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Planning for Autonomous Robots
s

» Robot must select both high-level actions & low-level controls

. Appllcahon areas: semi-structured and human environments
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Task and Motion Planning (TAMP)

= Search in a factored, hybrid space

= Discrete and continuous
variables & actions

= Variables

= Continuous: robot configuration,
object poses, door joint positions,

= Discrete: is-on, is-in-hand, is-
holding-water, is-cooked, ...

= Actions: move, pick, place, push,
pull, pour, detect, cook, ...




Cooking and Serving the “Blockol




Preparing Coffee




Automated Fabrication

Plan sequence of 306 3D printing extrusions (actions)

Collision, kinematic, stability and stiffness constraints

[Huang, Garrett, & Mueller 201 8]




Problem Class

Discrete-time
Plans are finite sequences of controls
Deterministic (not an MDP for now)
Actions always produce the intended effect
Solutions are plans (instead of policies)
Observable (not a POMDP for now)
Access to the full world state
Hybrid

States & controls composed of mixed
discrete-continuous variables



- Task Planning



Task (Classical, Symbolic) Planning

Discrete problems with many variables

Often enormous (2N) but finite state-spaces

Problems typically described using an action language
PrOpOSiﬁOnﬂl LOgiC (STRIPS) [Fikes 197 1][Aeronautiques 1998]

Planning Domain Description Language (PDDL)

Develop domain-independent algorithms
Can apply to any problem expressible using PDDL

Exploit factoring and sparsity to develop algorithms



Classical Planning Representations
T

Blocksworld | |

domain
E

Initial State Goal State
o Facts: on(x,y), onTable(x), clear(x), holding(xz), armEmpty().

o Initial state: {onTable(E), clear(E), ..., onTable(C'), on(D,C),
clear(D), armEmpty()}.

o Goal: {on(E,C), on(C,A), on(B,D)}.
@ Actions: stack(x,y), unstack(x,y), putdown(x), pickup(x).

o stack(x.y)? pre : {holding(x), clear(y)}
add : {on(x,y), armEmpty() }

del : {hOldmg (33), Clear(y)}- [Figs from Hector Geffner]



First-Order Action Languages

Predicate: Boolean function on (?bl, ?b2)=True/False

Facts (literals): instantiated predicates on (D, C)=True

State: set of facts {On (A, B)=False, On(D, C)=True, ..}

Equivalently, Boolean state variables I_H

Closed-world assumption
Unspecified facts are false

Initial State

Facts: on(z,y), onTable(x), clear(x), holding(x), armEmpty().
E

Initial state: {onTable(FE), clear(E), ..., onTable(C), on(D,C),
clear(D), armEmpty()}. - I

Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(z,vy), unstack(x,y), putdown(x), pickup(z). Goal State




(Lifted) Action Schema

A tuple of free
A formula tests applicability
An formula modifies the state (as a delta)

Logical conjunctions encode factoring

(:action unstack

(:action stack (?bl, 7?b2)
(?bl, 7?b2) {ArmEmpty (),
{ On (?bl, ?2b2),
Holding (?bl), Clear (?b2) } Clear (?bl) }
{ArmEmptv (), {Holding (?bl),
On (?bl, ?b2), Clear (?b2),
Clear (?bl) -Clear (?bl),
-Holding (?bl), “ArmEmptyvy (),

-Clear (?b2) } -0On (?bl, ?b2)}



Planning Approaches

State-space search: [Bonet 2001] [Hoffman 2001] [Helmert 2006]
Progression (forward) or regression (backward)

Best-first heuristic search algorithms

Partial-order planning [penberthy 1992
Search directly over plans (plan-space)
Planning as Satisfiability [kautz 1999
Compile to fixed-horizon SAT instance
SAT is NP-Complete, Planning is PSPACE-Complete
Increase horizon if formula unsatisfiable

Large Language Models (LLMs)



LLMs for Task Planning

Large Language Models (LLMs) proficient at
commonsense redasoning

But they struggle at easy International Planning
Competition (IPC) benchmark problems

Domain Method Instances correct
GPT-4 GPT-3.5 I-GPT3.5 I-GPT3 GPT-3
54/600 41/600 6/600
Blocksworld One-shot  206/600 (34.3%) = 37/600 (6.1%) (9%) (6.8%) (1%)
(BW) Zero-shot  210/600 (34.6%) | 8/600 (1.3%)
COT 214/600 (35.6%)
. L 3/200
Logistics One-shot 28/200 (14%) 1/200 (0.5%)  6/200 (3%) (1.5%)
Domain 7P
Zero-shot 15/200 (7.5%) 1/200 (0.5%)
Mystery BW One-shot 26/600 (4.3%) 0/600 (0%) 4/600 14/600 0/600
. (0.6%) (2.3%) (0%)
(Deceptive)
Zero-shot 1/600 (0.16%) 0/600 (0%)
COT 54/600 (9%)

[Valmeekam 2023]




Forward Best-First Search

For a state s
Path cost: g(s)
Heuristic estimate: h(s)
Open list sorted by priority f(s)

Weighted A*: f(s) = g(s) + wh(s)
Uniform cost search: w=0 = f(s)=g(s)
A* search: w=1 = f(s) =g(s)
Greedy best-first search: w =00 = f(s) = h(s

How do we estimate h(s) 2

+ h(s)
)

No obvious metric (no metric-space embedding)



Predict the Minimum Plan Length

= Can stack / unstack anywhere on the ground

= Hint: is an even number

-

B

Initial State

E
C B

1 B |

Goal State




Predict the Minimum Plan Length

18
= Solution (length=8):

- unstack (D, C) = unstack (C, ground)
- stack (D, ground) - stack (C, A)
- unstack (B, ground) = unstack (E, ground)
- stack (B, D) = stack (E, C)

- :

B
gl HE

Initial State Goal State

4/5 Blocks
Move Once E




Predict the Minimum Plan Length
N

Initial State Goal State



Domain-Independent Heuristics

Estimating h(s) is nontrivial
Can we do it in an a domain-independent manner?

Solve a relaxed, approximate planning problem

Suggestions for how to do this?

