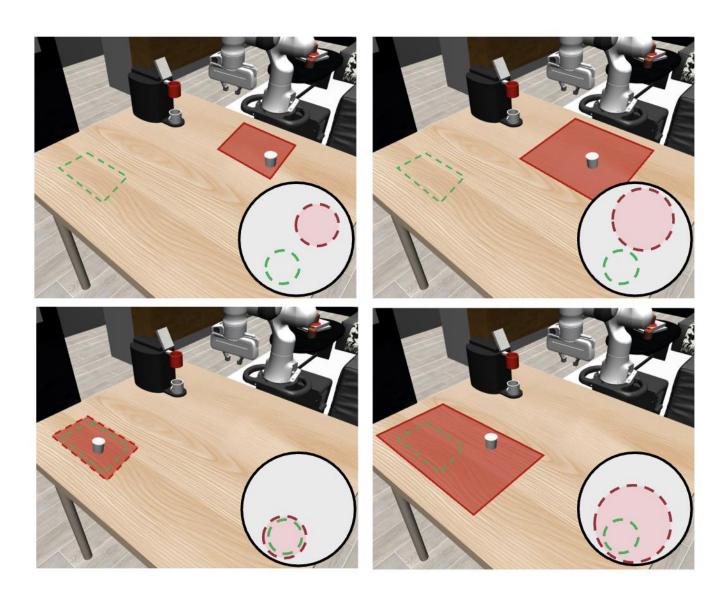
DVs: Parametrizing Dataset Composition Distributions

- some of which can be:
 - Visual camera poses, object texture, table texture
 - Spatial object and receptacle placements
 - Motion skills that comprise a task
- Target and Co-training Distributions of Variation

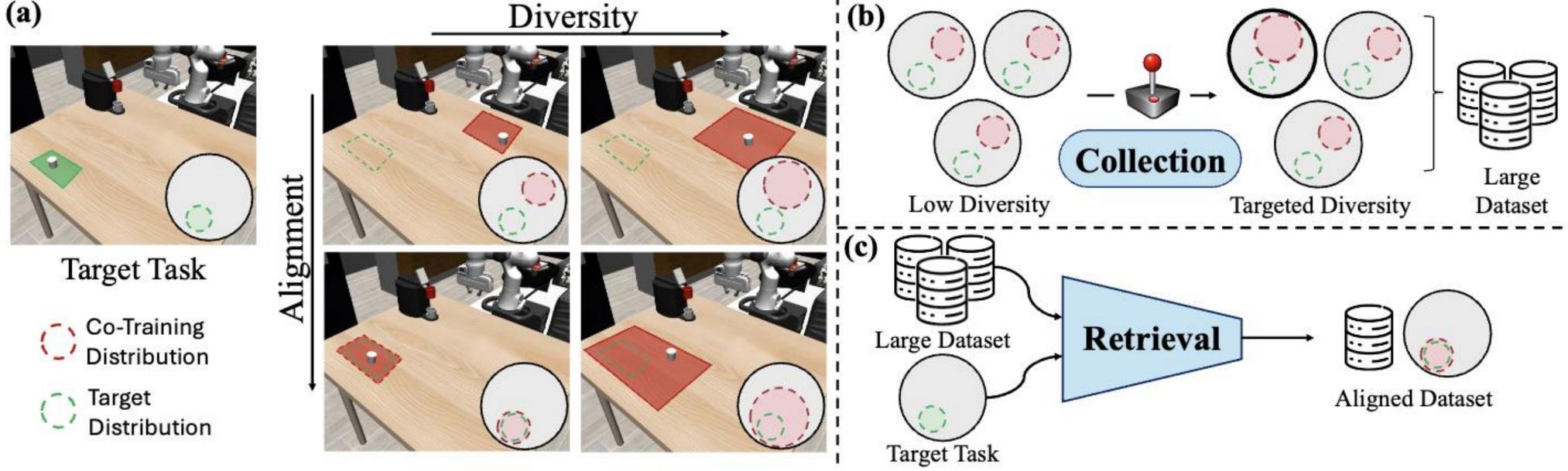
Target Task

Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

Each demonstration can be parameterized by "dimensions of variation (DVs),"



Relating DVs to the Collector and Retrieval Perspectives

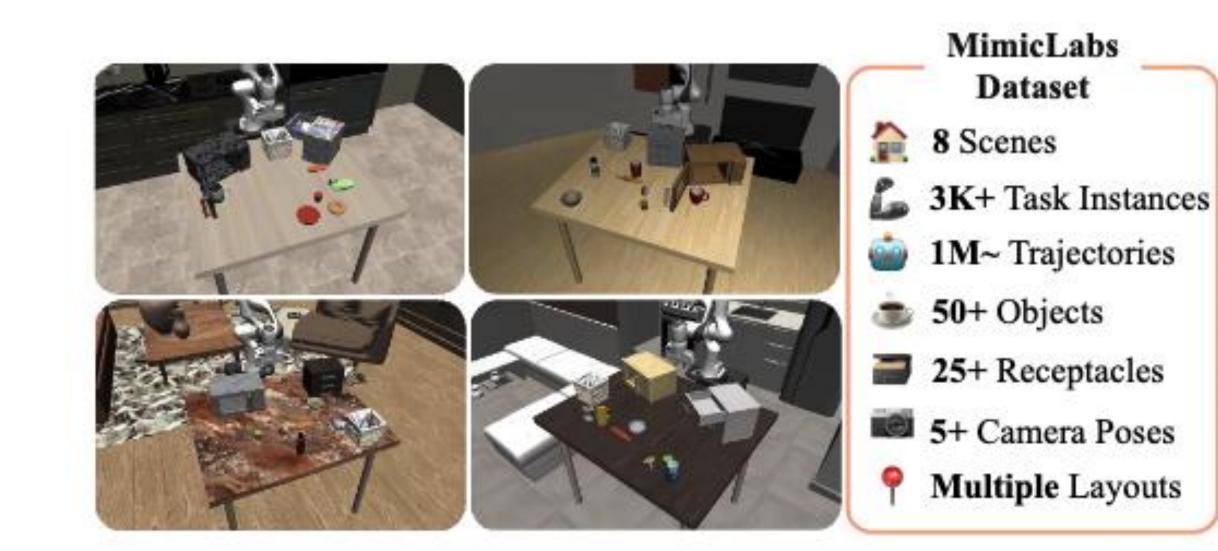


- more diverse?
- Retriever: Which DVs should I try to align with my setup?

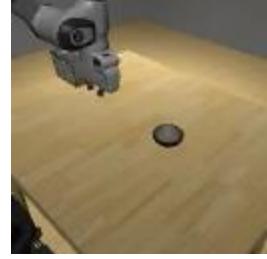
Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

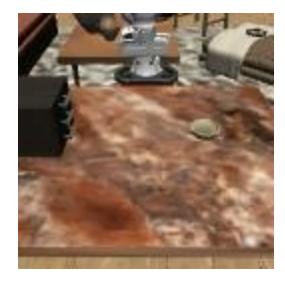
• Collector: Given fixed data collection budget, which DVs should be

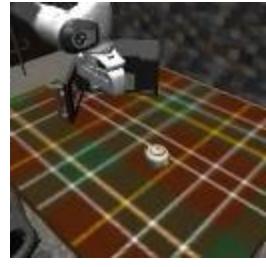
MimicLabs: a Large-Scale Retrievable Demonstration Dataset

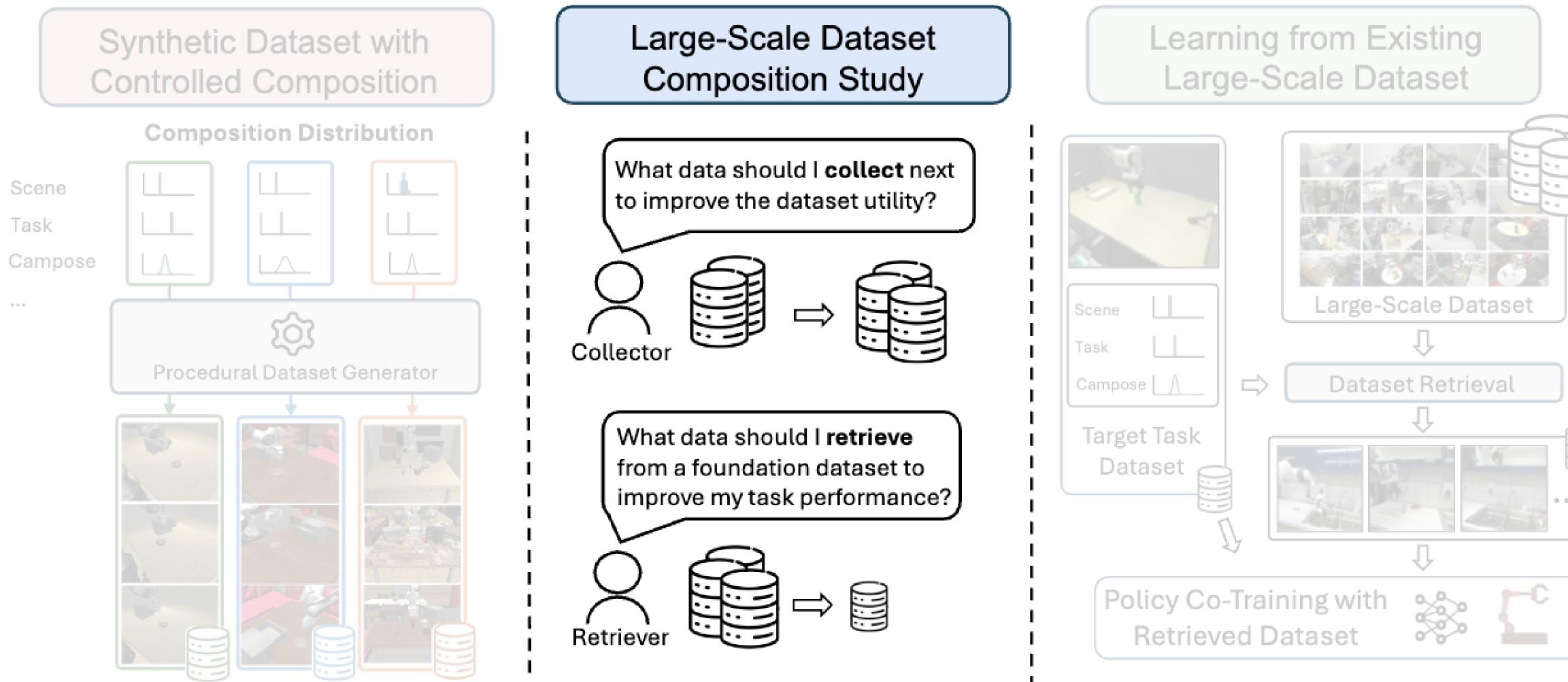


- Procedural task specification as a BDDL (Behavior Domain Definition Language) [Srivastava et al. "BEHAVIOR" and Liu et al. "LIBERO"]
- Controllable data synthesis with MimicGen to scale ~500 human demonstrations up to ~1M trajectories





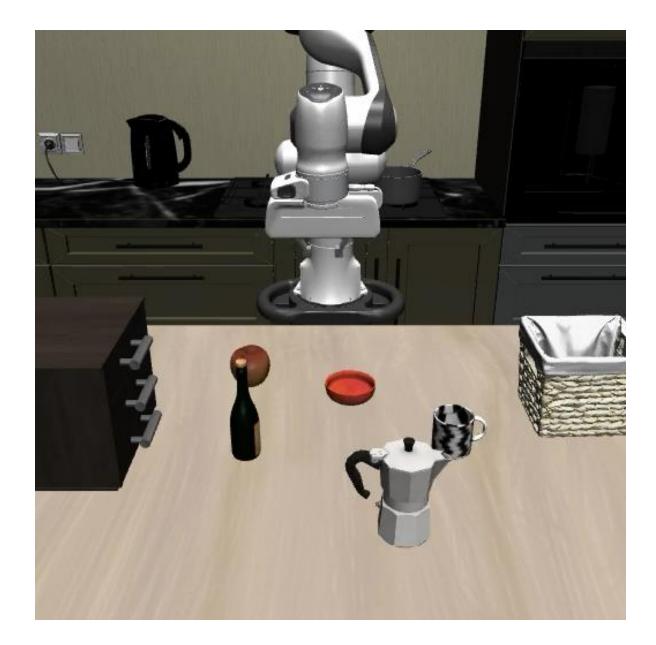




	1	ų						
,		ø						
					1	4		
						ė		
						,		
					e	ė		
				,	ė	e		
			1	1		f		
	•			1	1	1		
							e	

÷			
۰.			÷
		-	
1			
10			
		-	
÷.,			
110			
10			
N.,			
-			
	•		

MimicLabs: Testing different co-training dataset compositions Alternative Co-training Distributions



Baseline (co-training)

camPose

objTex

tableTex

objSpat

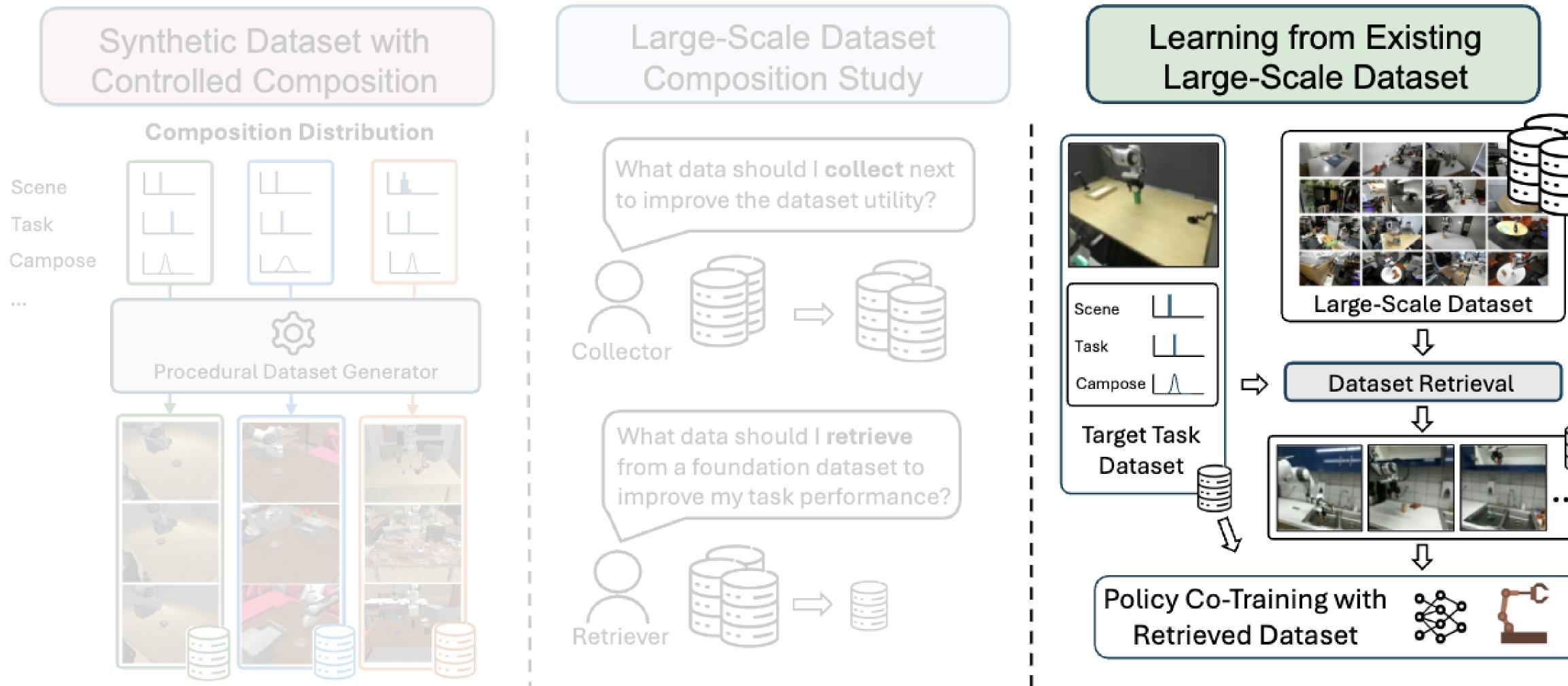
MimicLabs: Takeaways from Sim Retriever Experiment

Target task	#demos	Target only	Retrieving relevant object/skill			Missing relevant object/skill						
			obj/skill	+ camPose	+ objSpat	+ recepSpat	+ all	no-obj/skill	+ camPose	+ objSpat	+ recepSpat	+ all
bin carrot	10	50	70	96.67	86.67	83.33	90	30	40	53.33	43.33	56.67
bin bowl	10	33.33	50	70	53.33	63.33	73.33	36.67	60	50	40	46.67
clear table	10 20	23.33 36.67	20 43.33	20 46.67	20 43.33	20 43.33	23.33 40	20 33.33	23.33 33.33	20 23.33	20 43.33	16.67 30
microwave teapot	10 20	23.33 30	20 33.33	23.33 50	16.67 33.33	13.33 36.67	16.67 33.33	10 20	10 36.67	6.67 26.67	13.33 33.33	20 23.33
make coffee top-3 labs	10 50 50	13.33 33.33 33.33	10 33.33 30	23.33 36.67 53.33	6.67 30 40	13.33 36.67 40	6.67 33.33 40	3.33 30 36.67	13.33 30 36.67	6.67 30 43.33	6.67 30 30	6.67 40 40

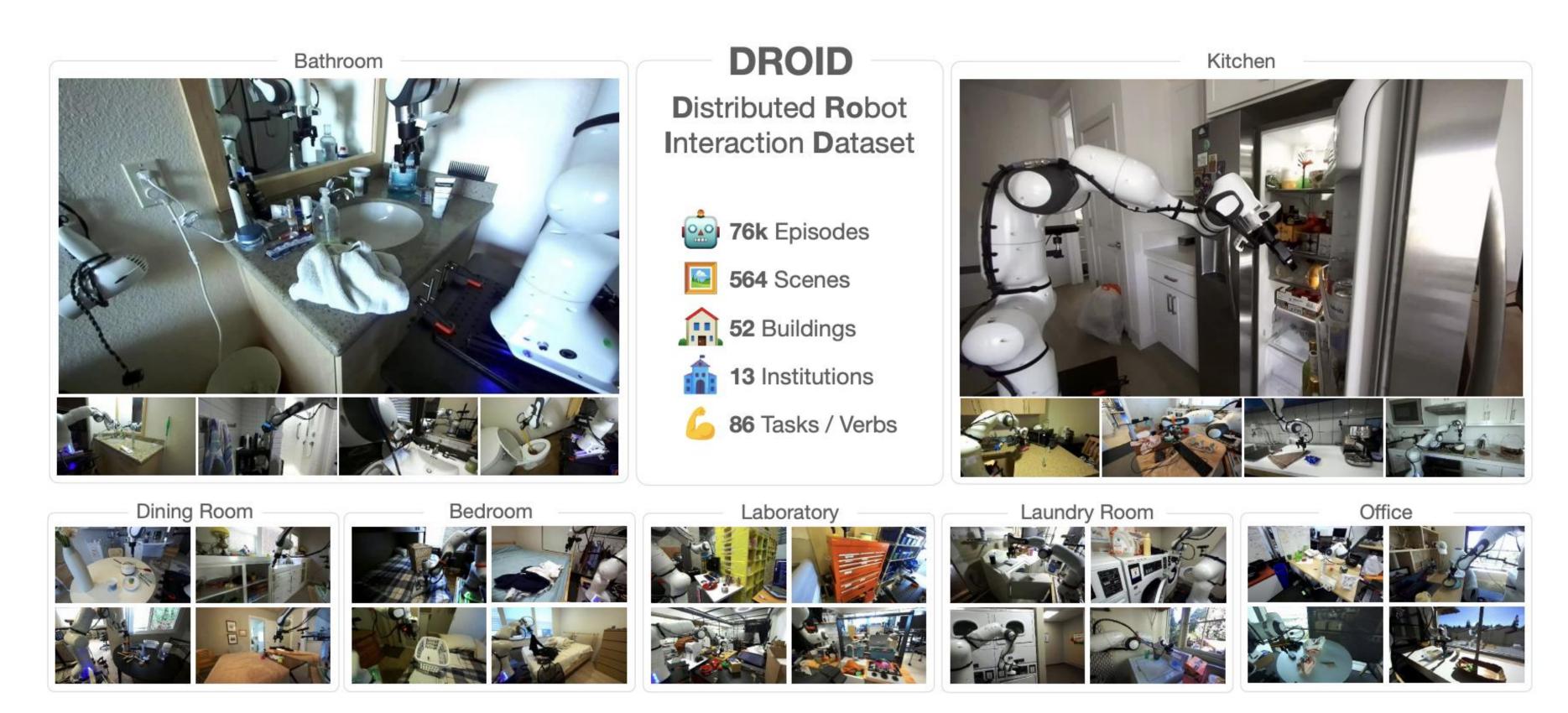
- Retrieving skills for co-training, significantly boosts performance
- Aligning camera poses enables better transfer of skills
- Quality often matters over quantity in co-training data

Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

, significantly boosts performance es better transfer of skills Intity in co-training data



Case Study: Apply Study Insights to Retrieval from DROID



the full dataset, pre-trained model checkpoints, and a detailed guide for reproducing our robot setup.

