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Robot Manipulation and Generative AI
§ We’re seeing astonishing progress in capabilities of Gen-AI models to generate and 

reason about language, images, tasks, and videos. Main contributors to this progress are:

§ Availability of vast amounts of suitable training data (trillions of tokens for LLMs) such that open-
world reasoning becomes in-distribution

§ Very large models that can digest this data (100s of billions to trillions parameters)

§Mainly behavior cloning for training (w/ careful data curation, RLHF for fine-tuning) 

§ Gen-AI doesn’t readily provide broadly applicable manipulation skills for next gen robots

§ Moravec's paradox: ”the hard problems are easy, and the easy problems are hard.” [Pinker-94]

§ Data: we don’t have the vast amounts of demonstration data needed to train a RobotGPT model

§ Hypothesis: If we can generate very large data sets demonstrating robot tasks, then 
Gen-AI models with BC can greatly elevate robot manipulation capabilities

§ Question: Where do we get sufficient high-quality data that covers the vast space of 
manipulation tasks? What model structures can we train on such data?
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Training Data for Behavior Cloning

Ego4D, R3M, MVP, Voltron
[Meta AI, Stanford, Berkeley]

Videos
Youtube, Howto Videos

Open-X Embodiment / DROID [21/50 institutions]

ArmFarm, RT1, RT2 [Google, Deepmind]

Real World Simulation

• Provides strong, robust priors for visual data
• Large gap between human and robot hands
• Not accurate enough to provide fine-grained 

guidance 

• Excellent for pre-training / behavior cloning
• Very significant effort, limited variability

• Low-cost, scalable, reproducible
• Sim2Real gap
• Asset generation

RoboTurk, MimicGen [NVIDIA, Stanford]

ManiSkill, Orbit, Isaac Sim [UCSD, NVIDIA]
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Large Language Models

Robot Skills

End-to-End 
Vision-Language-

Action Model

How Should Robotics Leverage LLMs / VLMs / VLAs?

text, images, robot state

controlcontrol

call skill

Off-the-shelf 
Vision-Language Model

(w/ prompting, ICL, …)

text, images

RT2, OpenVLA, …ProgPrompt, SayCan, …

Low-level Policies

control

Vision-Language-
Action Model

text, images, robot state

Interface 
(embedding, points, bboxes, traj, 

…)

HAMSTER
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from actions import grab_and_putin <obj><obj>, 
switchon <obj>, switchoff <obj>, open <obj>, 
...

def throw_away_banana():

objects = ['banana', 'garbage can',...]
# 1: put banana in garbage can

grab_and_putin('banana', 'garbagecan’)
…

ProgPrompt: Leveraging LLMs for Reasoning
Generating Grounded Plans for Manipulation

# 1: put banana on plate

grab_and_puton('banana', 'plate')

# 2: put strawberry on plate

grab_and_puton('strawberry', ‘plate')

# 3: put bottle in box

grab_and_putin('bottle', 'box')

# 4: Done

LLM

Examples

Task

Generated
Plan

Detected
Objects

def sort_fruits_on_plate_and_bottles_in_box():

objects = ['banana', 'bottle', 'box',
'plate', ‘table', 'drill',

'strawberry']

[Singh-Blukis-Mousavian-Goyal-Xu-Tremblay-Fox-Thomason-Garg: ICRA-23]

Sort the fruits on the plate and the bottles in the box

4



5/28/25

2

RT-2: Vision-Language-Action Models Transfer 
Web Knowledge to Robotic Control

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny 
Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan, 
Kehang Han, Karol Hausman, Alexander Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry 
Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, 

Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Pierre 
Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, 

Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, Brianna Zitkovich
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Google DeepMind

Large Models are changing the world
● Large Language Models (LLMs)

● Vision-Language Models (VLMs)
Robotics traditionally difficult
● Real-world data collection difficult to scale
● Human demonstrations is a bottleneck
● Autonomous collection requires bootstrapping

● Sim-to-real does not offer real world diversity
How do we get Large Model knowledge into Robotics?