Independently plan for each goal [Lipovetzky 2012]

Remove some action preconditions [Helmert 2006]

Remove negative (delete) effects [Bonet 2001] [Hoffman 2001]

Learn a value function on PDDL 'Shen 2020]



Delete-Relaxation Heuristics

Remove all negative (7) effects
Solving optimally is NP-Complete
Can greedily find a short plan in polynomial time

Basis for both admissible and greedier, non-

admissible heuristics .
(:action unstack

(:action stack (?bl, 7?b2)
(?bl, 7?b2) {ArmEmpty (),
{ On (?bl, ?b2),
Holding (?bl), Clear (?b2) } Clear (?bl) }
{ArmEmptv (), {Holding (?bl),
On (?bl, ?b2), Clear (?b2),
Clear (?bl) —-Ctear {2l
—Hoterrg{2b+ —AERERPEYO+

s L\ L L



Predict the Minimum

Delete-Relaxed Plan Length

= Can stack / unstack anywhere on the ground

= Hint: is no greater than 8

-

B

Initial State

E
C B

1 B |

Goal State




Predict the Minimum Delete-

Relaxed Plan Length
2

= Solution (length=8):

- unstack (D, C) = unstack (C, ground)
- stack (D, ground) - stack (C, A)
- unstack (B, ground) = unstack (E, ground)
- stack (B, D) = stack (E, C)

—

Still Need to .
Unstack + Stack | E . B C

4/5 Blocks

Initial State

E
C B

I B |

Goal State




Predict the Minimum Plan Length

24
= Can stack / unstack anywhere on the ground

= Hint: is an even number

i

C B E

1 B | c

Initial State Goal State




Predict the Minimum Plan Length

= Solution (length=12):

unstack (E, C)

stack (E, ground)
unstack (C, A)
stack (C, ground)

1

unstack (E, ground)
stack (E, C)
unstack (B, D)
stack (B, ground)

Need to Restack ._._

B and E

unstack (D, ground)
stack (D, A)

unstack (.

stack (B,

E

C

—

B

Initial State

%I

D)

ground)

Goal State




Predict the Minimum Delete-

Relaxed Plan Length
=T

= Can stack / unstack anywhere on the ground

= Hint: is no greater than 12

2l

C B E

1 B | c

Initial State Goal State




Predict the Minimum Delete-
Relaxed Plan Length

= Solution (length=5):
= unstack (E, C)
= unstack (C
= unstack (B, D)
= unstack (D, ground)

z

= stack (D, A)

Only Need to
Unstack + Stack

1 /5 Blocks

E

C

1 B |

Initial State

B

B

il |

Goal State




- Motion Planning



Review: Motion Planning

Plan a path for a robot from an initial configuration
to a goal configuration that avoids obstacles

Sequence of continuous configurations

Configurations often are high-dimensional
Example: 7 DOFs

High-level approaches:

Geometric decomposition

Sampling-based
Grid-based

Optimization-based




Sampling-Based Motion Planning

Discretize configuration space by sampling
Sampling be deterministic or random

Implicitly represent the collision-free configuration
space using an blackbox collision checker

Algorithms K
Probabilistic Roadmap (PRM) \
Rapidly-Exploring Random Tree (RRT)

Bidirectional RRT (BiRRT)
cuRobo PRM Global Planning s

[Kavraki 1994][Kuttner 2000][LaValle 2006][Sundaralingam 2022]  [Fig from Erion Plaku]



Probabilistic Roadmap (1/7)

[Fig from Erion Plaku]
Find a path from init to goal that avoids the obstacles



Probabilistic Roadmap (2/7)

[Fig from Erion Plaku]
Sample a set of configurations



Probabilistic Roadmap (3/7)

[Fig from Erion Plaku]
Remove configurations that collide with the obstacles



Probabilistic Roadmap (4/7)

[Fig from Erion Plaku]
Connect nearby configurations



Probabilistic Roadmap (5/7)

[Fig from Erion Plaku]
Prune connections that collide with the obstacles



Probabilistic Roadmap (6/7)

[Fig from Erion Plaku]
The resulting structure is a finite roadmap (graph)



Probabilistic Roadmap (7 /7)

[Fig from Erion Plaku]
Search for the shortest-path on the roadmap



Collision Checking is Expensive

Collision checking dominates runtime

Complex geometries & fine resolutions (for safety)
Many edges clearly do not lie on a low-cost path
Optimistically plan without collisions

Check collisions lazily by evaluating only on
candidate plans




Lazy PRM (1/10)

Talk

[Fig from Erion Plaku]
Construct a PRM ignoring collisions



Lazy PRM (2/10)

Talk

[Fig from Erion Plaku]
Search for the shortest-path on the roadmap



Lazy PRM (3/10)

A

Talk

[Fig from Erion Plaku]
Remove plan edges that collide with obstacles



Lazy PRM (4/10)

S K

A

Talk

[Fig from Erion Plaku]
Search for the new shortest-path on the roadmap



Lazy PRM (5/10)

=~
‘

Talk

[Fig from Erion Plaku]
Check the edges on the plan for collisions



Lazy PRM (6/10)

’(f"d

NIt

[Fig from Erion Plaku]
Check the edges on the plan for collisions

(with increased resolution)




Lazy PRM (7 /10)

NIt

[Fig from Erion Plaku]
Remove plan edges that collide with obstacles



Lazy PRM (8/10)

Talk

[Fig from Erion Plaku]
Search for the new shortest-path on the roadmap



Lazy PRM (9/10)

goal

"/

i

NIt

[Fig from Erion Plaku]
Check the edges on the plan for collisions



Lazy PRM (10/10)

oal
"/ J

L — X

NIt

[Fig from Erion Plaku]
Return the current path as a solution



Lazy Motion Planning

Defer collision checking until a path is found
Remove colliding edges path from the roadmap
Repeat this process with a new path

Terminate when a collision-fee path is found

77 checks 23 checks

=\

o mrmm—

Eager (during search) Lazy
[Bohlin 2000][Dellin 201 6]



Trajectory Optimization

= Frame motion planning as a non-convex constrained
optimization problem & converge to local minima
minimize f(x)
subject to
g:(x) <0, 1=1,2,...,Nneq
hi(x) =0, 1=1,2,...,N¢q
= Collision constraints
enforced via signed
distance (sd)

CURObO DA

Local 2
TrajOpt

sd > 0 sd < 0 [Ratliff 2009][Schulman 201 3][Sundaralingam 2022]




- Task and Motion Planning (TAMP




Shakey the Robot (1969)

os2
* First autonomous mobile manipulator (via pushing)
= Visibility graph, A* search, and STRIPS!

= Decoupled task and motion planning
o o . [Fikes 197 1]
= Task planning then motion planning Nilsson 1984

type(robot robot) type(ol object)
name( robot shakey) npame(ol boxl)

at(robot 4.1 7.2) at(el 3.1 3.2)

theta(robot 90.1) inroom(ol rl)
shape(ol wedge)

radius(ol 3.1)

GOTHRU({(d,r1,r2)
Precondition INROOM(ROBOT i} A CONNECTS(d,rl,r2)

Delete List INROOM(ROBOT,$}

Add List  INROOM(ROBOT,r2)




Obstacle Blocks Shakey’s Path

« What if a movable block prevented Shakey from
safely moving into the adjacent room?

= Shakey could push it out of the way or go around it

 What’s more efficiente How to push it? ...