Fig. 1: We introduce DROID (Distributed Robot Interaction Dataset), an "in-the-wild" robot manipulation dataset with 76k trajectories or 350 hours of interaction data, collected across 564 scenes, 86 tasks, and 52 buildings over the course of 12 months. Each DROID episode contains three synchronized RGB camera streams, camera calibration, depth information, and natural language instructions. We demonstrate that training with DROID leads to policies with higher performance, greater robustness, and improved generalization ability. We open source

Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

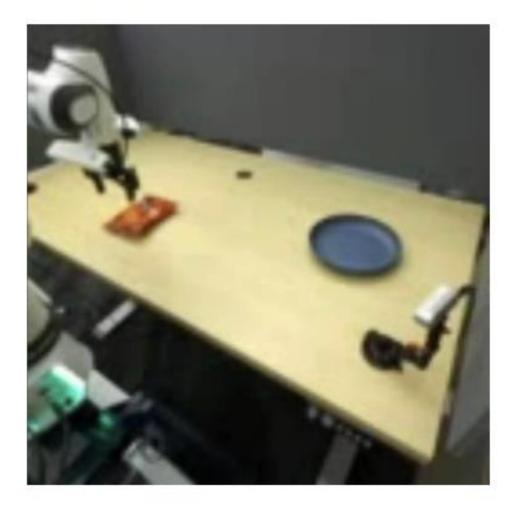
Case Study: Real Robot Tasks

put marker in cup

wipe board

Case Study: Qualitative Examples of DROID Retrieval

Target



Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

Retrieved



Retrieval from DROID based on simulation takeaways result in large performance boost

Target task	#demos	Target only	DROID	obj/skill	+camPose	+objTex	+objSpat
serve snack	20	5	0	65	70	35	85
bin can	20	60	0	15	85	65	85
pour	20	50	0	35	75	60	65
wipe board	20	55	0	45	55	55	65
baking	20	40	0	40	55	40	35
put marker in cup	50	30	0	20	35	15	20

- Aligned retrieval can significantly improve performance
- metadata will be beneficial

Saxena et al. "What Matters in Learning from Large-Scale Datasets for Robot Manipulation", ICLR 2025

• Random co-training with a large dataset can hurt performance Retrieval is a promising direction and standardization of dataset

Retrieval from DROID based on simulation takeaways result in large performance boost

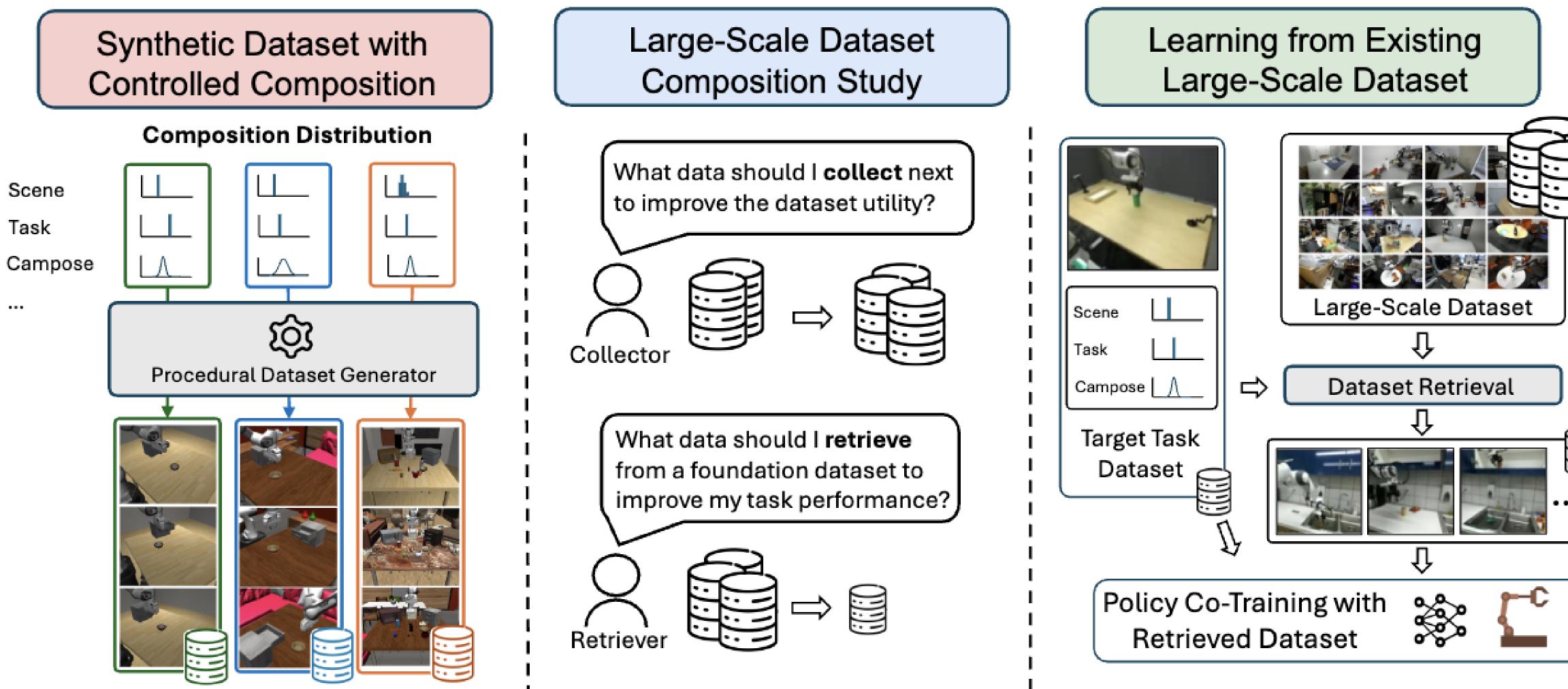
No co-training (target-only): 5%

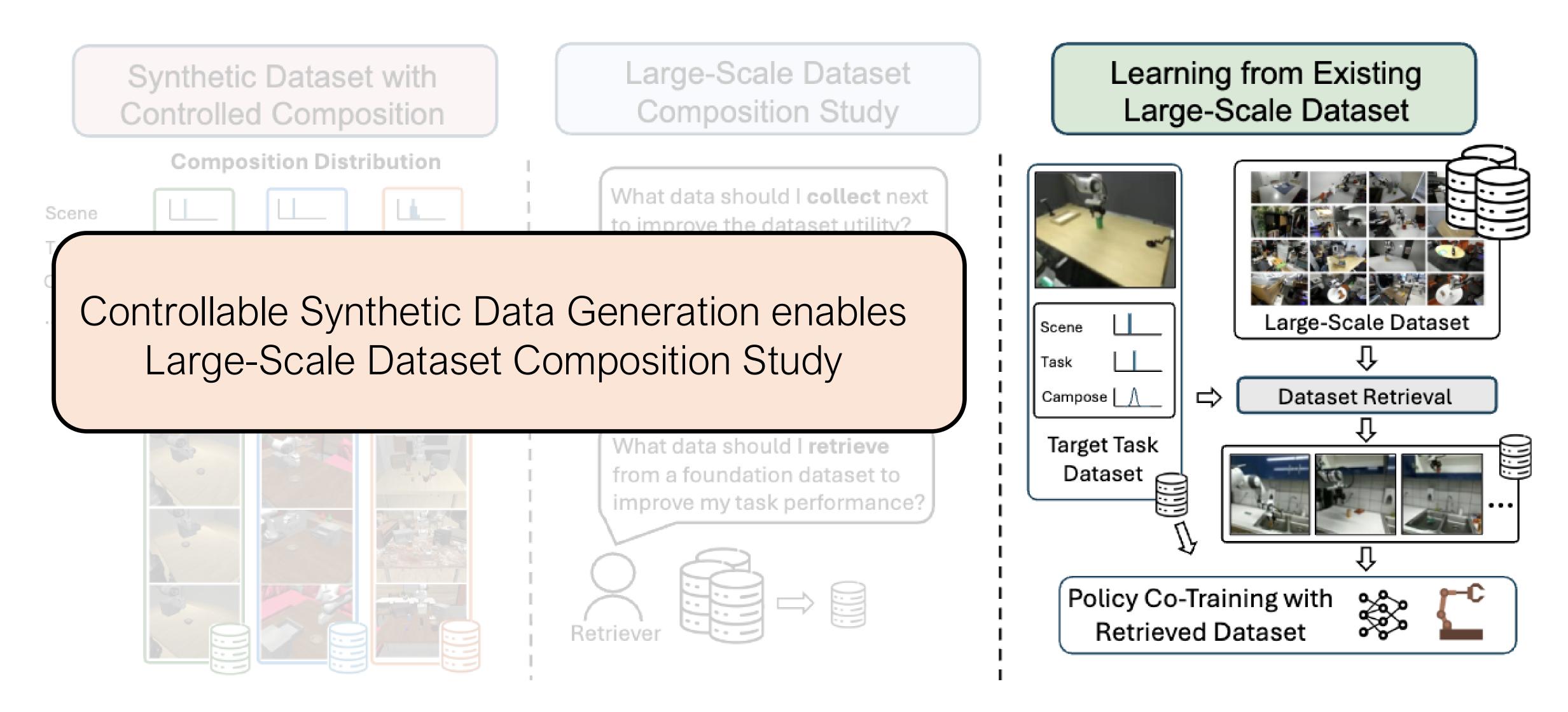
Retrieval from DROID based on simulation takeaways result in large performance boost

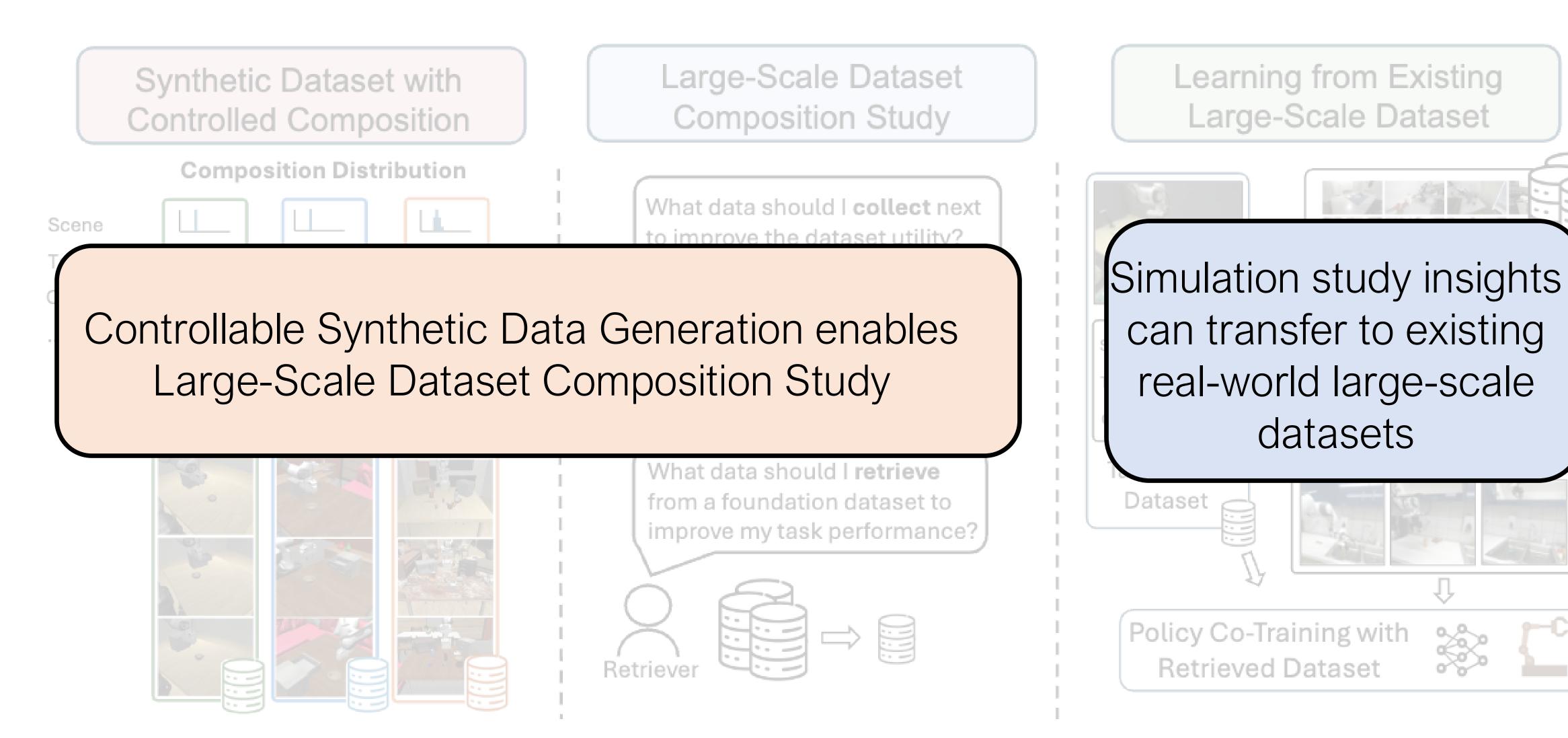
No retrieval (all of DROID): 0%

Retrieval from DROID based on simulation takeaways result in large performance boost

Retrieval with Sim Takeaways: 85%







	1	ų						
,		ø						
					1	4		
						ė		
						,		
					e	ė		
				,	ė	e		
			1	1		f		
	•			1	1	1		
							e	

÷			
۰.			÷
		-	
1			
10			
		-	
÷.,			
110			
10			
N.,			
-			
	•		

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

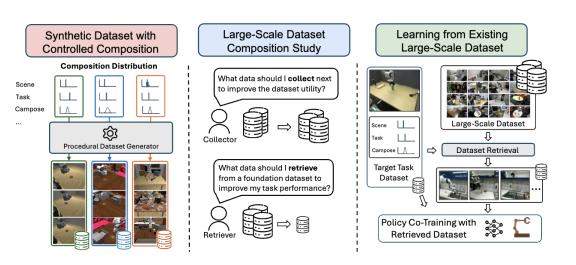
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

Dexterious Manipulation via Imitation Learning

DexMimicGen (ICRA 2025)

Skill Mimic Gen

a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)

AHA (ICLR 2025)

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

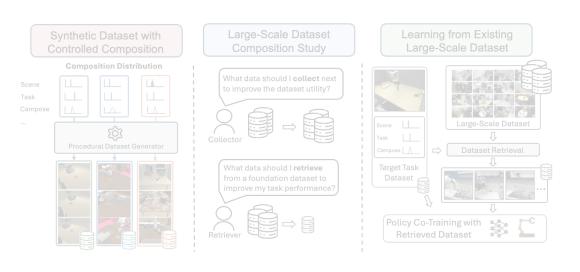
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

skill Mimic Gen

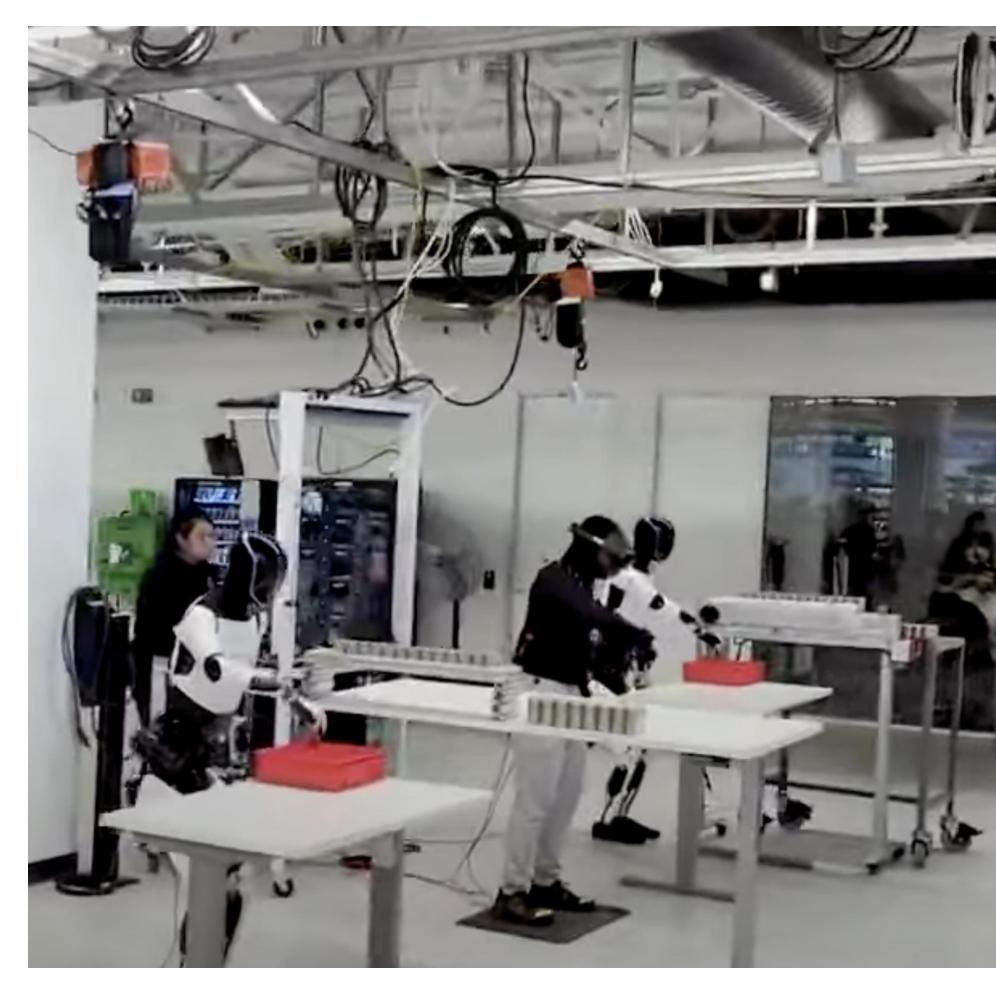
a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)