Robotics and Large Models
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Google DeepMind

Our journey

SayCan

LLM as a planner

Q-function as an 
affordance model 

Grounded planning

RT-1

Scalable Transformer  
robot policy 

Many more tasks

Compatible with 
SayCan

PaLM-E

Vision Language 
Model (VLM)

Trained on Web and 
embodied data

Better planning than 
LLM-only

RT-2

Unified web-scale 
VLM as robot policy

Generalization to new 
tasks and situations

Chain-of-thought 
reasoning possible
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Google DeepMind

Our journey

Let’s dive into RT-2!
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Google DeepMind

Vision-Language Models

● VLMs encompass both visual and semantic understanding of the world

● In Robotics we have to deal a lot with both of these 
● How do we leverage all of this knowledge?

[1] PaLI: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022.
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Google DeepMind

VLMs as Robot Policies

● RT-1: image + text → discretized actions

FiLM EfficientNet

+

TransformerPositional 
encoding

Universal 
Sentence 
Encoder

Self-Attention 

Camera images

Language 
instruction

Pick 
sponge…

Action

RT-1 architecture [2] 

[2] RT-1: Robotics Transformer for Real-World Control at Scale, Robotics at Google and Everyday Robots, 2022.

[1] PaLI: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022.

PaLI architecture [1] 

● Use large pre-trained VLMs directly as the policy!
● How do we deal with actions when using pre-trained VLMs?

● Similar to a Visual-Language Model (VLM) with different output tokens
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Google DeepMind

● Robot actions: 
○ Moving the robot arm and gripper

○ Discretized into 256 bins
● Actions in VLMs

○ Convert to a string of numbers
○ Example: “1 127 115 218 101 56 90 255”
○ Alternatives: 

■ Float numbers - more tokens needed
■ Extra-IDs, least used language tokens

■ Human language (left, right etc.) - can’t be directly executed on a robot
→ Vision-Language-Action (VLA) model!

Representing Actions in VLMs
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Google DeepMind

Training data and underlying models

Models

● PaLI-X (5B, 55B)

● PaLM-E (12B)

Data

● Pretraining: Web-data

● Robot data

○ RT-1 data

○ 13 robots

○ 17 months

○ 130k demos
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Google DeepMind

Inference 

Closed-loop 
robot control

(1-3Hz)
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Google DeepMindResults: Emergent skills
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Google DeepMindResults: Emergent skills
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Google DeepMindResults: Emergent skills
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Google DeepMindResults: Quantitative evals
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Google DeepMindResults: Quantitative evals

RT2 w/ PaLI-X-55B ablations

● Co-Fine-Tuning with VQA data

● Fine-Tuning on robot data only

● Training on robot data from scratch
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Google DeepMindResults: Language Table

Language Table Benchmark

● Trained on pushing cubes only

● Generalizing to new objects
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Google DeepMindResults: Chain-of-Thought with RT-2-PaLM-E
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Google DeepMindResults: Chain-of-Thought with RT-2-PaLM-E
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Google DeepMind

Vision-Language-Action models 
● Improved generalization
● New tasks and objects
● Chain-of-Thought (CoT) reasoning
● Improving underlying VLM model         

can improve robot control
Future
● Increasing motion diversity
● Extending on CoT capabilities
● Performing RL with VLAs
● Many more!

Conclusions
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HAMSTER 
Hierarchical Action Models for Open-World Robot Manipulation

Low-level Policies

control

Vision-Language
Model

text, images, robot state

Context information
(points, bboxes, traj, tokens, …)

HAMSTER [Li-Deng-Zhang-Jang-Memmel-Yu-Garrett-Ramos-Fox-Li-Gupta-Goyal: ICLR-2025]
https://hamster-robot.github.io/

HiRobot, GeminiRobotics, GR00T-N1, HAMSTER, …

2D Trajectory 
Sketch

§ VILA-1.5-13b open model
§ Pre-trained on internet-scale 

data for open-world visual 
reasoning

§ Fine-tuned on sim+real robot 
tasks

[Lin-Yin-Ping-Molchanov-Shoeybi-Han: CVPR-
24]

§ 3DDA or RVT-2 motion policy
§ Trained on less, real robot 

demos

3DDA [Ke-Gkanatsios-Fragkiadaki: CoRL-24]
RVT-2[Goyal-Blukis-Xu-Guo-Chao-Fox: CoRL-
24]
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Fine-Tuning VILA
Improve VILA’s Ability to Generate 2D Trajectory Output