Decoupled vs Integrated TAMP

Decoupled: discrete (task) planning then continuous
(motion) planning

Requires a strong downward refinement assumption

Every correct discrete plan can be refined into @
correct continuous plan (from hierarchal planning)

Integrated: simultaneous discrete & continuous planning

r )
Discrete Planning /\
\_ * J ([ ) ( )
- 1 Discrete Planning| [Continuous Planning
o W, \_ W,

Continuous Planning

k J ~

Decoupled Integrated




Geometric Constraints Affect Plan

_ 55
= Inherits challenges of both motion & classical planning

= High-dimensional, continuous state-spaces

= State-space exponential in number of variables

| E— -
— J

= Long horizons owma. 7 '

= Continuous constraints
limit high-level strategies

= Kinematics, reachability,
joint limits, collisions
grasp, visibility, stability,
stiffness, torque limits, ...
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Block in Left Cabinet & Doors Closed

= Robot forced to regrasp the object

= Change from a top grasp to a
side grasp

= Non-monotonic problem

o™
(A = Plan must undo goals to solve

)

= = Open then close the cabinet door

| = Physical constraints can be subtlel




Hybrid Planning Spectrum

Purely Discrete

Hybrid

Purely Continuous

s
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Task Planning

™

.

IN

f

r

Prediscretized

Planning
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f

.

Motion Planning

~

.
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" Multi-Modal
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N,

Motion Planning
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- Prediscretized Planning



Prediscretized Continuous Variables

= Assume a finite set of object placements, object
grasps, and (sometimes) robot configurations are given

= Directly perform discrete task planning
= Still need to evaluate reachability
- Eagerly in bﬂ'I'Ch [Lozano-Pérez 2014][Garrett 2017][Ferrer-Mestres 2017]

= Eagerly during search [pornhege 2009]

m LﬂZily [Erdem 201 1][Dantam 201 8][Lo 201 8]

s
§ -

’




Prepartitioned Workspace

Non-convexity handled by
partitioning the workspace

Continuous control parameters

Tackle convex dynamics using
cone programming

In contrast, TAMP is often:
High-dimensional
Non-convex

3D collision constraints

Less dynamically sophisticated

7

[Deits 2015][Shoukry 201 6]
[Fernandez-Gonzalez 201 8]




- Multi-Modal Motion Planning



Multi-Modal Motion Planning

Collision-free configuration space
changes when objects are
manipulated

Use a sequence of motion planning
problems each defined by a mode

Mode: a set of N
motion constraints | Walk
° o config config
Gripper is empty p orine. WX
Reach ) ( Reach
Oblecll- pose (\\ Left Home \\nght/>
act L cenfig L ject
remC“nS COnSfd nlll Sobnfacf, Any time Anytimel | Sobﬂ'tact,
in VIBW/ \ / n view
/ /
[Alami 1994][Siméon 2004][Hauser 201 1] (\ T:ith ) | ek >

[Barry 201 3][Vega-Brown 2016] N4 \Right/

\—/ \—/



Low-dimensional Intersections

64
» Need samples that connect adjacent modes

= |ntersection of two modes is often low-dimensional
= Special-purpose samplers are needed
« Example: transition from gripper empty to holding

= Configurations at the intersection obtained using
inverse kinematics (1K)

{
\c

[Hauser 201 1]




Sampling-Based Multi-Modal Planning

1. Sample from the set @— @2— | g:ji:@
of modes [ Clﬁ ﬁ _‘\:(\
a =
2. Sample at the low- | & ) \g g
dimensional @‘” S § ) @
) ) A5 H &nr ;
intersection of 5 i) ﬁ )
Adjacent modes Intersections

adjacent modes

2N IS - ey

\ X S S g ov\.%‘

3. Sample a roadmap “zf,\iﬂ N
within each mode il N ok [ &=

4. Discrete search on N L3

i- W 1S [ Aol Y]la .

the gwl’rl modal # 2] B «;% Sk
roaamap Individual mode Combined

[Hauser 201 1] roadmaps Roadmap



Optimization-Based Multi-Modal

Motion Planning
oo

= Discrete search over sequences of mode switches
= Sequences have varying length

= Each sequence induces a non-convex constrained
optimization problem

= Sequences can be pruned using lower bounds  [Lagriffou
® ® ° 20]4]
obtained by relaxing some constraints

min [ franl@(®)) dt+ fym(o(T)

LyAd1:KS1: K

s.t. 2(0) = zo, hgoa(@(T)) =0, ggoa(z(T)) <0,
Vi € [0,T]: hpan(Z(1), Sk(t)) = 0,
Ipath (T (L), sx(1)) < 0
Vk € {1,.,K}: hgwien(Z(lx),ar) =0,

[Toussaint 201 5] Yswitch (Z(Lr); ar) <0,
[Toussaint 201 8] Sk € succ(Sk.1,ar) -




Hybrid Planning Spectrum Revisited

Discrete

Hybrid

Continuous
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TAMP Example

Integrated Task and Motion Planning. Caelan Reed Garrett,
Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie
Pack Kaelbling, Tomds Lozano-Pérez. Annual Review of Control,
Robotics, and Autonomous Systems, 2021.




TAMP Example: Cook Obiject A

so = {atRob=qo, at [A] =po,holding=None, cooked[A] =False}

Goal conditions: cooked[A]=True

Initial state Goal state(s)

holding
at [A] ' Planning '

cooked[A]
S0

S %



Plan Skeleton & Action Parameters

Plan skeleton (structure)

moveF pick[A] moveH [A] place[A] cook[A]

atRob
holding
at [A] @
cooked [A] @

S0 S1 S92 S3 S4
State variable values



Plan Constraints & Parameter Values

Example plan: © = [moveF(qo, 71, 1), pick[A1(g1, Po, g2),
moveH [A] (qla 73, QS); place [A] (q37 P4, 92)7 cook [A] (pl)]

oveF pick[A] moveH [A] place[A] cook[A]
CFreeW CFreeW @
Motion Motion
wroo@o) /) @—@) / (@——(1)——®
(CFreeA Kin[A] CFreew[A] Kin[A]
W/ W/
(BtablelA] Stable [A] OnStove[A]
o) Py ({02 S
Grasp[A] Grasp[A]]
cookea 4125
S0 S1 S92 S3 S4 S5

Constraints



Constraint Network (Factor Graph)

Compress plan skeleton into a constraint network

Undirected bipartite graph of variables & constraints

Can address with optimization cmd/or samplmg

; at A

Mot ion KlIl [A]] [Mot ion [Kin [A]]

&
WA S

(CFreeA | [CFreeW| [Grasp[A] [CFreeW [A] [CFreeW||Stable[A] [OnStove [A]




Joint Optimization

Constraint network is a mathematical program
Hard to solve: non-convex, constrained, mixed integer