AHA (ICLR 2025)

Scaling data collection is expensive, especially for humanoids



Tesla Optimus Robot Demo

Source: Tesla Data Collection Operator job posting

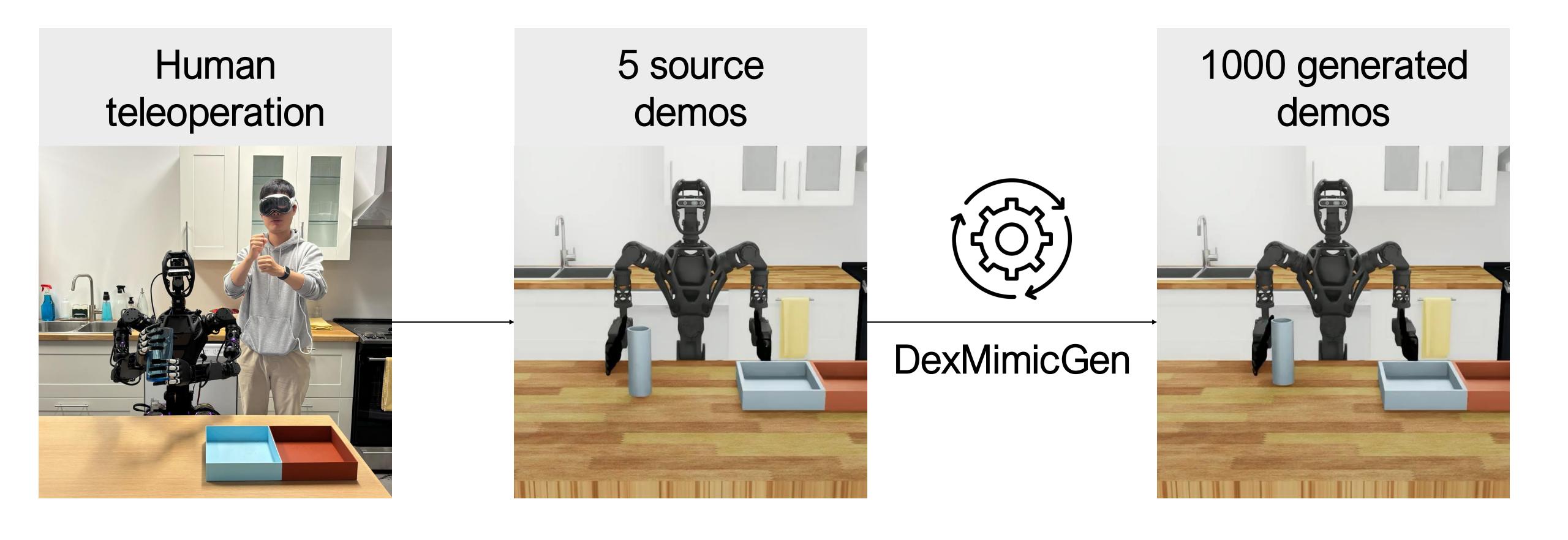
Requirements:

- Must be able to walk 7+ hours a day while carrying up to 30 lbs.
- Ability to wear and operate a motion capture suit and VR headset for extended periods of time.
- Continuous hand/eye coordination and fine manipulation, body coordination, and kinesthetic awareness and ability to walk up/downstairs.
- Must have the ability to stand, sit, walk, stoop, bend, reach, crouch, and twist throughout the day.
- Ability to work a flexible schedule: day/night shift and 1 weekend day + overtime when needed.

Automated Data Generation for **Bimanual Dexterous Manipulation**

<u>sex Mimic sen</u>

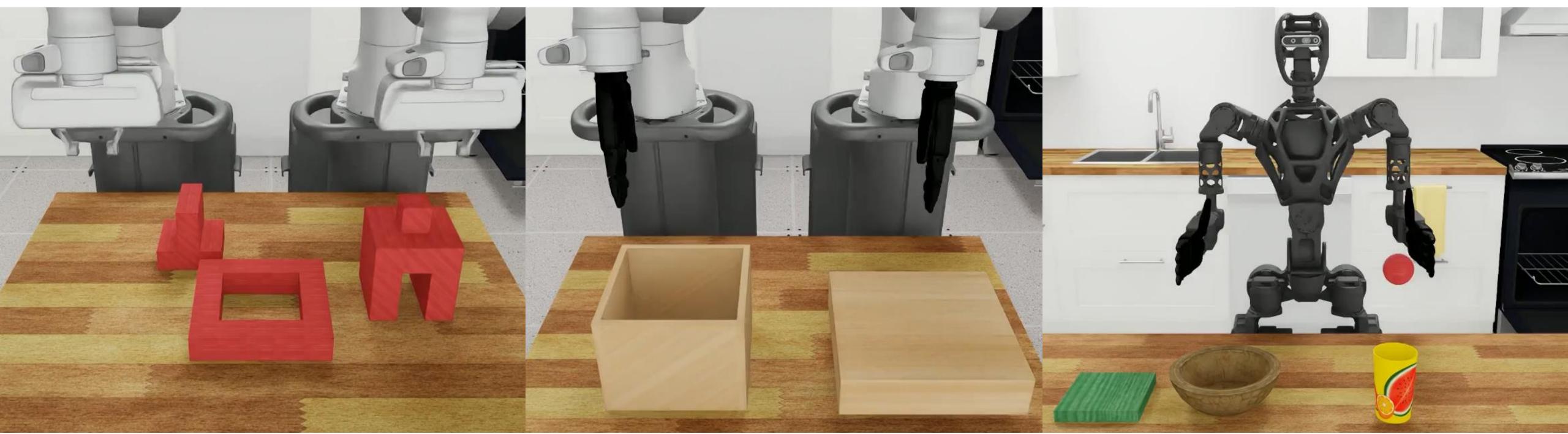
DexMimicGen generates large-scale data for bimanual dexterous manipulation

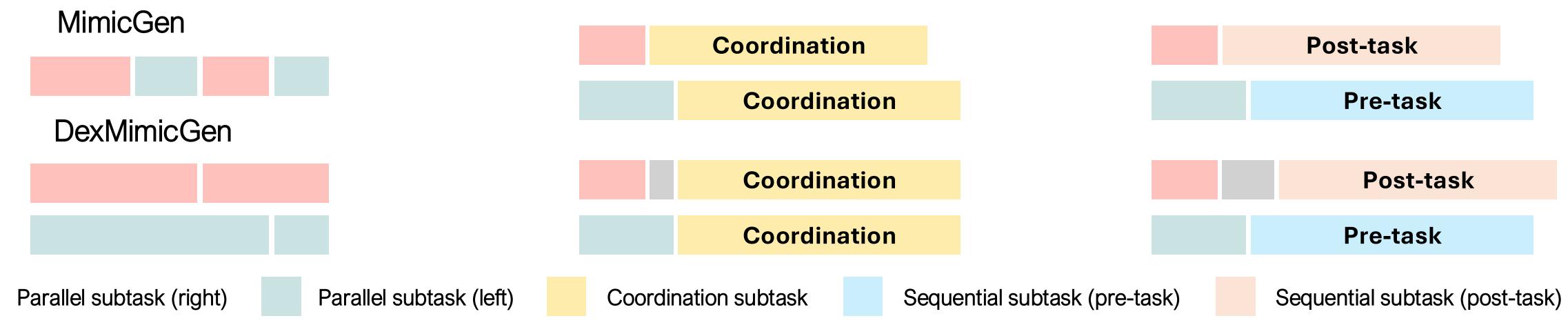


Jiang et al. "DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning", ICRA 2025

Challenge: Bimanual Coordination

Parallel subtasks

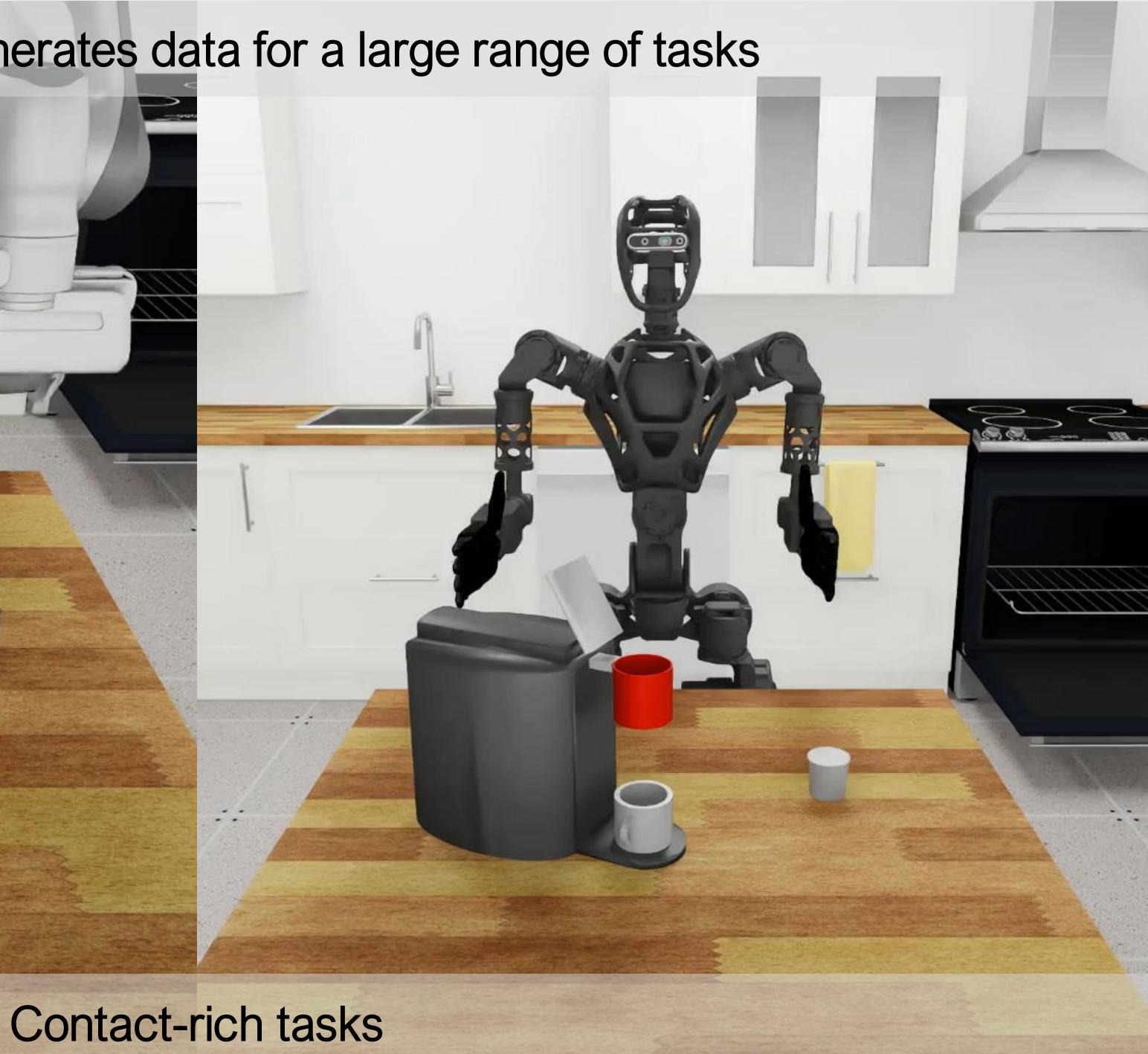




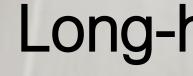
Coordination subtasks

Sequential subtasks

DexMimicGen generates data for a large range of tasks



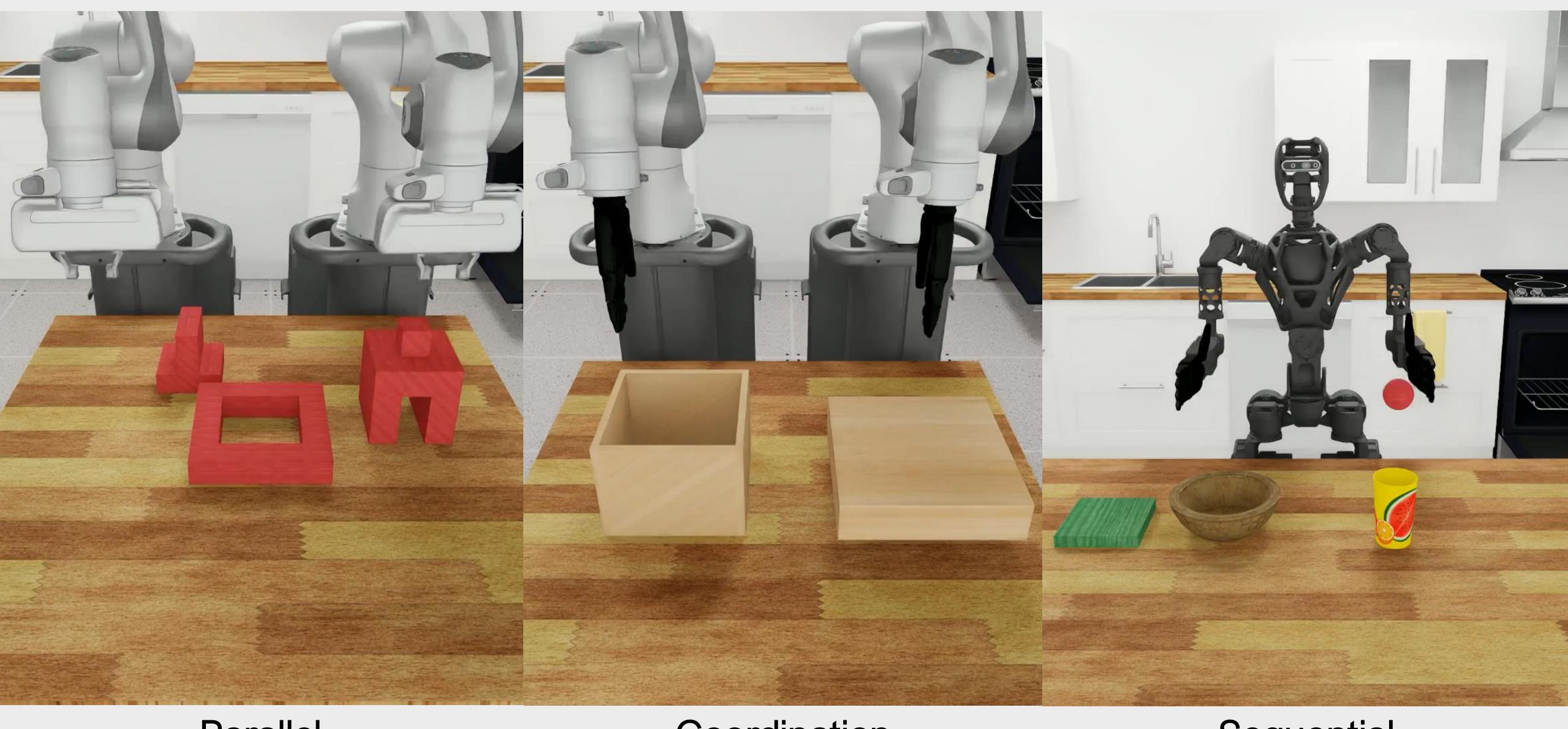
DexMimicGen generates data for a large range of tasks