VILA [Lin-Yin-Ping-Molchanov-Shoeybi-Han: CVPR-24]
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Fine-Tuning VILA
Real Robot Datasets:10K Bridge + 45K DROID Trajectories 

Move the green object in the silver bowl Put the blue Lego in the open drawer 
and then close the drawer

Fold the white and red towel from right to left
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Fine-Tuning VILA
Simulation Dataset: 300K RLBench Trajectories 

Screw in the rose light bulb Push down the button with maroon base, 
then the green one

Slide the bottom drawer open
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Fine-Tuned VILA: Evaluation Examples

Move the toy car to the bowl with x Place the cup on the cup holder

Move the block to Jensen Huang

Screw the light bulb in the lamp Push the button with the color of cucumber, 
then press the button with color of fire

RLBench examples

Significantly Outperforms Alternatives Using Human Rank Evaluation
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Fine-Tuned HAMSTER VLM
Consistent across camera view-points

Pick up the M&M chocolate and put it in the yellow mug
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HAMSTER 
Hierarchical Action Models for Open-World Robot Manipulation

Low-level Policies

control

Vision-Language
Model

text, images, robot state

Context information
(points, bboxes, traj, tokens, …)

HAMSTER [Li-Deng-Zhang-Jang-Memmel-Yu-Garrett-Ramos-Fox-Li-Gupta-Goyal: ICLR-2025]
https://hamster-robot.github.io/

HiRobot, GeminiRobotics, GR00T-N1, HAMSTER, …

2D Trajectory 
Sketch

§ VILA-1.5-13b open model
§ Pre-trained on internet-scale 

data for open-world visual 
reasoning

§ Fine-tuned on sim+real robot 
tasks

[Lin-Yin-Ping-Molchanov-Shoeybi-Han: CVPR-
24]

§ 3DDA or RVT-2 motion policy
§ Trained on less, real robot 

demos

3DDA [Ke-Gkanatsios-Fragkiadaki: CoRL-24]
RVT-2[Goyal-Blukis-Xu-Guo-Chao-Fox: CoRL-
24]
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Perceiver Actor Perceiver Actor
Predicting 3D Pose / 3D Orientation of Next Gripper Action

§ Scene representation: 1003 voxels at 1cm resolution (occupancy, color)
§ Input: 203 = 8,000 tokens (each over 53 voxels) and text for task specification
§ Output: Next gripper pose and status (softmax over voxels)

(3D translation at 1cm resolution, 3D rotation at 5deg resolution)

§ Significantly outperforms multi-level U-net structure of C2F-ARM [James etal: CVPR-22]

[Shridhar-Manuelli-Fox: CoRL-2022]
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PerAct Multi-Step Execution
Single Command Input, at Each Step PerAct Predicts Next Gripper Pose 

Put the Tomatoes in the Top Bin
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The following tasks 
were trained in less 

than 3 hours using 53 
demonstrations

Each demo shows the 
robot where to move, 

and language 
specifies task
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Real World Evaluation HAMSTER
RVT-2 / 3DDA Trained / OpenVLA Fine-Tuned on 320 Examples, Evaluated on 74 Tasks 

Changes between train and test scenes and tasks

§ object arrangements
§ visual appearance of scenes
§ different names to refer to objects
§ spatial language to refer to objects

RVT2 [Goyal-Blukis-Xu-Guo-Chao-F: RSS-2024]

3DDA [Ke-Gkanatsios-Fragkiadaki: CoRL-2024]
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Real World Evaluation of Generalization
HAMSTER Provides Semantic / Visual Generalization for RVT-2 / 3DDA
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Full HAMSTER Model Examples
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Where is RobotGPT?

§ Computer vision and NLP communities have shown that learning at scale enables 
powerful models for images, videos, and language, but RobotGPT still has a way to go

§ Simulation helps overcome data starvation
§ generate the kind of data necessary to train foundation manipulation capabilities 

(diversity and scaling via automatic asset, scene, and task generation; privileged information enables generation of 
demonstrations via TAMP, control, RL) 

§ benchmark models and techniques, enabling community to measure progress
§ broadening community participation due to manageable cost

§ Hierarchical action models combine open-world semantic reasoning of VLMs with
reactive motion generation

§ High level performs embodiment-agnostic semantic and spatial reasoning to generate guidance for low 
level policy 

§ Low level policy generates reactive, 3D motion controls from relatively small demonstration data
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