Often reduce to a sequence of simpler (unconstrained,
quadratic) programs

First- (gradient) vs second-order (Hessian) methods

[Motion] {Kin [A]] [Motion} Kin[A]
o) (Po; @ (1) (92; é (73) (P4
[CFreeA] [CFreeW] [Grasp [A]] [CFreew [A]] [CFreeW] [Stable [A]] [OnStove [A:ﬂ

minimize 37, faover(T1[t], 1 [t — 1]) 4+ 30— Saoventn1 (g1, 73[t], 3[t — 1])

q91,71,92,73,493:P4

subject to  goraspra1(91) = 0, gstaviera1 (P4) = 0, honstovera] (pa) < 0
JKin[A] (Q1a Po, 92) = 0, gkinral (:QB,ZM, 91) =0

hMotion(Tl :f_, T1 [f, — ]]) S 0, h»Motion('T:S [t], T4 [f, — ]]) S () for t - T
h’CFreeW(Tl t) /\_/\ Oa h’CFreeA (pOa 71 [t]) S 0 for ¢ € T
h‘CFreeW(TB f) S 07 h'CFreew [A] (91, T3 [t‘) S () for ¢t € T




Sampling Network

Satisfy constraint network compositionally
Directed Acyclic Graph (DAG) computation graph

Conditional samplers consume inputs and

o Motion| [Kin[A] [Motion]  [Kin[A]
generc:’re completing outputs O
@) @ @170 (@) @) @
[DnStove [A] Kln [A] (CFreeA| [CFreew| [Grasp[A] [CFreew [A] [CFreew| [Stable[A] [0nStove[A]
‘\\ FreeW[A]
Grasp|A Kin|A Motio
[ plA] @ LA @ otion CFreeW
CFreew
Po Motlon

CFreeA]




Taxonomy of TAMP Approaches

Pre-discretized

Sampling

Optimization

Satisfaction first

Ferrer-Mestres et al. (84, 85 )b

Siméon et al. (22)?
Hauser et al. (13, 14, 29)?
Krontiris & Bekris (87, 88)*

Akbari & Rosell (89)°
Vega-Brown & Roy (90)?

Interleaved

Dornhege et al. (62, 63, 91)°
Gaschler et al. (92-94)°
Colledanchise et al. (95)P

Gravot et al. (96, 97)P

Stilman et al. (23, 98, 99)*

Plaku & Hager (100)?

Kaelbling & Lozano-Pérez (101, 102)"
Barry et al. (30, 103, 104)?

Garrett et al. (70, 71)P

Thomason & Knepper (105)°

Kim et al. (106, 107)®

Kingston et al. (108)?

Fernandez-Gonzalez
et al. (109)P

Sequencing first

Nilsson (3)P

Erdem et al. (74, 75)P

Lagriffoul et al. (65-67)"

Pandey et al. (110, 111)P
Lozano-Pérez & Kaelbling (112)
Dantam et al. (77-79)

Lo etal. (113)P

Wolfe et al. (114)
Srivastava et al. (60, 76)P

Garrett et al. (55, 73)°

Toussaint et al. (61, 68,
69)P
Shoukry et al. (81-83)P
Hadfield-Menell
etal. (115)

*Approaches for MMMP.
b Approaches for TAMP.

Garrett et al., 2021. “Integrated Task and Motion Planning”,
Annual Review of Control, Robotics, and Autonomous Systems.




My Approach: PDDLStream

No general-purpose, flexible framework for
planning in a variety of TAMP domains

Extends PDDL to incorporate sampling procedures

Can model domains with infinitely-many actions

Develop domain-independent algorithms that treat
the samplers as blackbox inputs

Algorithms solve a sequence of finite PDDL problems
Leverage existing classical planners as subroutines

Algorithms are particularly fast when downward
refinement holds while remaining complete



- PDDLStream Language

PDDLStream: Integrating Symbolic Planners and Blackbox
Samplers via Optimistic Adaptive Planning. Caelan Reed
Garrett, Tomds Lozano-Pérez, Leslie Pack Kaelbling. International
Conference on Automated Planning and Scheduling (ICAPS), 2020.




2D Pick-and-Place Domain

Robot and block poses are continuous [x y] pairs
Goal: block A within the red region

Block B obstructs the placement of A

l Movable Blocks
Robot Vacuum / \

Gripper

grey

/

Placement Regions



2D Pick-and-Place Solution

One (of infinitely many) possible solutions

[move (...), pilcC.

(B, ...

move (..) , pilcC.

< (A, ...

), move(..), p.

Lace (B, ...)

), move(..), p.

Lace (A4, ...)

]



2D Pick-and-Place Initial & Goal

Not all values are discrete, some are continuous

Static (constant) initial facts - satisfied constraints

{Block (A), Block(B), Region(red),
I = Region(grey), Conf (I-7.5, 51),
Pose (A, [0. 0.]1), Pose(B, [7.5 0.1)}

Fluent (changing) initial facts - state variables

S __{AtConf ([-7.5 5.1), HandEmpty (),
0 — AtPose (A, [10. 0.]), AtPose (B, 7.5 0.])}

Goal logical formula - set of goal states

S, —exists (?p) {Contained (A, ?p,red) ,AtPose (A, ?p) }



Pick-and-Place Actions

Typical PDDL action description except that
arguments are high-dimensional & continuous!

To use, must satisfy static facts (constraints)

Motion|?gl, ?t, [?gZf Kin (?b, [?p [ ?2gl [?g]
N\ d/ vV *d
(:action move N SEX:) N 14
:parameters (?2gl, ?t, ?2g2) move
:precondition {Motion (?gl, ?t, q2), AtConf (?gl) }
:effect {AtConf (?g2), =AtConf (?gl)))

(:action pick 14pidk
:parameters (?b, ?p, ?g, ?g)
:precondition {Kin(?b, ?p, ?g, ?qg), AtConf (?q),
AtPose (?b, ?p), HandEmptvy () }
:effect {AtGrasp(?b, ?g), =AtPose (?b, ?p), =HandEmpty () })




Search in Discretized State-Space

Suppose an oracle gave use the following values and facts:
{Motion ([-7.5 5.],7,10. 2.5]), Motion([-7.5 5.],72, [-5. 5.])
F' = yotion([-5. 5.1,7, [0. 2.5]), Kin(a,[0. 0.1, 0. 2.5, [0. 2.51), ..}

AtConf ([0. 2.5])
AtPose (A, [0 O.])
AtPose (B, [7.5 0.1])
a & Amove HandEmpty () a/// - Apick

move ([-7.5 5.1, 14, [0. 2.5])7 \pickm, [0. 0.1, [0. -2.5], [0. 2.5])

([-7.5 5.171)
AtConf ([0 2 o)
—— AtPose (A, [0. 0.])
50 — AtPose (B, [7.5 0.1]) AtGrasp(A; [0. —2.5)) welp> € @ @

HandEmpt;() AtPose(B,[7 5 0.1)

move ([-7.5 5.], T, [-5. SN move ([-5. 5.], 13, [0. 2.5])

//
a/’ E Amove AtCont 5.1]) a E Amove
At Pose

([-9.
(A, |
AtPose (B, |
HandEmpty (

0. 0.]) 'I
7.5 0.]) eee
)




No a Priori Discretization

Values given at start:

1 initial configuration: Conf ([=7.5 5.1)
Pose (A, [0. 0.])