Long-horizon tasks

DexMimicGen generates data for a large range of tasks

DexMimicGen generates data for tasks with different coordination complexities

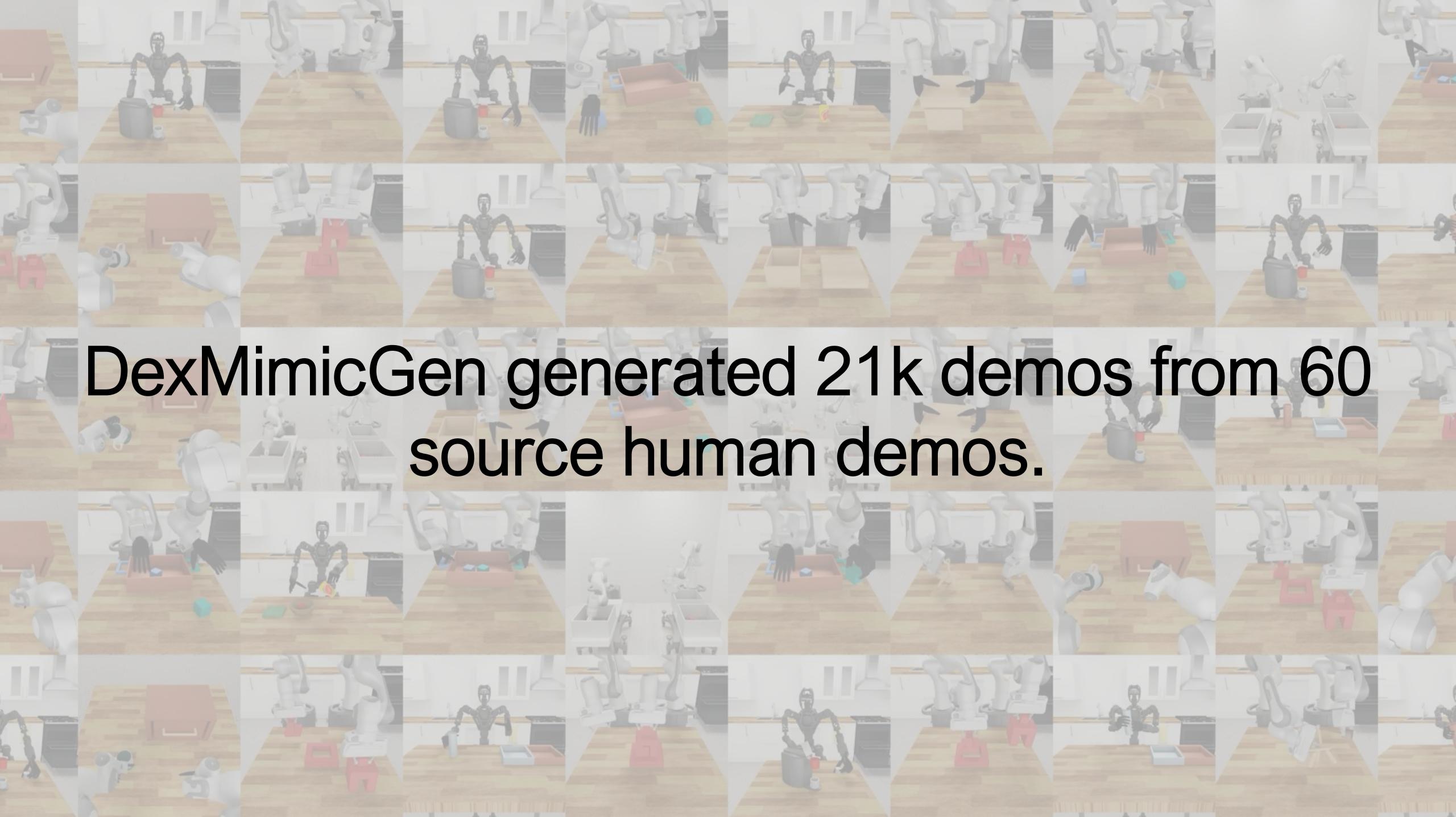


Parallel subtasks

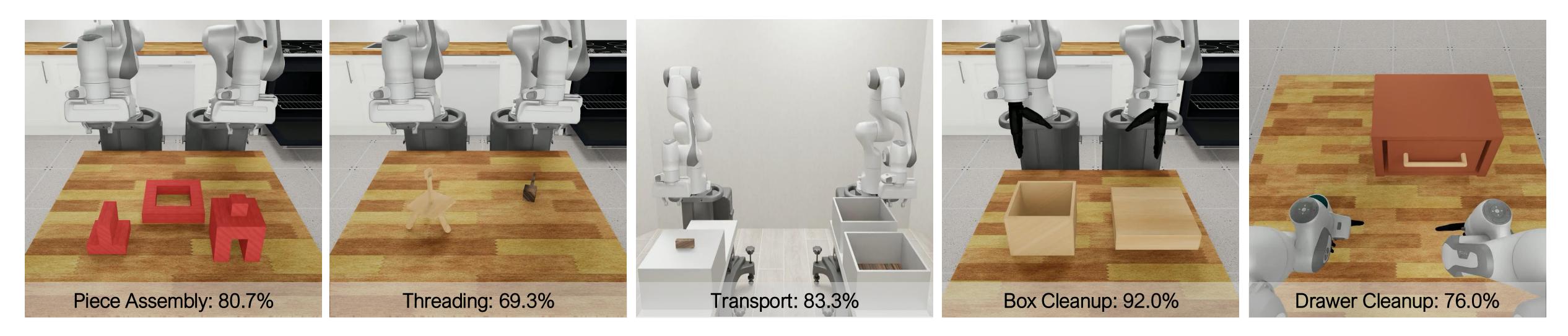
Coordination subtasks

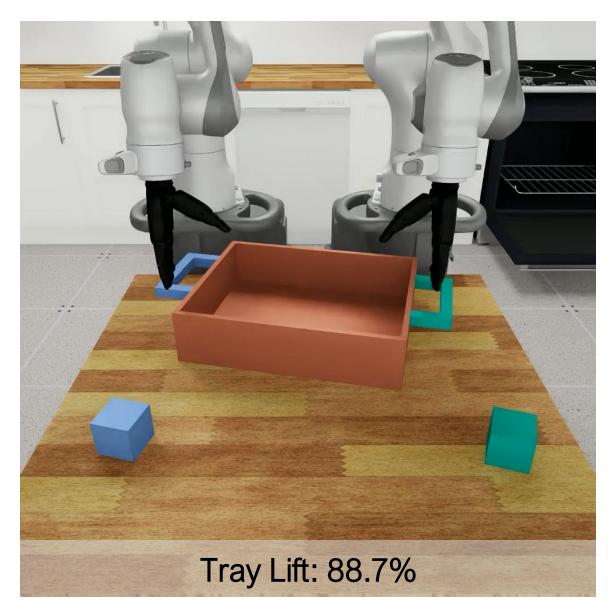
Sequential subtasks

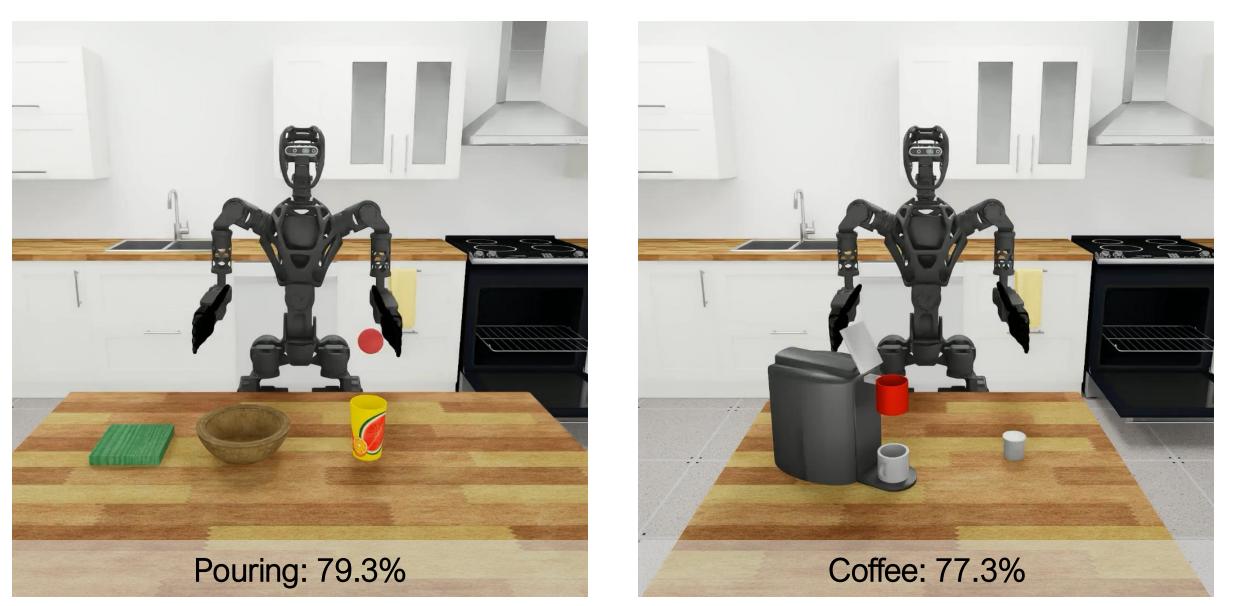
DexMimicGen generated 21k demos from 60 source human demos.



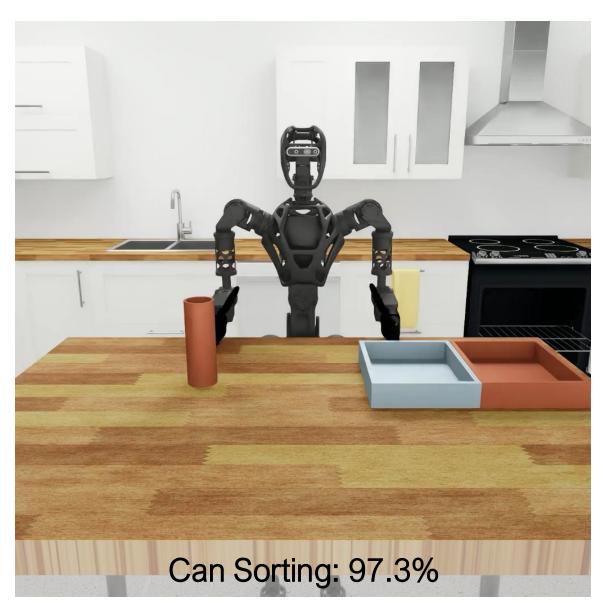
Behavioral cloning on DexMimicGen data trains performant policies



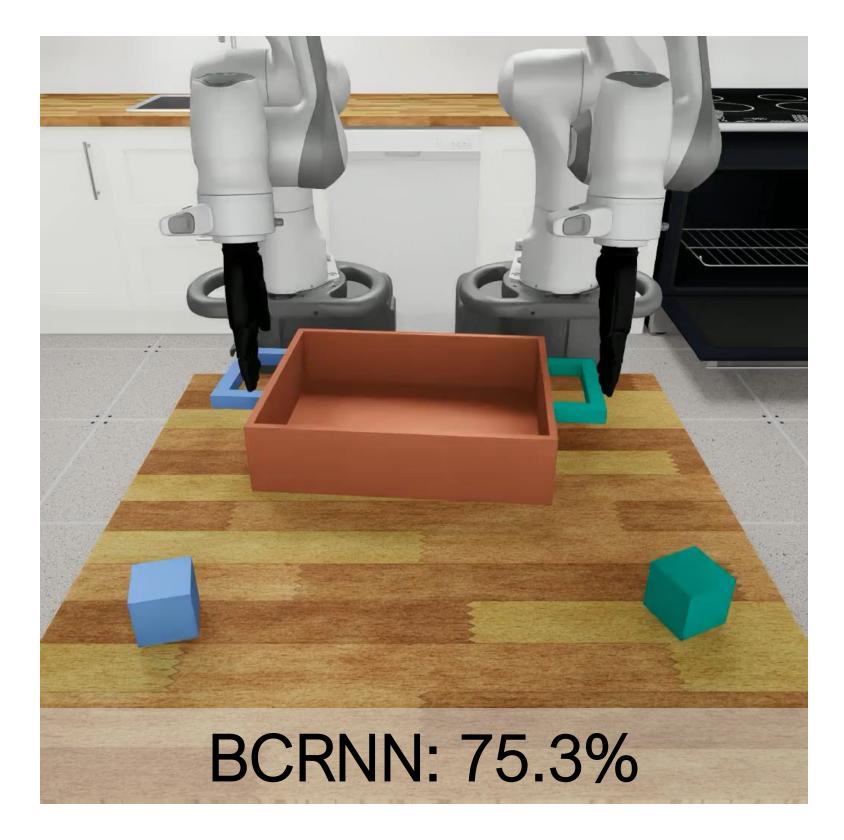


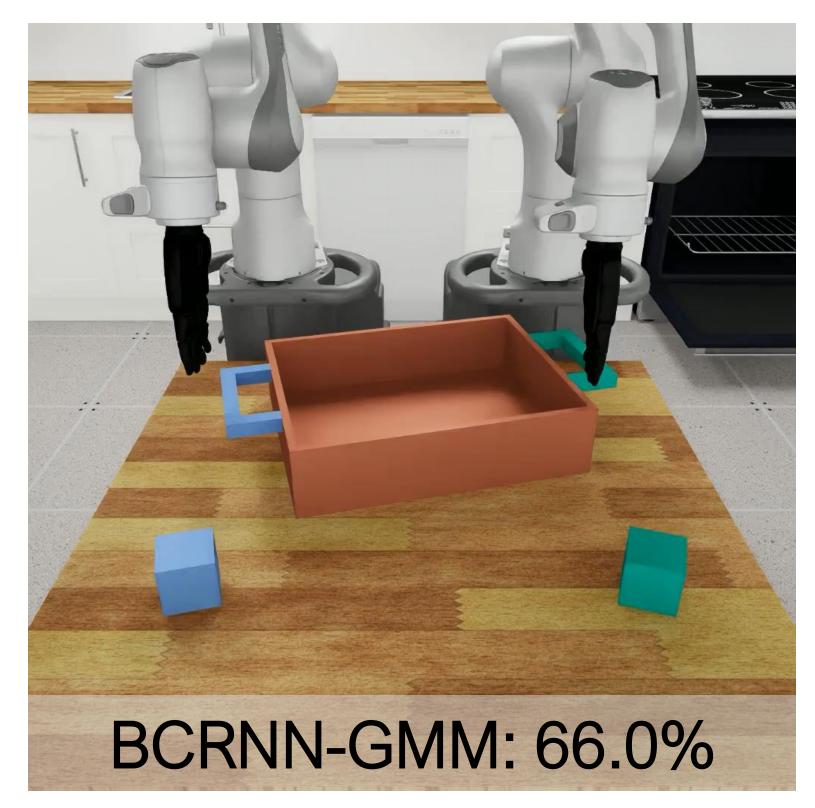


Success rates of Diffusion Policy

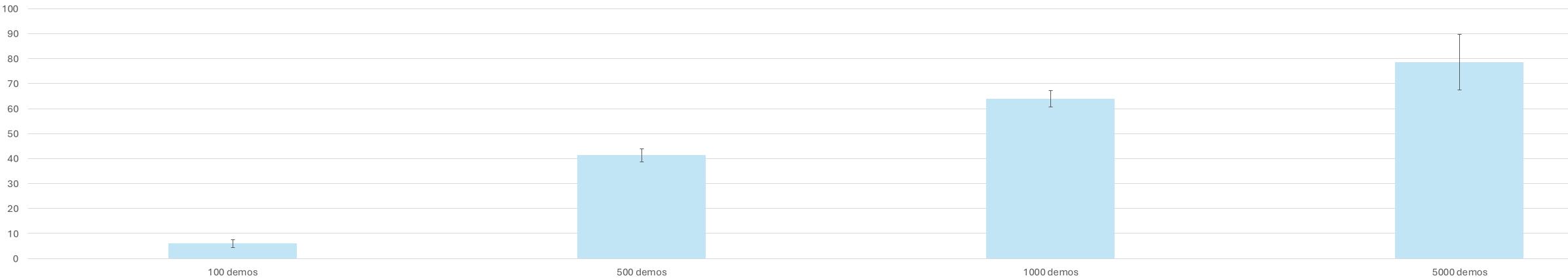


DexMimicGen data can be used to investigate the effectiveness of different policy learning methods for bimanual dexterous manipulation