Pose (B, [7.5 0.])

2 initial poses:

Planner needs to find:

1 pose for A within red: Contain (A, ?p, red)

1 collision-free pose for B: crree(a, ?p, B, ?p2)

| grasp for A and B: Grasp (A, ?g) ,Grasp (B, ?g)
4 grasping configurations: Xin (?b, ?p, 2?g, 29)

4 robot trajectories: Motion (?gl, ?t, 2g2)



What Samplers Do We Need?

Low-dimensional placement stability constraint (Contain)
e.g. 1D line embedded in 2D placement space

Directly sample values that satisfy the constraint

May need arbitrarily many samples

Gradually enumerate an infinite sequence

Placement
Sampler

Pose {pl,pg, }




Intersection of Constraints
T

= Kinematic constraint (Kin) involves poses, grasps,
and configurations

= Conditional samplers - function from input values
to a sampler that generates output values

Pose D

Config {ql, qo, }

Grasp ¢



Composing Conditional Samplers
T

= Outputs of one conditional
sampler are the inputs to
another sampler

Pose D .
= Sampling network

= Directed acyclic graph (DAG)

of conditional samplers
Config q

Gras
P9 Trajectory T

Config q’



Stream: Specification for a Sampler

What do inputs & outputs represent?

Communicate semantics using predicates (constraints)

Declarative stream specification:
Domain facts - static facts declaring legal inputs

e.g. only configurations can be motion planner inputs

Certified facts - static facts that all outputs are
asserted to satisfy with their corresponding inputs

e.g. poses sampled from a region are within it



Sampling Placements in a Region

(:stream sample-region

:1inputs (?b, 7?r)

:domain {Block (?b), Region(?r)}

:outputs (?p)

:certified {Pose(?b, ?p), Contain(?b, ?p, ?r)})

def sample_region(b, r):

x_min, x_max = REGIONSI[r]

w = BLOCKS[b].width

while True:
X = random.uniform(x_min + w/2,

X_max — w/2)

p = np.array([x, 0.])
yield (p,)

/ » Pose(b, p1), Pose(b, p2), ...

Block(b)

Region(r)



Sampling IK Solutions

* Inverse kinematics (IK) to produce robot grasping
configurations

= Trivial in 2D, non-trivial in general (e.g. 7-DOF arm)

(:stream solve-1k

:inputs (?b, ?p, ?g)

:domain {Pose(?b, ?p), Grasp(?b, ?9)}
:outputs (?q)

:certified {Conf(?qg), Kin(?b, ?p, ?g, ?29d)})

Pose(b, p)
t ‘/ » Conf(q1), Conf(qg2)

Grasp(b, g)




Invoking a Motion Planner

ST | —
= “Sample” multi-waypoint robot trajectories

= Use off-the-shelf motion planner (e.g. RRT)

(:stream sample-motion

:inputs (?gl, ?2g2)

:domain {Conf (?gl), Conf (?2gZ2) }

:outputs (?t)

:certified {Traj(?t), Motion(?gl, ?t, ?g2)})

a




- PDDLStream Algorithms

PDDLStream: Integrating Symbolic Planners and Blackbox
Samplers via Optimistic Adaptive Planning. Caelan Reed
Garrett, Tomds Lozano-Pérez, Leslie Pack Kaelbling. International
Conference on Automated Planning and Scheduling (ICAPS), 2020.




Two PDDLStream Algorithms

PDDLStream algorithms decide which streams to use
Reduce planning to a sequence of PDDL problems

1. Search a finite PDDL problem for plan

2. Modify the PDDL problem (depending on the plan)

! 1" Feedback [ -

[Garrett 2018]
[Garrett 2020a]

L J_New values | :

Implement search using off-the-shelf domain-
independent PDDL planners (e.g. FastDownward)

Greedy best-first heuristic search

Exploit factoring in PDDL for heuristics (e.g. hrr)



Incremental Algorithm

93
* Incrementally grow the set of values and facts

= Repeat:

1. Instantiate and sample streams to generate new
values and prove new facts

2. Search for a plan using the current values

3. Return when a plan is found

No plan

Sample

Discrete

Start =
NY=Yelgels

Streams

_New values

Plan found

[Garrett 2018]
[Garrett 2020qa]

Donel




Incremental: lteration 1 - Sampling

Iteration 1 - evaluated 14 streams
Sampled:
4 new block poses:‘ A
2 new robot configurations: v
2 new trajectories:

V V

A NS AN




Incremental: lteration 1 - Search

s f
= Pass current discretization to FastDownward

= |f infeasible, the current set of samples is insufficient

Discrete
| ‘ I
S ch Infeasiblel




Incremental: lteration 2 - Sampling

lteration 2 - evaluated 54 streams
Sampled:
4 new block poses:‘ A
4 new robot configurations: v
10 new trajectories: =l

AW/

AN _NE A AN




Incremental: lteration 2 - Search

» Pass current discretization to FastDownward

= |f infeasible, the current set of samples is insufficient

vm SES s still Infeasible!
NY=Yeldels



Incremental Example: lterations 3-4

Iteration 3 - 118 queried streams - infeasible
Iteration 4 - 182 queried streams - solved!

Solution:
1.move ([-7.5 5.1, v, [7.5 2.5])
2.pick (B, 17.5 0.1, [0. -2.5], [7.5 2.5])
3.move ([7 5 2.5], T, [10.97 2.5])
4.place (B, [10.97 0.], [0. -2.5], [10.97 2.5])
5.move ([1@ 97 2.5]1, T3, [0. 2.5])
6.pick (A, [0. 0.1, [0. -2.5]1, [0. 2.5])
7 .move ([0 2.5], t., [7.65 2.5])
8 (A

.place [7.65 0.], [0. -2.5], [7.65 2.5])

Planner generated all but the underlined values

Drawback - many unnecessary samples produced



Optimistic Stream Evaluation

Many TAMP streams are computationally expensive
Inverse kinematics, collision checking, motion planning
Only query streams after they are identified as useful

Plan with optimistic hypothetical outputs

Inductively create unique optimistic placeholder
values for each stream output (denoted by prefix #)

l.s-region (A, red)-#p0
2.s-ik (A, [0. 0.], [0. -2.5])-#g0,
3.s-1ik (A, #pO, [0. -2.5])-#92,

4 .s-motion (A 0 2)#t0, .. [Garrett 2018]
ton (A, 799, #92)-rt, [Garrett 2020a]




« Lazily plan using optimistic values before real values
Start

Focused Algorithm

= Repeat:

1.

Construct optimistic
stfream outpufts

2. Search with real &

optimistic values

3. Retrace and

evaluate streams

4. Replace optimistic

with real if they exist

. Return if all succeed

Optimistic
Streams

Optimistic wEvaluated
values e Streams
wmw Optimistic ©
Discrete slan Sample
Search Streams
+New values_.
Real plan
Donel

[Garrett 2018 ][Garrett 2020a]




Focused: lteration 1

Iteration 1 - optimistically evaluated 46 streams

Created:
» »
4 optimistic block poses: /%
6 optimistic robot configurations: *
o4
36 optimistic trajectories: ------.- >
AN Y AN




Focused: lteration 1 - Sampling

Optimistic plan:

[move ([-5. 5.1, #t0, #g0), pick(A, [0. 0.],[0. -2.5], #g0),
move (#g0, #t2, #qgl), place (A, #p0, [0. -2.5], #g1) ]

s-region: (A, red)->(#p0)

N

t-cfree:(A, #p0, B, [7.5 0. |)->() s-1k:(A, #p0, [-0. -2.5])->(#ql)

\

Queried streams: s-motion:(#q0, #ql)->(#t2)
1.s-region (A, red)-[8.21 0.]
2.s-ik(a, le. eo.], lo. -2.5])-l0. 2.5]
3.t-cfree(A, [8.21 0.], B, [7.5 0.])—-False

Temporarily remove these streams from the next search




Focused: lteration 2

Iteration 2 - optimistically evaluated 42 streams

Removed optimistic pose and configuration

Added sampled pose and configuration Av
Added 1 optimistic robot configurations:*

\'

Added 14 optimistic trajectories: ------- >

:J-d""——'h'h

AY;
‘ :“:) :
Se VMMM

\ Y ¢ *"

‘e Mo
\ \

priad RN
/;" \\
s
:l’;‘-fV'— o A--?m--
q

LR AR
1 1
4 Y




Focused: lteration 2 - Sampling

New optimistic plan:
[move ([-5. 5.],#t4,#g2), pick(B,[7.5 0.],[0. -2.5], #92),
move (#g2, #t9, #g3), place (B, #pl, [0. -2.5], #g3),
move (#g3, #t6, [0. 2.51), pick(@a,[0. 0.]1,[0. -2.5],10. 2.51),
move ([@0. 2.51, #t8, #94), place (A, [8.21 0.1, [0. -2.5],#94) ]

- .- .y,
’4 N
X 4
’ .

iy

AN
A\ 2

Different stream plan might succeed!

s-region:(B, grey)->(#pl)

/ ' -

\
t-cfree:(B, #pl, A, [0.0.])->() t-ctree:(A, [8.21 0. |, B, #p1)->() s-ik:(B, [7.50. ], [-0. -2.5])->(#q3)
Y

s-motion:([-5. 3.], #q3)->(#t4)




Optimistic Planning with Optimization

Instead of sampling, /conf(#ql)
directly optimize the  #ql — dist(#q0, #q1)
constraint network > cont(#q0)

motion(#q0, #t2, #ql)
dist([-5. 6.], #q0)

Kin(A, #q0, [0. 0.], [-0. -2.5])

“motion([-5. 6.], #0, #q0)

Non-convex constrained #q0 —
mathematical program q
solver as a stream

. #2
Additional PDDLStream X traj(#2)
algorithms... kin(A, #ql, #p0, [-0. -2.5])
[move ([-5. 6.], #t0, #g0), #10 —traj(#t0)
pick (A, [0. 0.],[0. -2.5], #g0),
move (#g0, #t2, #qgl), #p) —— /pose(A )
place (A, #p0, [0. -2.5],#gl) ] \cfree(A #p0, B, [7.50. ])

contain(A, #p0, red)



Scaling Experiments

Inremen’rc:l 120+
Focused ~25s

Incremental ~20s
Focused ~10s

Incremental 120+

Focused ~20s [Garrett 2018]




GPU-Parallelized TAMP

Differentiable GPU-Parallelized Task and Motion Planning.
William Shen, Caelan Garrett, Nishanth Kumar, Ankit Goyal,
Tucker Hermans, Leslie Pack Kaelbling, Tomds Lozano-Pérez, Fabio
Ramos. Robotics: Science and Systems (RSS), 2025.







~’ . Plags;illfton —TT - constraints + plan costs ----.
¢ ' Qx‘

— arameters :

¢ P :

cUTAMP: GPU-Parallelized TAMP

Like Focused but combine sampling & optimization
Sample ~1000 candidates and optimize in batch

Leverage GPU acceleration during both phases

Custom CUDA kernels and PyTorch auto differentiation

Generalizes cuRobo motion planning to TAMP

Batch of

¢ Particles '
. o o
LN Particle e :. Evaluate adients — Gradient-Based x
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cuUTAMP Experimental Results

cuTAMP’s combines sampling &
optimization to outperform
each individually

Larger GPU batch sizes
increase success rates and
decrease runtime

Runtime on Tetris 1 (Easy): Lower is Better Success Rate on Tetris 5 (Hard): Higher is Better
100
5 3. . Optimization | Optimi_zation
W Sampling B Sampling
— CUTAMP
e cuTAMP X ™ | M cuTAMP Tuned
£ 1.86 %
= o
é 1.39 % 50
% 1.1 S
@ 0.53 P25
01 01 016 016
0.0 0
1 256 1024 512 1024 4096

Batch Size Batch Size



15.0

12.5

10.0

7.5

Total Time (s)

5.0

2.5

0.0

cuTAMP Scales Sublinearly™

*For up to ~1000 Particles (GPU memory limit)

cuTAMP Runtime for 1000 Optimization Steps (Tetris 3 Blocks)

1 2 - 3 16

32 64 128
Batch Size N,

256

512

1024 2048 4096



Minimize y-position
of the blocks

5x Speed




TAMP Under Uncertainty

Online Replanning in Belief Space for Partially Observable Task
and Motion Problems. Caelan Reed Garrett, Chris Paxton, Tomds
Lozano-Pérez, Leslie Pack Kaelbling, Dieter Fox. IEEE International

Conference on Robotics and Automation (ICRA), 2020.

Long-Horizon Manipulation of Unknown Objects via Task and
Motion Planning with Estimated Affordances. Aidan Curtis®, Xiaolin
Fang™, Leslie Pack Kaelbling, Tomds Lozano-Pérez, Caelan Reed
Garrett. IEEE International Conference on Robotics and Automation

(ICRA), 2022.