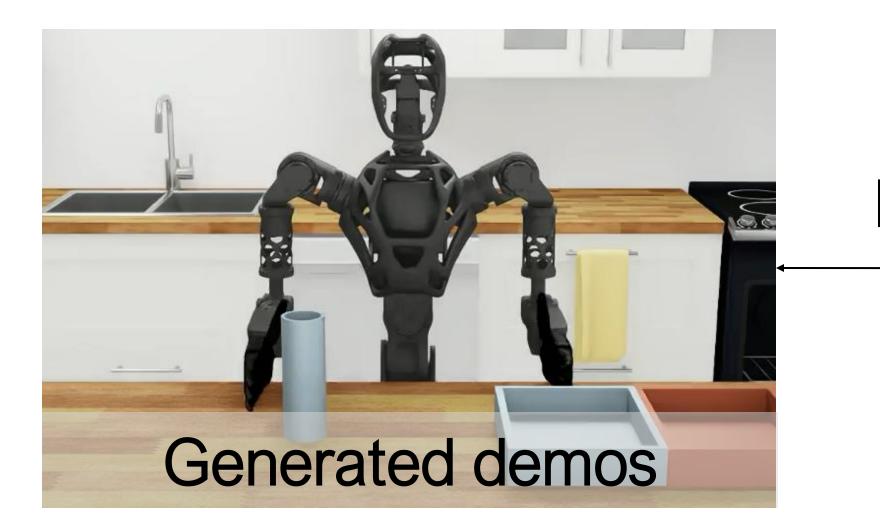


Policy performance improves by generating more DexMimicGen data

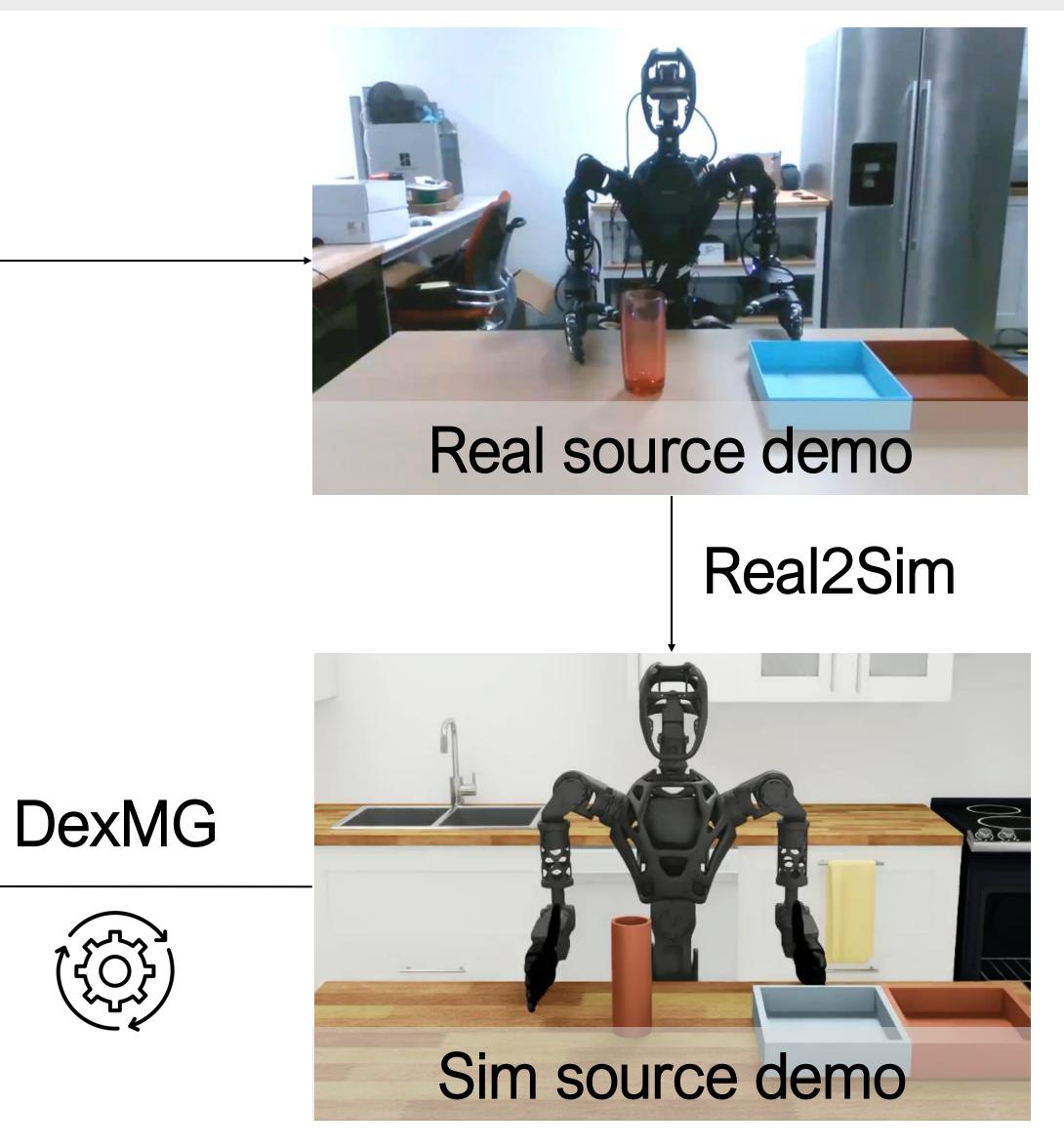


Success Rate

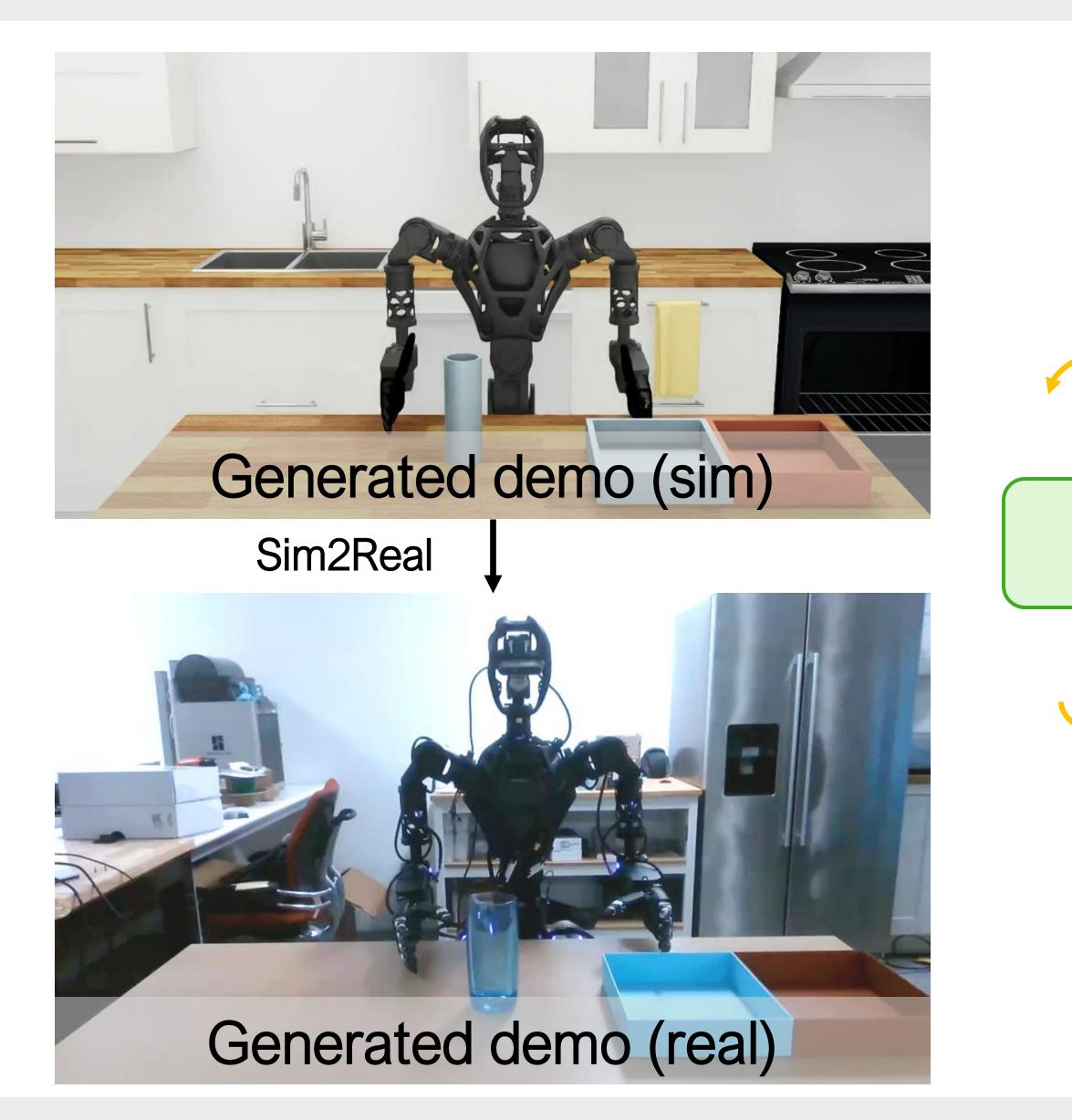
DexMimicGen can be used to train real-world visuomotor policies



Transfer real demo to sim using digital twin to ensure the sim demos are valid in real



DexMimicGen can be used to train real-world visuomotor policies



Transfer only successful generated demos from sim to real to train a visuomotor policy

DexMimicGen can be used to train real-world visuomotor policies

Real-world visuomotor policy rollouts (10X)

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

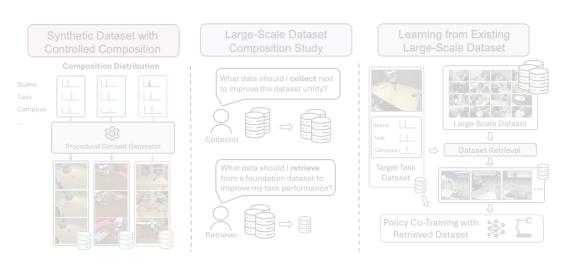
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

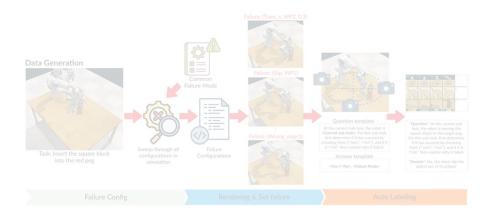
MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

SkillMimicGen (CoRL 2024)



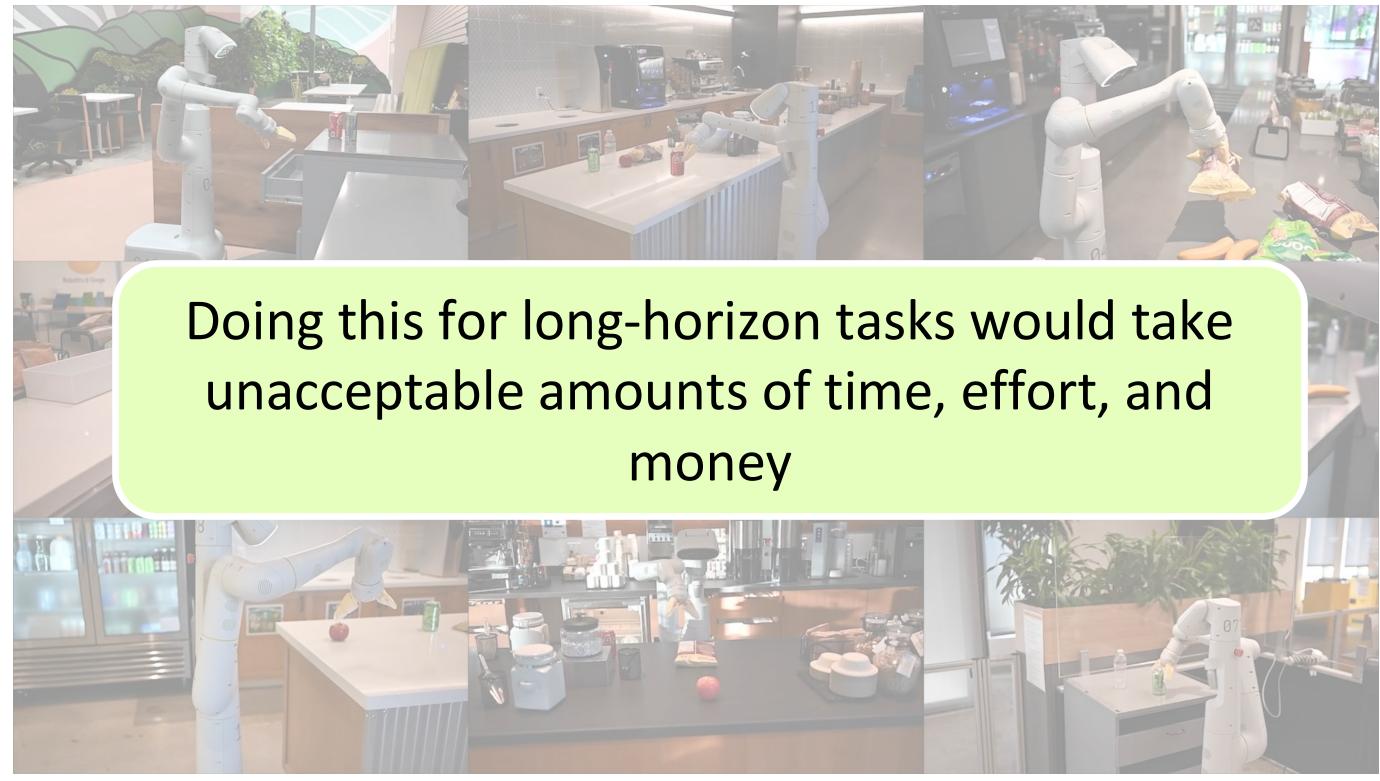
AHA (ICLR 2025)

Simple Recipe for Skill Learning: Scale Data to Scale Performance

Brohan et al. "RT-1: Robotics Transformer for Real-World Control at Scale", 2022

18 months of data with a large team of human contractors and robots to achieve 97% success on rearrangement tasks

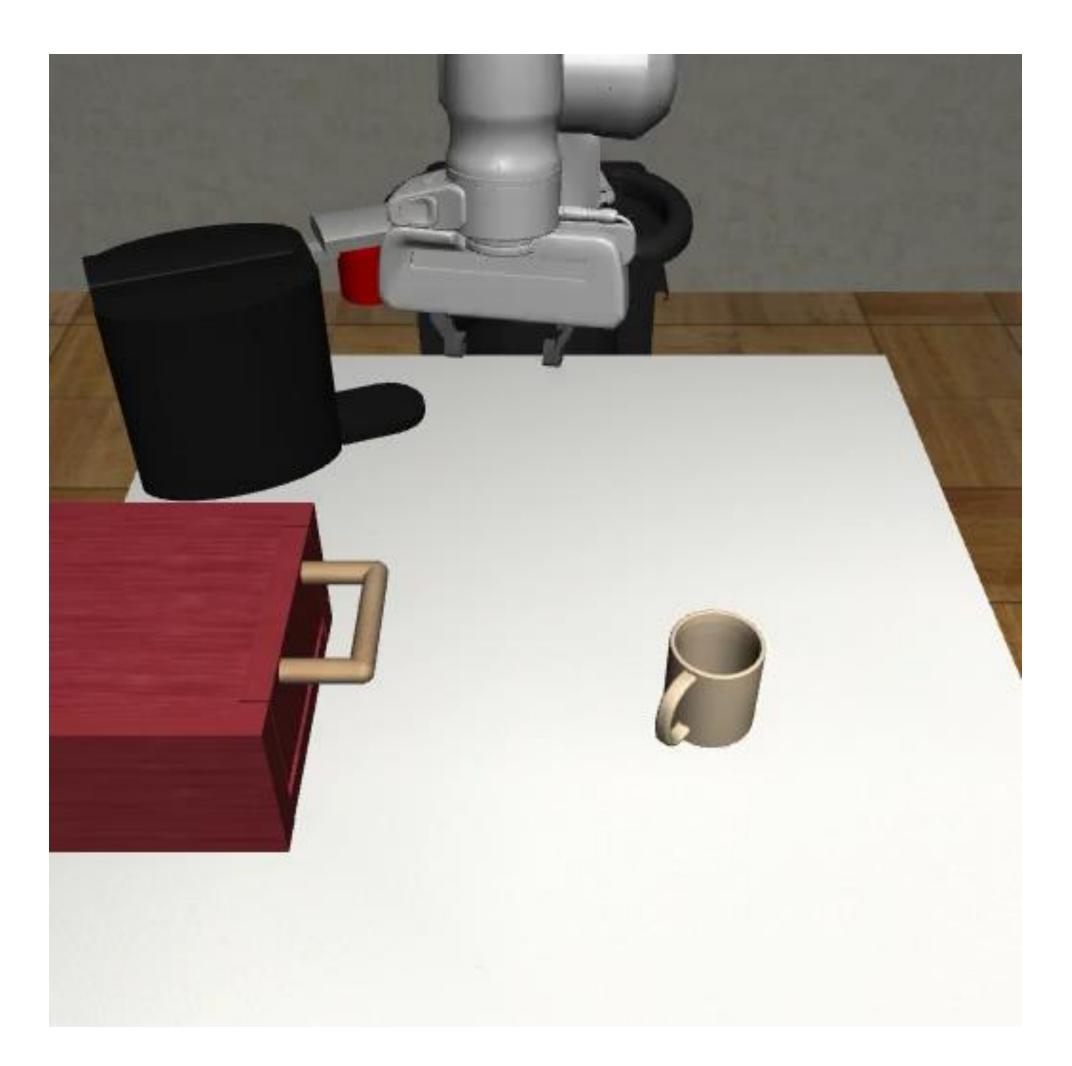
Simple Recipe for Skill Learning: Scale Data to Scale Performance



Brohan et al. "RT-1: Robotics Transformer for Real-World Control at Scale", 2022

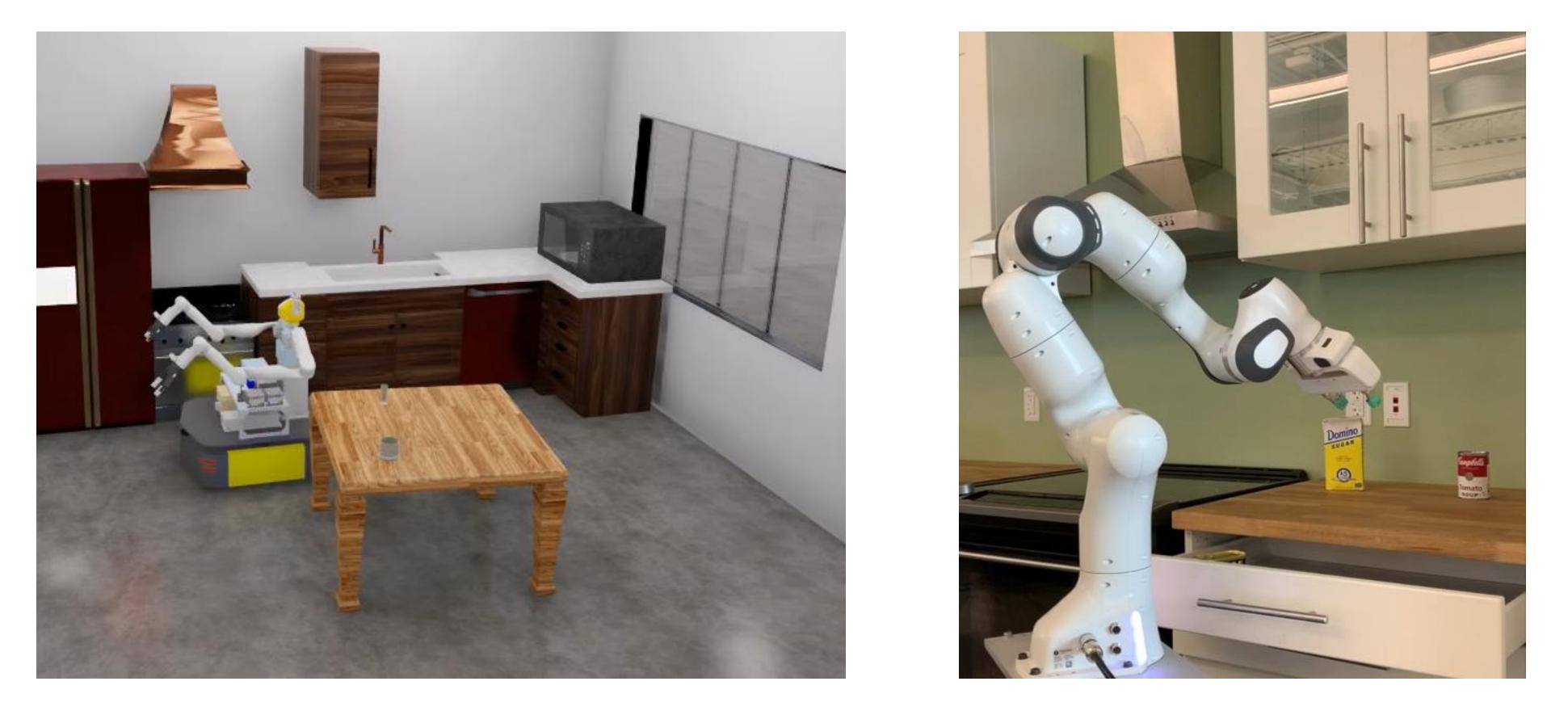
18 months of data with a large team of human contractors and robots to achieve 97% success on rearrangement tasks

MimicGen can struggle with Long-Horizon Manipulation



- Data Generation Problems
 - Errors from replay increase over time
 - Naïve linear interpolation for stitching segments together can cause issues
- Imitation Learning Problems
 - Policy must learn full long-horizon task, easy to fall off distribution
 - Interpolation segments can be hard to imitate

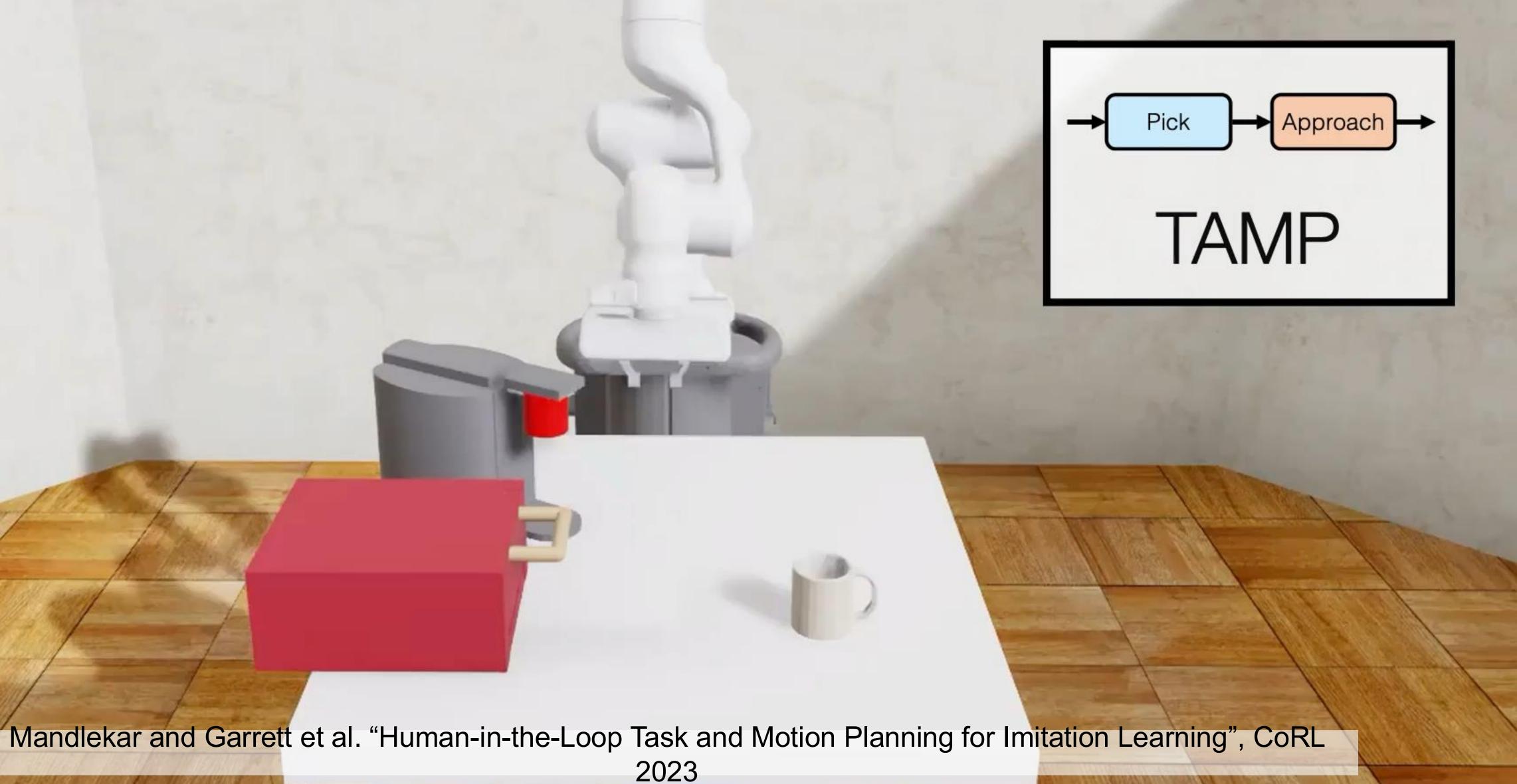
Task and Motion Planning excels at Long-Horizon Manipulation



Use world models and optimization to solve long-term objectives

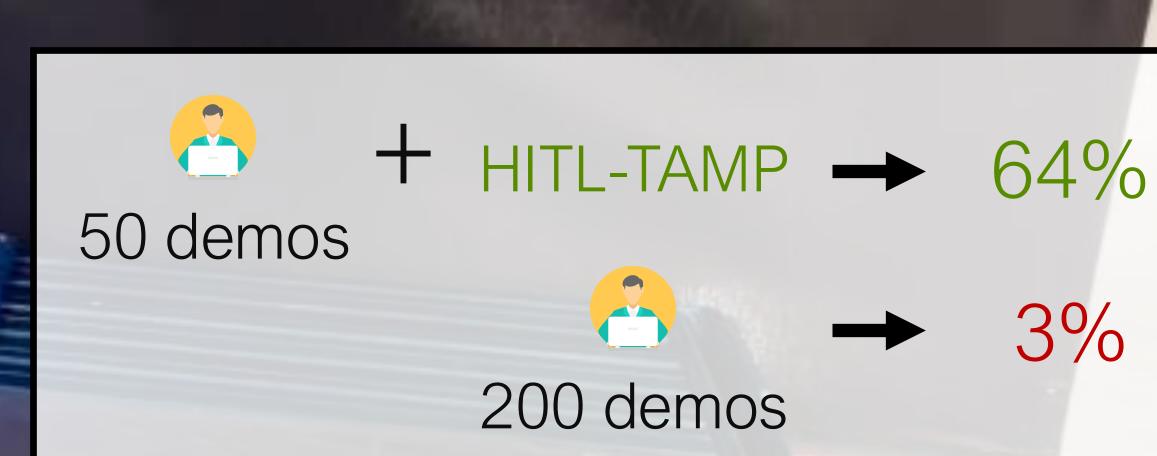
Idea: automate most parts of long-horizon manipulation with planning, and focus learning effort on local contact-rich manipulation

HITL-TAMP: Long-Horizon Manipulation with Planning and Imitation



HITL-TAMP: Long-Horizon Manipulation with Planning and Imitation

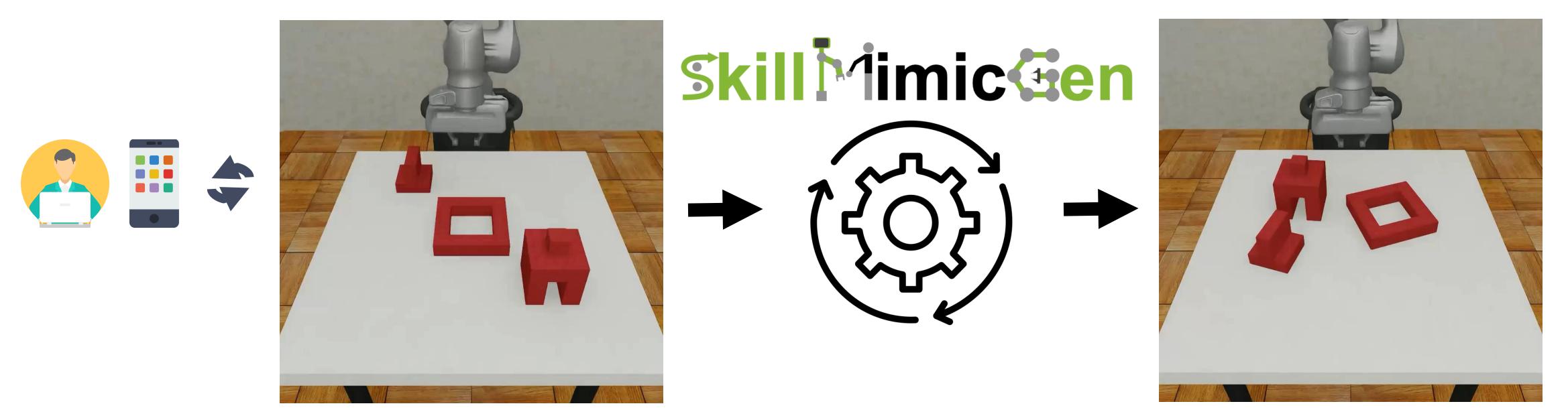
Mandlekar and Garrett et al. "Human-in-the-Loop Task and Motion Planning for Imitation Learning", CoRL 2023



a skill-based data generation system for robot learning from demonstration

SkillMimicGen (SkillGen) automatically generates large imitation learning datasets from a few human demos

10 human demos

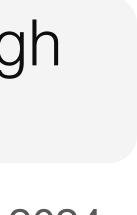


Human collects a handful of teleoperated demos

Garrett and Mandlekar et al. "SkillMimicGen: Automated Data Generation for Efficient Skill Learning and Deployment", CoRL 2024

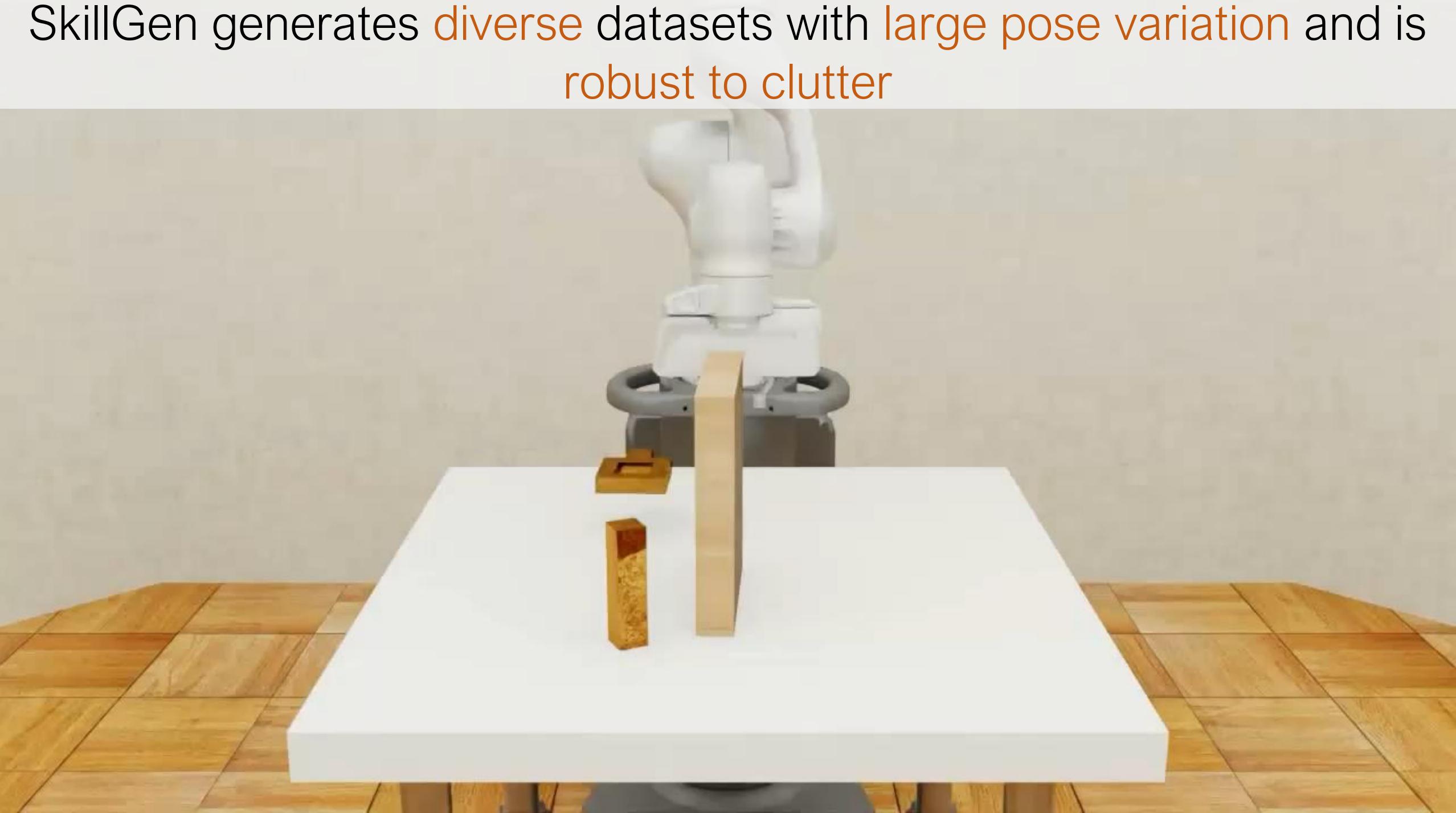
>1000 generated demos

SkillGen generates more demos through skill adaptation and motion planning



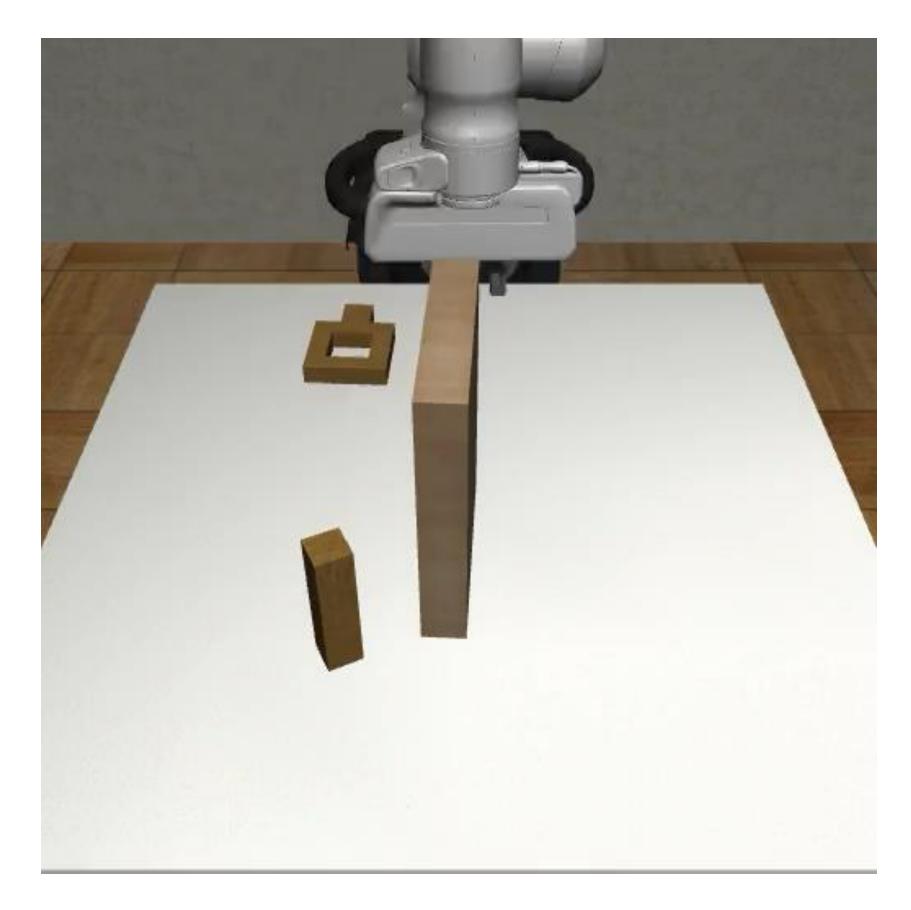
SkillGen automates dataset generation by interleaving motion planning and contact-rich demonstration adaptation

robust to clutter



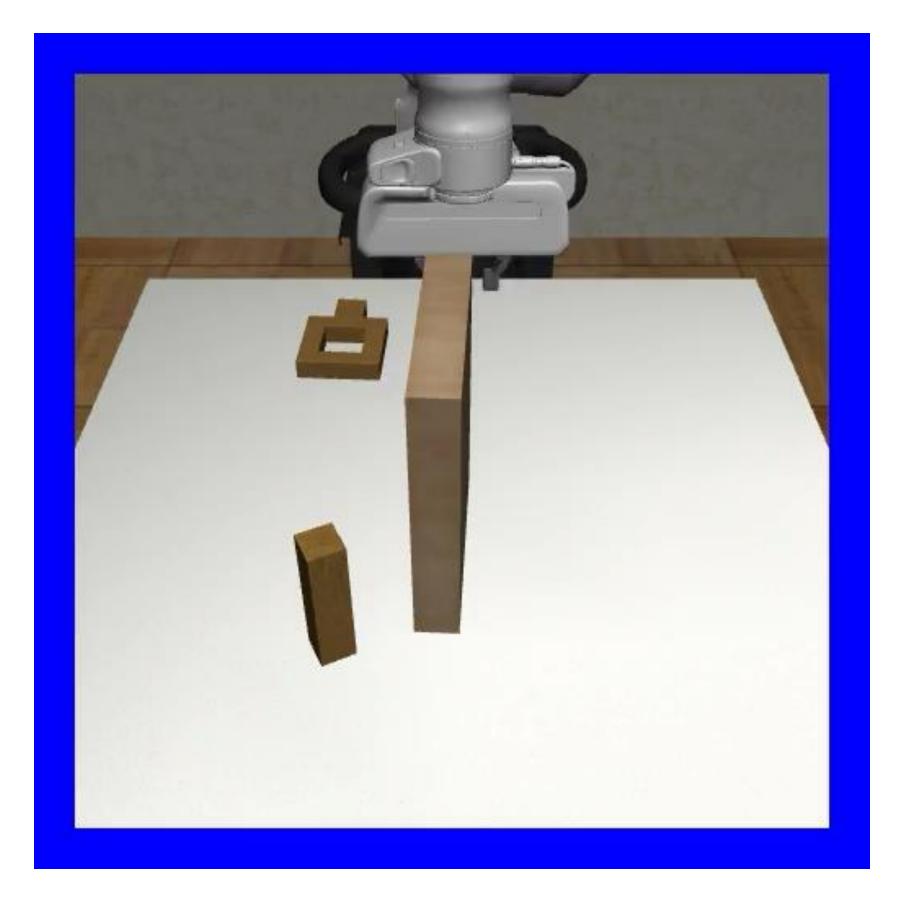
SkillGen greatly outperforms MimicGen

MimicGen (DGR: 14.5%)