MDP: Stochastic Action Effects

114
= Approximate as cost-sensitive deterministic problem

» Policy evaluated online via replanning
7 ™ |
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POMDP: Partially Observable State

sy
« Update a belief (probability distribution) over states

= Plan in belief space using inference streams & actions

= Observation actions reduce state variable uncertainty




Probabilistic & Geometric Constraints




Unknown Obijects via Learned Streams




Plan using Estimated Affordances

= Learned segmentation, grasp prediction, collision checking

= Streams call perceptual modules using object point clouds

Segmentation

Points Shape Grasps

Ref: 0194

Cat: Unknown
Color: #3B2
i Pos:(0.1,0.8, 0)

i Properties

PDDLStream

0

Points Shape Grasps

Ref: 0401

Cat: Unknown

Color: #FB2
Pas: (0.1,0.9, 0)

E Properties

¥ 9%

Points Shape  Grasps

Ref: 0290

Cat: Box
Color: #2F1

. Pos:(0.2,0.9, 0)
. Properties

Execution




Single System Generalizes Across
Novel Objects, Initial States, & Goals




TAMP + Imitation Learning

Human-In-The-Loop Task and Motion Planning for Imitation

Learning. Ajoy Mandlekar®, Caelan Garrett*, Danfei Xu, Dieter
Fox. Conference on Robot Learning (CoRL), 2023.

Imitating Task and Motion Planning with Visuomotor
Transformers. Murtaza Dalal, Ajoy Mandlekar®, Caelan
Garrett*, Ankur Handa, Ruslan Salakhutdinov, Dieter Fox.
Conference on Robot Learning (CoRL), 2023.




Planning with Contact-Rich Actions

(9

. 4
5 Broad: 66% Success Rate after 100 Demps

o



Actions Learned from Human Demos
S22

= Assume human teleoperated
skill demonstrations

= Train image => control policy
using behavior cloning (5/22)

= Stochastic actions within TAMP

In(pod, machine)A
{ Close (1id) ] Task Goal

|
- a\
Task and

Motion Planning
\ J

Task Plan [ a1]

Motor Skills ‘

] Motion plan / motor primitives
0 Policies trained from human data




Alternating TAMP & Learned Control

= TAMP plans when to deploy which learned policies

= Can also use planning for data generation (5/22)

TAMP




TAMP as a Learning Inductive Bias




Takeaways

Task and Motion Planning (TAMP): hybrid planning
where continuous constraints affect discrete decisions

Sampling & optimization for continuous satisfaction

PDDLStream: planning language that supports
sampling procedures as blackbox streams

Domain-independent algorithms

Efficient lazy/optimistic planning (focused algorithm)

Ongoing work: GPU-accelerated, probabilistic &
partially observable, learning-assisted TAMP



Questions?




- References



Task Planning

[Fikes 1971] Fikes, R.E. and Nilsson, N.J., 1971. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4), pp.189-208.

[Nilsson 1984] Nilsson, N.J., 1984. Shakey the robot. SRI INTERNATIONAL MENLO PARK CA.

[Penberthy 1992] Penberthy, J.S. and Weld, D.S., 1992. UCPOP: A Sound, Complete, Partial
Order Planner for ADL. Kr, 92, pp.103-114,

[Aeronautiques 1998] Aeronautiques, C., Howe, A., Knoblock, C., McDermott, I.D., Ram, A,,
Veloso, M., Weld, D., SRI, D.W., Barrett, A., Christianson, D. and Friedman, M., 1998. PDDL |
The Planning Domain Definition Language.

[Kautz 1999] Kautz, H. and Selman, B., 1999, June. Unifying SAT-based and graph-based
planning. In [JCAI (Vol. 99, pp. 318-325).

[Bonet 2001] Bonet, B. and Geffner, H., 2001. Planning as heuristic search. Artificial
Intelligence, 129(1-2), pp.5-33.

[Hoffman 2001] Hoffmann, J. and Nebel, B., 2001. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Research, 14, pp.253-302.

[Ghallab 2004] Ghallab, M., Nau, D. and Traverso, P., 2004. Automated Planning: theory and
practice. Elsevier.

[Thiébaux 2005] Thiébaux, S., Hoffmann, J. and Nebel, B., 2005. In defense of PDDL axioms.
Artificial Intelligence, 168(1-2), pp.38-69.

[Helmert 2006] Helmert, M., 2006. The fast downward planning system. Journal of Artificial
Intelligence Research, 26, pp.1921-246.




Motion Planning

[Lozano-Pérez 1979] Lozano-Pérez, T. and Wesley, M.A., 1979. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10), pp.560-570.

[Kavraki 1994] Kavraki, L., Svestka, P. and Overmars, M.H., 1994. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces (Vol. 1994).

[Bohlin 2000] Bohlin, R. and Kavraki, L.E., 2000, April. Path planning using lazy PRM. In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. O0CH37065) (Vol. 1, pp. 521-528). IEEE.

[Kuffner 2000] Kuffner Jr, J.J. and LaValle, S.M., 2000, April. RRT-connect: An efficient approach to
single-query path planning. In ICRA (Vol. 2).

[Kuffner 2001] LaValle, S.M. and Kuffner Jr, J.J., 2001. Randomized kinodynamic planning. The
International Journal of Robotics Research, 20(5), pp.378-400.

[LaValle 2006] LaValle, S.M., 2006. Planning algorithms. Cambridge university press.

[Ratliff 2009] Ratliff, N., Zucker, M., Bagnell, J.A. and Srinivasaq, S., 2009. CHOMP: Gradient
optimization techniques for efficient motion planning.

[Schulman 2013] Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H. and Abbeel, P., 2013, June.
Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization. In
Robotics: science and systems (Vol. 9, No. 1, pp. 1-10).

[Dellin 2016] Dellin, C.M. and Srinivasa, S.S., 2016, March. A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first search over paths with edge selectors.
In Twenty-Sixth International Conference on Automated Planning and Scheduling.




Prediscretized Planning

[Dornhege 2009] Dornhege, C., Eyerich, P., Keller, T., Trig, S., Brenner, M. and Nebel, B., 2009, October. Semantic
attachments for domain-independent planning systems. In Nineteenth International Conference on Automated
Planning and Scheduling.

[Erdem 2011] Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V. and Uras, T., 2011, May. Combining high-level
causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In 2011 IEEE
International Conference on Robotics and Automation (pp. 4575-4581). IEEE.

[Lagriffoul 2014] Lagriffoul, F,, Dimitrov, D., Bidot, J., Saffiotti, A. and Karlsson, L., 2014. Efficiently combining task
and motion planning using geometric constraints. The International Journal of Robotics Research, 33(14),

pp.1726-1747.

[Lozano-Pérez 2014] Lozano-Pérez, T. and Kaelbling, L.P.,, 2014, September. A constraint-based method for
solving sequential manipulation planning problems. In 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems (pp. 3684-3691). IEEE.

[Garrett 2017] Garrett, C.R., Lozano-Perez, T. and Kaelbling, L.P., 2017. FFRob: Leveraging symbolic planning for
efficient task and motion planning. The International Journal of Robotics Research, 37(1), pp.104-136.