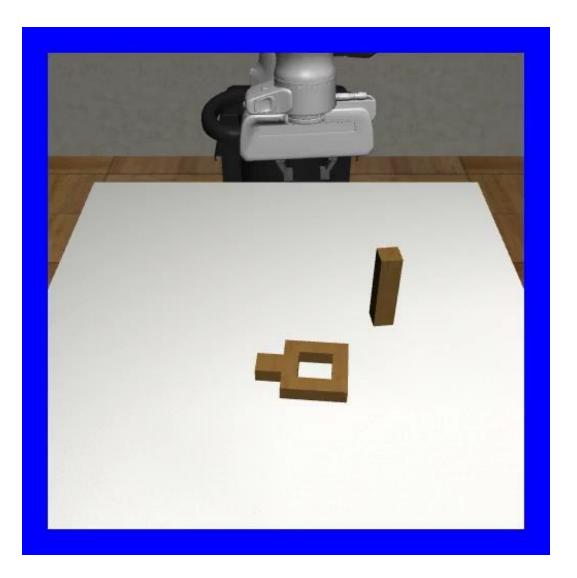


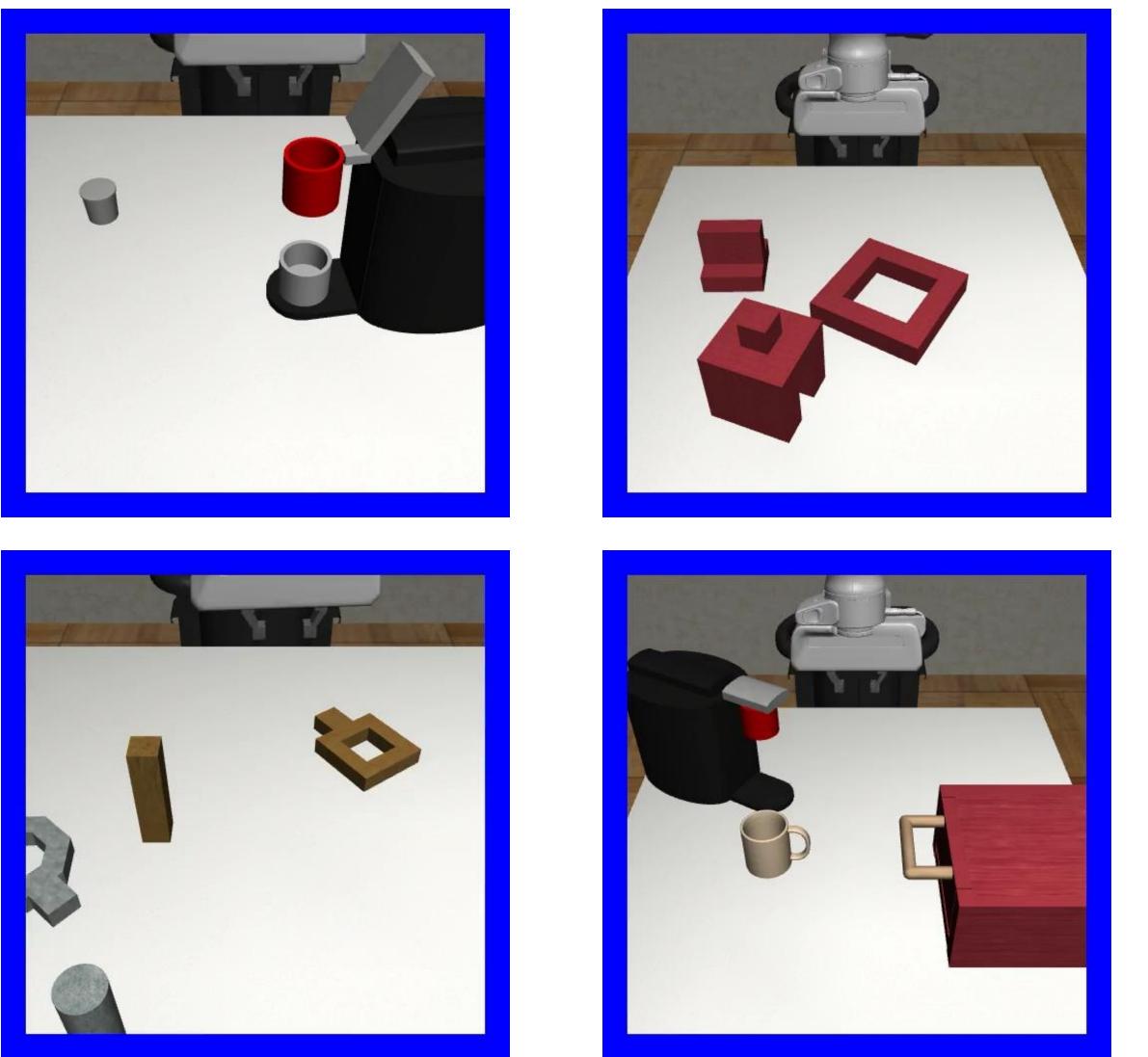
Garrett and Mandlekar et al. "SkillMimicGen: Automated Data Generation for Efficient Skill Learning and Deployment", CoRL 2024

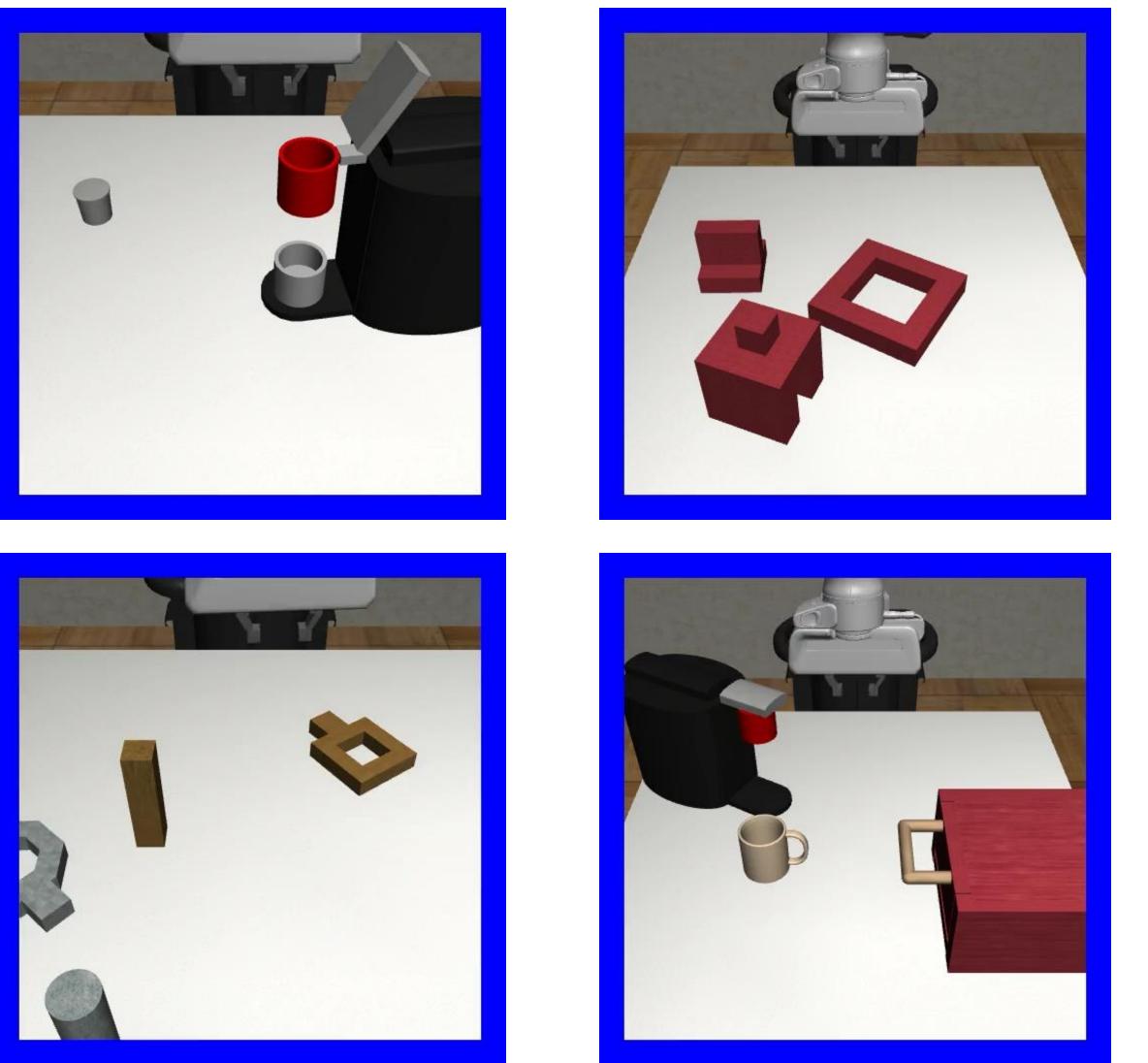
SkillGen (DGR: 72%)



SkillGen data trains high-performing behavior cloning agents

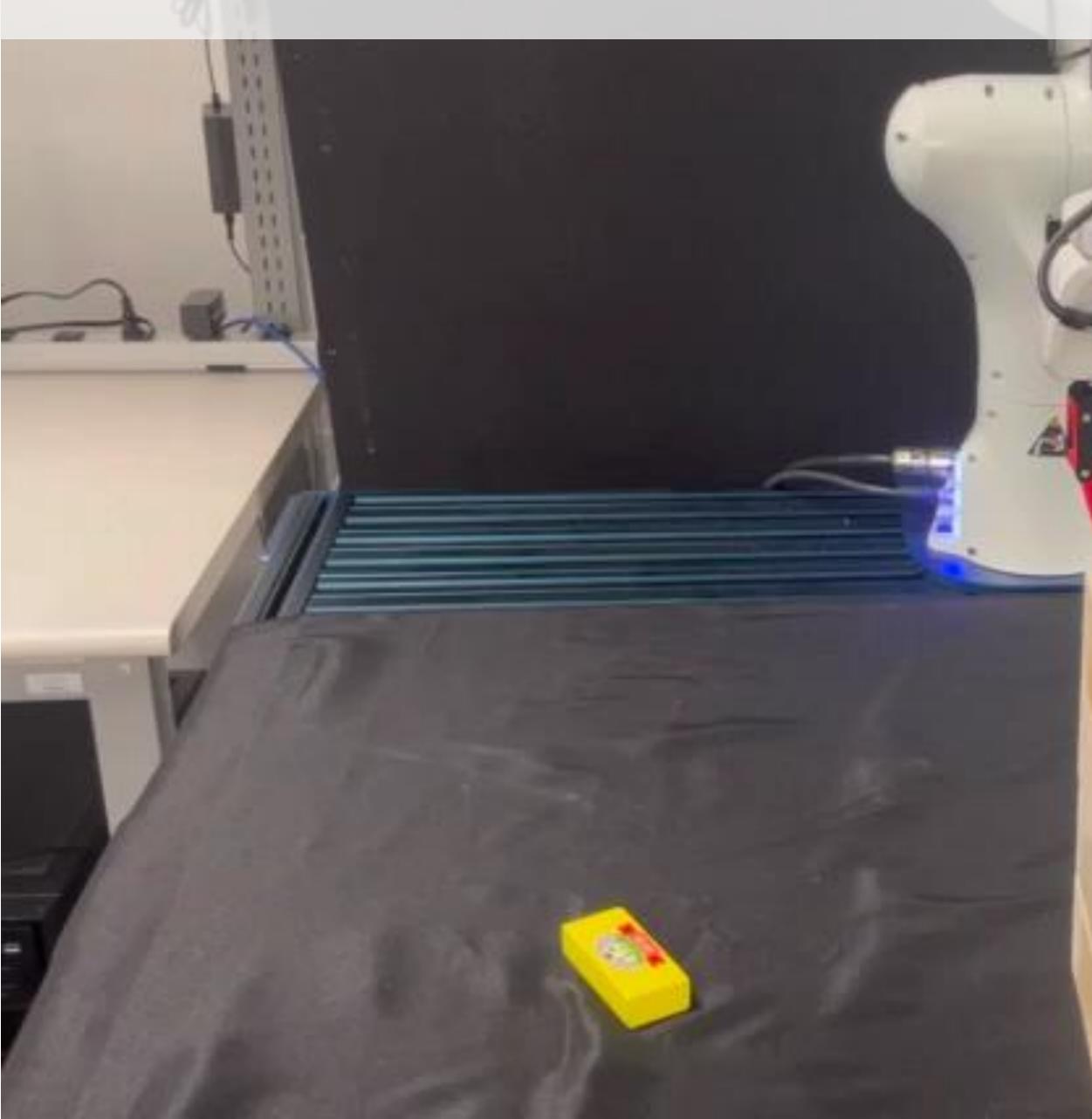






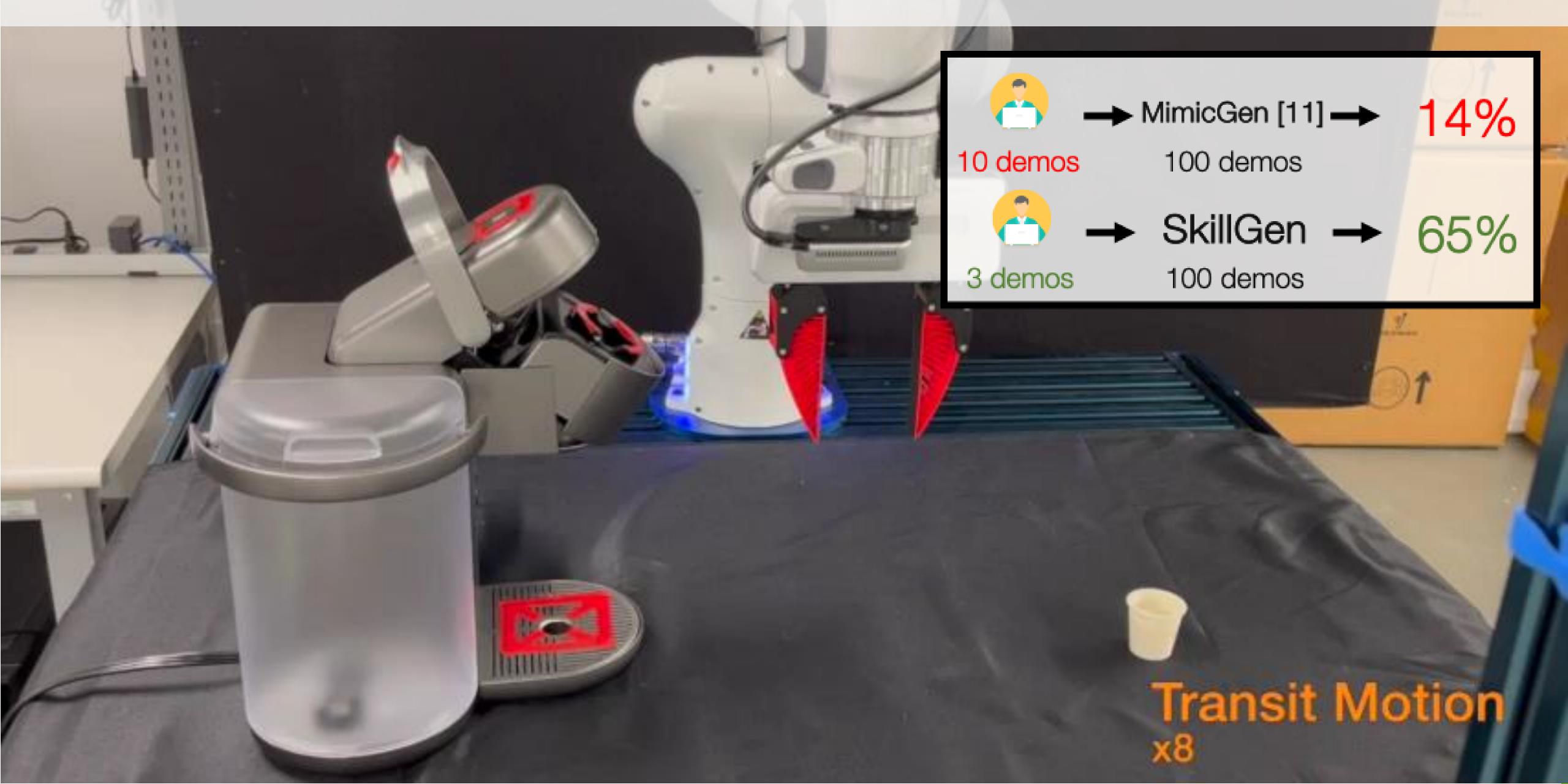
SkillGen agents are 46% more successful than the SOTA across tasks with broad initializations

SkillGen generation is robust to real-world cluttered environments

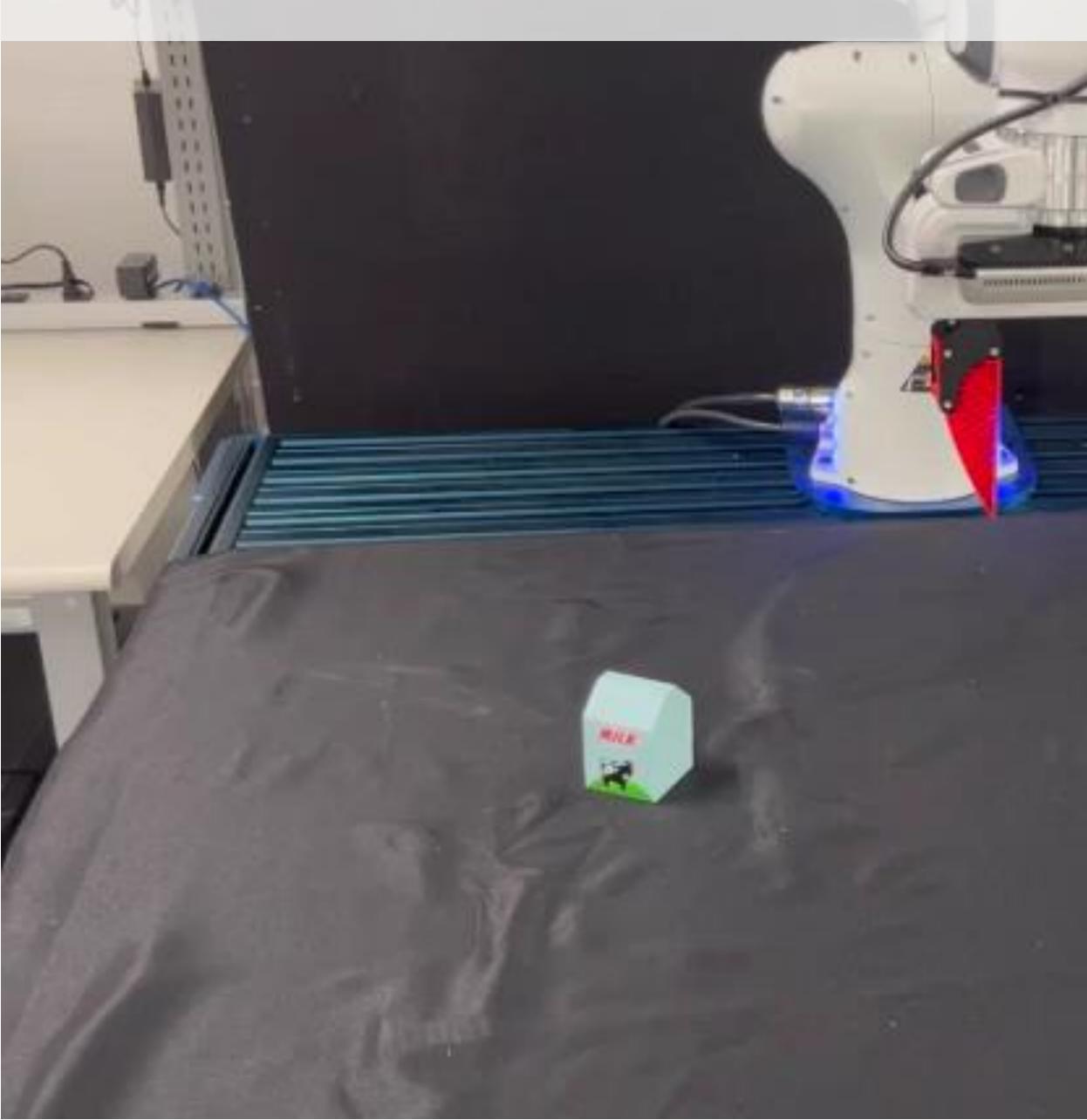


Transit Motion x8

SkillGen policies outperform MimicGen in real-world deployment

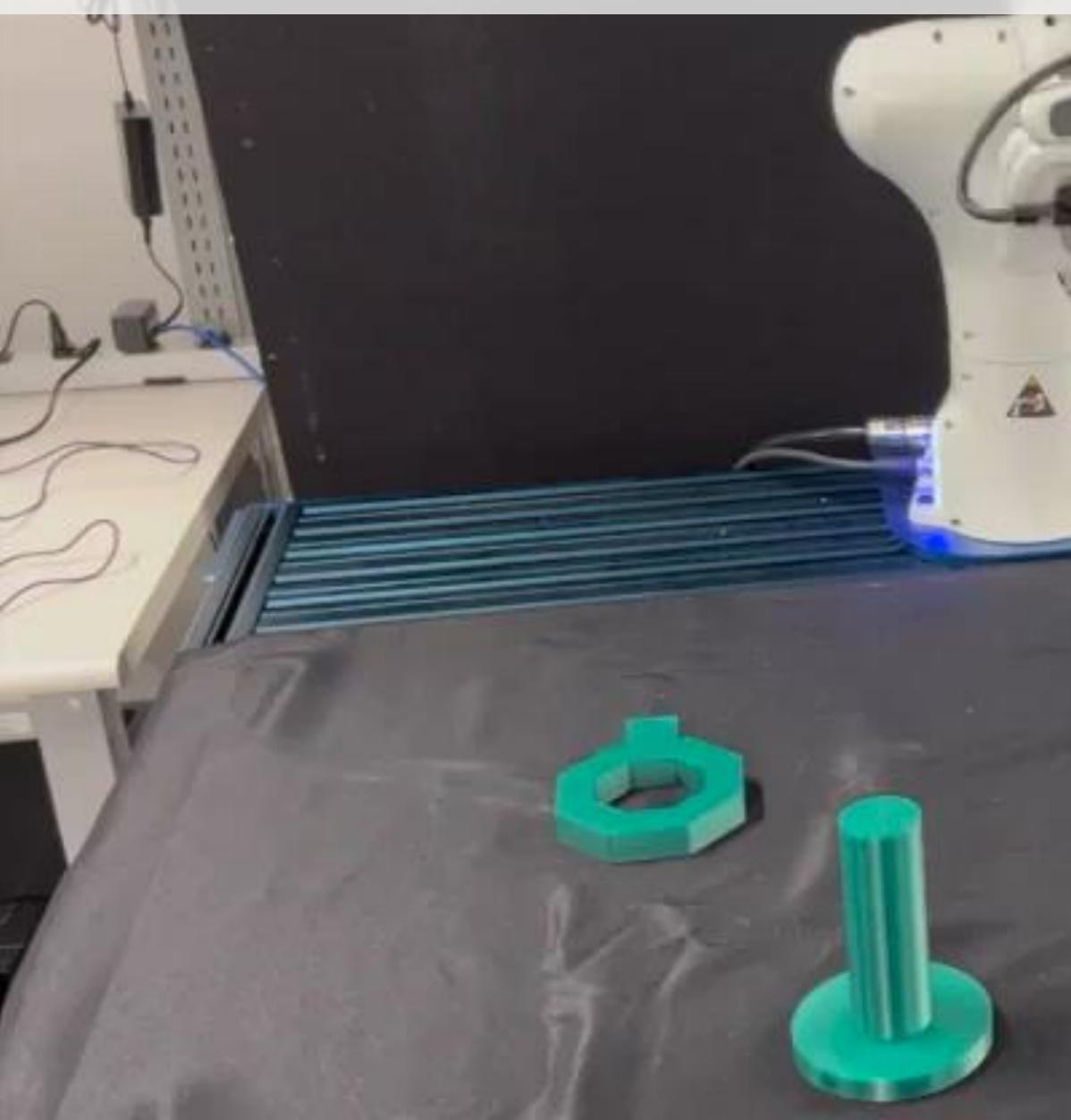


SkillGen agents are robust to large pose variation



Transit Motion x8

SkillGen enables zero-shot sim-to-real transfer using as little as 1 human demo provided in simulation



Transit Motion

Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMUS: Classical robot planners as data generators
- MimicGen: Data generation using a few human demonstrations

Data Generation Applications

- RoboCasa: Large-scale simulation framework for mobile manipulation with diverse scenes and tasks
- MimicLabs: A study of how large-scale dataset composition affects imitation learning

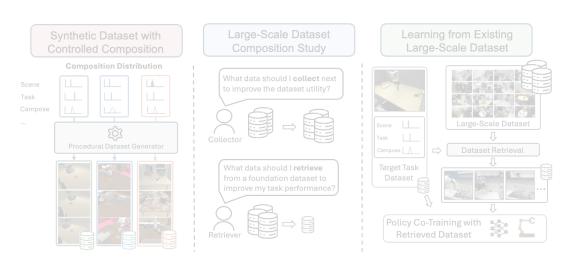
Building More Powerful Data Generators

- DexMimicGen: Data generation for bimanual and dexterous control
- SkillMimicGen: Combining planning and human demonstrations for data generation
- AHA: A data generator for learning from failures

OPTIMUS (CoRL 2023)

RoboCasa (RSS 2024)

MimicGen (CoRL 2023)



MimicLabs (ICLR 2025)

DexMimicGen (ICRA 2025)

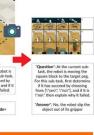
skill Mimic Gen

a skill-based data generation system for robot learning from demonstration

SkillMimicGen (CoRL 2024)

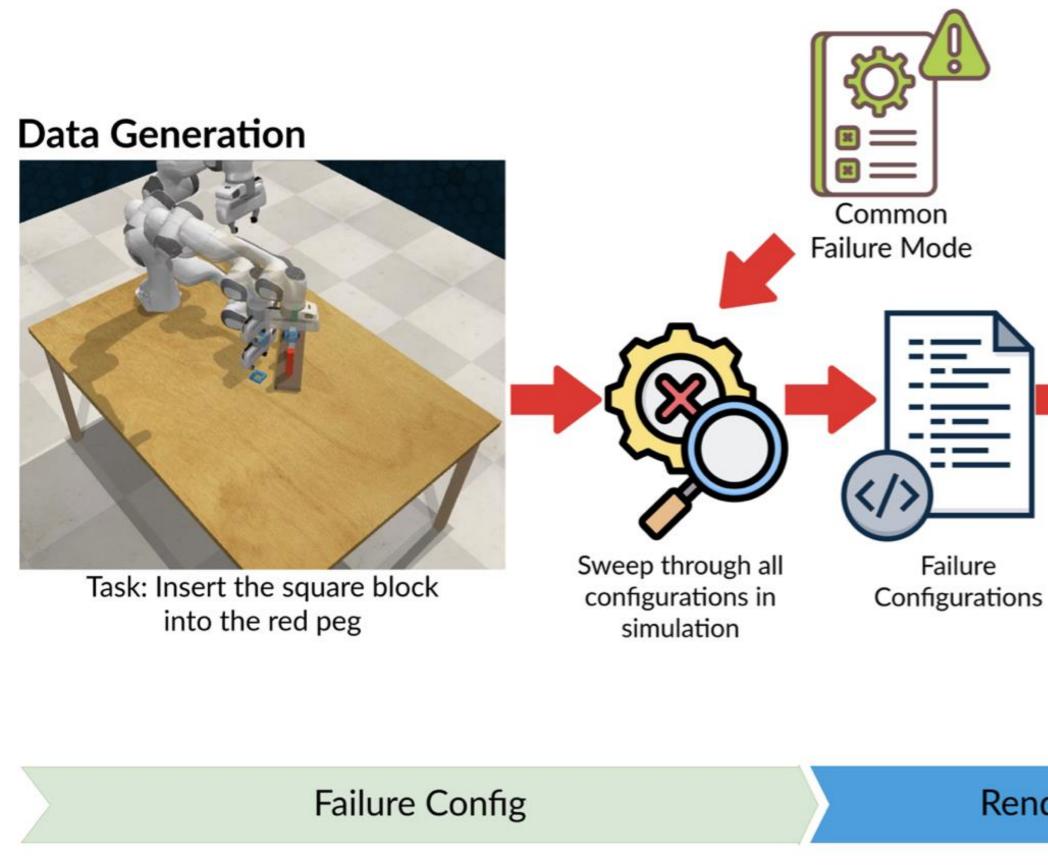


AHA (ICLR 2025)



AHA: Synthetic data generation to help robots understand failures

Introduce targeted failures to robot trajectories and auto-label failure explanation



Duan et al. "AHA: A Vision-Language-Model for Detecting and Reasoning over Failures in Robotic Manipulation", ICLR 2025

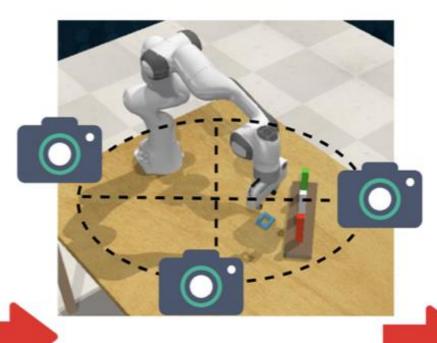
Failure: (Trans_x, WP2, 0.3)

Failure: (Slip, WP1)



Failure: (Wrong_object)

Rendering & Set failure

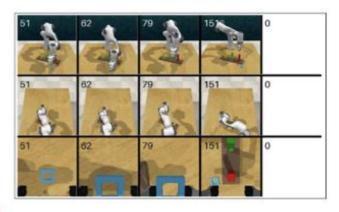


Question template

At the current sub-task, the robot is <Current sub-task>. For this sub-task. first determine if it has succeed by choosing from [\"yes\", \"no\"], and if it is \"no\" then explain why it failed.

Answer template

<Yes>/<No>, <Failure Mode>

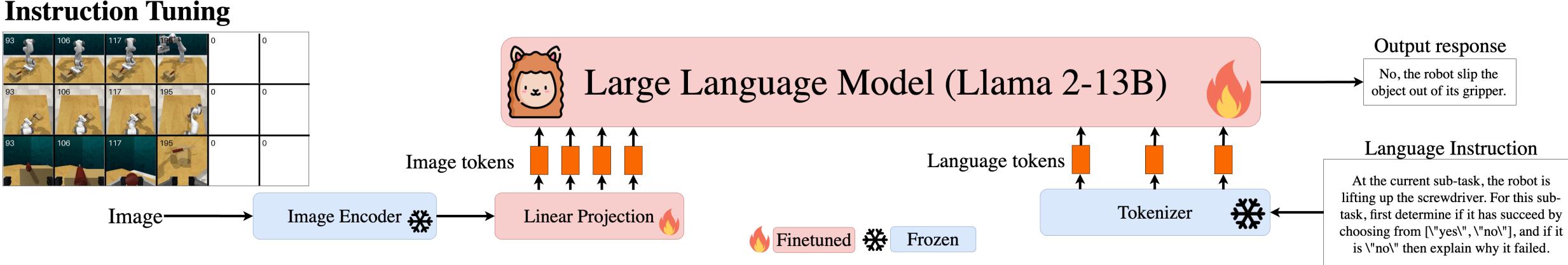


"Question": At the current subtask, the robot is moving the square block to the target peg. For this sub-task, first determine if it has succeed by choosing from [\"yes\", \"no\"], and if it is \"no\" then explain why it failed.

"Answer": No, the robot slip the object out of its gripper

Auto Labeling

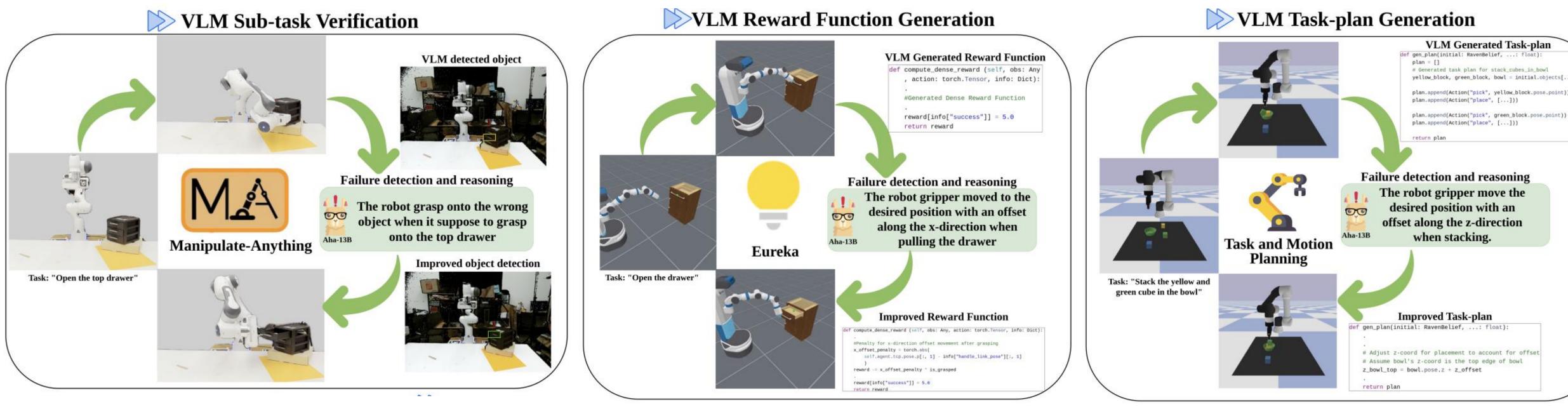
AHA: Synthetic data generation to help robots understand failures



Duan et al. "AHA: A Vision-Language-Model for Detecting and Reasoning over Failures in Robotic Manipulation", ICLR 2025

Finetune an existing VLM on generated robot failure data

AHA: Synthetic data generation to help robots understand failures



Duan et al. "AHA: A Vision-Language-Model for Detecting and Reasoning over Failures in Robotic Manipulation", ICLR 2025

Apply finetuned VLM to downstream robotic applications

Recap: Moving from data collection to data generation

Autonomous Data Generation Tools

- OPTIMU
- MimicGer demonst

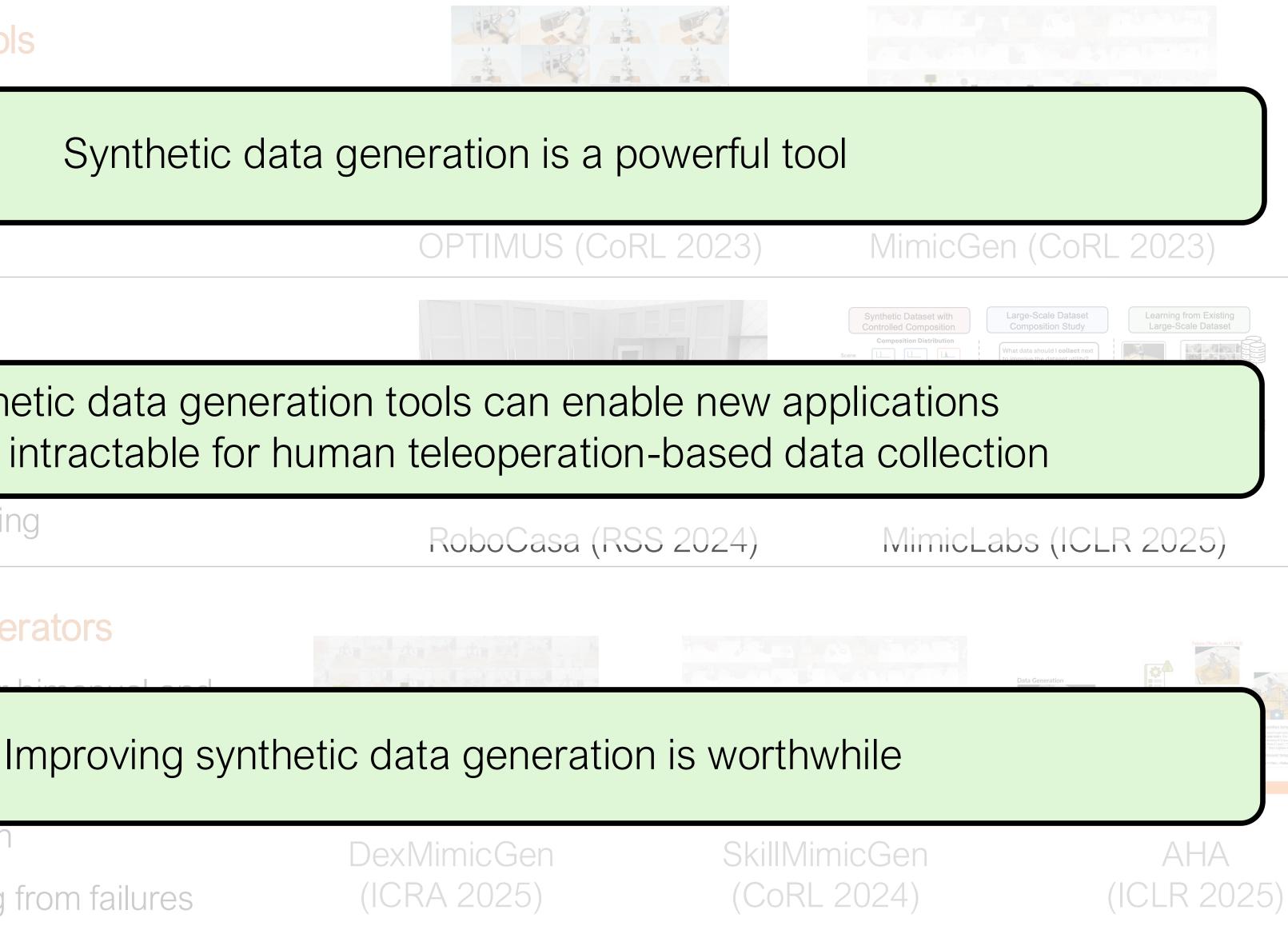
Data Generation Applications

•	RoboCas	Synthetic data generation
	manipula	Synthetic data genera
		that are intractable for hum

NimicLab composition affects imitation learning

Building More Powerful Data Generators

- DexMimi dextero
- SkillMimi demonstrations for data generation
- AHA: A data generator for learning from failures



Thank You!

Dieter Fox

Ankur Handa

Kevin Lin

Yashraj Narang

Caelan Garrett

Soroush Nasiriany Vaibhav Saxena

Zhenjia Xu

Weikang Wan

Danfei Xu

Yuke Zhu

Matthew Bronars

Nadun Arachchige

Jim Fan

Murtaza Dalal

Yuqi Xie

Bowen Wen

Iretiayo Akinola

Zhenyu Jiang

Jiafei Duan

Ranjay Krishna

NVIDIA AI Research Scientist amandlekar@nvidia.com

Moving from Data Collection to Data Generation: Addressing the Need for Data in Robotics

Ajay Mandlekar