[Ferrer-Mestres 2017] Ferrer-Mestres, J., Frances, G. and Geffner, H., 2017. Combined task and motion planning
as classical Al planning. arXiv preprint arXiv:1706.06927.

[Dantam 2018] Dantam, N.T., Kingston, Z.K., Chaudhuri, S. and Kavraki, L.E., 2018. An incremental constraint-
based framework for task and motion planning. The International Journal of Robotics Research, 37(10),

pp.1134-1151.

[Lo 2018] Lo, S.Y., Zhang, S. and Stone, P.,, 2018, July. PETLON: Planning Efficiently for Task-Level-Optimal
Navigation. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp.

220-228). International Foundation for Autonomous Agents and Multiagent Systems.

[Huang 2018] Huang, Y., Garrett, C.R. and Mueller, C.T., 2018. Automated sequence and motion planning for
robotic spatial extrusion of 3D trusses. Construction Robotics, 2(1-4), pp.15-39.



Numeric Planning

[Fox 2003] Fox, M. and Long, D., 2003. PDDL2. 1: An extension to PDDL for expressing
temporal planning domains. Journal of artificial intelligence research, 20, pp.61-124.

[Hoffmann 2003] Hoffmann, J., 2003. The Metric-FF Planning System:
Translating ™" Ignoring Delete Lists'to Numeric State Variables. Journal of artificial

intelligence research, 20, pp.291-341.

[Eyerich 2009] Eyerich, P., Mattmiller, R. and Réger, G., 2009, October. Using the
context-enhanced additive heuristic for temporal and numeric planning. In Nineteenth
International Conference on Automated Planning and Scheduling.

[Deits 2015] Deits, R. and Tedrake, R., 2015, May. Efficient mixed-integer planning for
UAVs in cluttered environments. In 2015 IEEE international conference on robotics and

automation (ICRA) (pp. 42-49). IEEE.

[Shoukry 2016] Shoukry, Y., Nuzzo, P.,, Sahq, I., Sangiovanni-Vincentelli, A.L., Seshiq,
S.A., Pappas, G.J. and Tabuadaq, P.,, 2016, December. Scalable lazy SMT-based motion
planning. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp.
6683-6688). IEEE.

[Fernandez-Gonzalez 2018] Fernandez-Gonzalez, E., Williams, B. and Karpas, E,,
2018. ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization.
Journal of Artificial Intelligence Research, 62, pp.579-664.



Multi-Modal Motion Planning

[Alami 1994] Alami, R., Laumond, J.P. and Siméon, T., 1994. Two manipulation planning

algorithms. In WAFR Proceedings of the workshop on Algorithmic foundations of robotics (pp.
109-125). AK Peters, Ltd. Natick, MA, USA.

[Siméon 2004] Siméon, T., Laumond, J.P., Cortés, J. and Sahbani, A., 2004. Manipulation planning
with probabilistic roadmaps. The International Journal of Robotics Research, 23(7-8), pp.729-746.

[Hauser 2011] Hauser, K. and Ng-Thow-Hing, V., 201 1. Randomized multi-modal motion planning
for a humanoid robot manipulation task. The International Journal of Robotics Research, 30(6),

pPp.678-698.

[Barry 2013] Barry, J., Kaelbling, L.P. and Lozano-Pérez, T., 2013, May. A hierarchical approach
to manipulation with diverse actions. In 2013 IEEE International Conference on Robotics and
Automation (pp. 1799-1806). IEEE.

[Toussaint 2015] Toussaint, M., 2015, June. Logic-geometric programming: An optimization-
based approach to combined task and motion planning. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

[Vega-Brown 2016] Vega-Brown, W. and Roy, N., 2016, December. Asymptotically optimal
planning under piecewise-analytic constraints. In Workshop on the Algorithmic Foundations of
Robotics.

[Toussaint 2018] Toussaint, M., Allen, K., Smith, K.A. and Tenenbaum, J.B., 2018. Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning. In Robotics: Science and
Systems.



Task and Motion Planning

[Gravot 2005] Gravot, F, Cambon, S. and Alami, R., 2005. aSyMov: a planner that deals
with intricate symbolic and geometric problems. In Robotics Research. The Eleventh

International Symposium (pp. 100-110). Springer, Berlin, Heidelberg.

[Plaku 2010] Plakuy, E. and Hager, G.D., 2010, May. Sampling-based motion and symbolic
action planning with geometric and differential constraints. In 2010 IEEE International
Conference on Robotics and Automation (pp. 5002-5008). IEEE.

[Kaelbling 2011] Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task and motion
planning in the now. 2011 IEEE International Conference on Robotics and Automation,

Shanghai, 2011, pp. 1470-1477.

[De Silva 2013] De Silvq, L., Pandey, A.K., Gharbi, M. and Alami, R., 201 3. Towards
combining HTN planning and geometric task planning. arXiv preprint arXiv:1307.1482.

[Srivastava 2014] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. and Abbeel, P.,
2014, May. Combined task and motion planning through an extensible planner-independent
interface layer. In 2014 IEEE international conference on robotics and automation (ICRA) (pp.

639-646). |EEE.

[Garrett 2018a] Garrett, C.R., Lozano-Pérez, T. and Kaelbling, L.P.,, 2018. Sampling-based
methods for factored task and motion planning. The International Journal of Robotics
Research, 37(13-14), pp.1796-1825.

[Garrett 2018b] Garrett, C.R., Lozano-Pérez, T. and Kaelbling, L.P., 2018. STRIPStream:
Integrating Symbolic Planners and Blackbox Samplers. arXiv preprint arXiv:1802.08705.



Probabilistic & Partially-Observable

[Kaelbling 1998] Kaelbling, L.P., Littman, M.L. and Cassandra, A.R., 1998. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1-2),
Pp.99-134.

[Kocsis 2006] Kocsis, L. and Szepesvari, C., 2006, September. Bandit based monte-
carlo planning. In European conference on machine learning (pp. 282-293). Springer,
Berlin, Heidelberg.

[Yoon 2007] Yoon, S.W., Fern, A. and Givan, R., 2007, September. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS (Vol. 7, pp. 352-359).

[Silver 2010] Silver, D. and Veness, J., 2010. Monte-Carlo planning in large POMDPs. In
Advances in neural information processing systems (pp. 2164-2172).

[Platt 2010] Platt Jr, R., Tedrake, R., Kaelbling, L. and Lozano-Perez, T., 2010. Belief
space planning assuming maximum likelihood observations.

[Kaelbling 2013] Kaelbling, L.P. and Lozano-Pérez, T., 201 3. Integrated task and
motion planning in belief space. The International Journal of Robotics Research,

32(9-10), pp.1194-1227.

[Hadfield-Menell 2015] Hadfield-Menell, D., Groshev, E., Chitnis, R. and Abbeel, P,
2015, September. Modular task and motion planning in belief space. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp. 4991-4998). IEEE.



