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CSE-571
Robotics

Planning and Control:

Markov Decision Processes
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Markov Decision Process (MDP)
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 
0
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k=1

Noise = 0.2
Discount = 0.9
Living reward = 
0
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Value Function and Policy
•Each step takes O(|A| |S| |S|) time.
•Number of iterations required is

polynomial in |S|, |A|, 1/(1-gamma)
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Value Iteration for Motion 
Planning
(assumes knowledge of robot’s location)
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Frontier-based Exploration
• Every unknown location is a target point.
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POMDPs
• In POMDPs we apply the very same idea as in 

MDPs.

• Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.
• For finite horizon problems, the resulting value 

functions are piecewise linear and convex. 
• In each iteration the number of linear 

constraints grows exponentially.
• Full fledged POMDPs have only been applied to 

very small state spaces with small numbers of 
possible observations and actions. 
• Approximate solutions are becoming more 

and more capable.
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CSE 571
Inverse Optimal Control

(Inverse Reinforcement Learning)

Many slides by Drew Bagnell
Carnegie Mellon University
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Autonomous Navigation
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Learning Y
(Path to goal)

X
(Sensor Data)

Y
(Output)

X
(Input)
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Optimal Control Solution

Learning

Y
(Path to goal)

2-D
Planner

Cost Map
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Mode 1: Training example
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Mode 1: Training example
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Mode 1: Learned behavior
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Mode 1: Learned behavior
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Mode 1: Learned cost map
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Mode 2: Training example
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Mode 2: Training example
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Mode 2: Learned behavior
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Mode 2: Learned behavior
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Mode 2: Learned cost map
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Ratliff, Bagnell, Zinkevich 2005
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

w' 
Weighting

vector

Cost =  

Feature vector

F 
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w=[], F=[]
Learn F1

(        , High Cost)

(       ,  Low Cost)
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w=[w1], F=[F1] Learn F2

(      , High Cost)

(       ,  Low Cost)
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Readings

• Max-Ent IRL (Ziebart, Bagnell): 
http://www.cs.cmu.edu/~bziebart/
• CIOC (Levine) 

http://graphics.stanford.edu/projects/cioc/cioc.pdf
• Manipulation (Byravan/Fox): https://rse-

lab.cs.washington.edu/papers/graph-based-IOC-
ijcai-2015.pdf
• Imitation learning (Ermon): 

https://cs.stanford.edu/~ermon/
• Human/manipulation (Dragan): 

https://people.eecs.berkeley.edu/~anca/research.
html

46

46

http://www.cs.cmu.edu/~bziebart/
http://graphics.stanford.edu/projects/cioc/cioc.pdf
https://rse-lab.cs.washington.edu/papers/graph-based-IOC-ijcai-2015.pdf
https://rse-lab.cs.washington.edu/papers/graph-based-IOC-ijcai-2015.pdf
https://rse-lab.cs.washington.edu/papers/graph-based-IOC-ijcai-2015.pdf
https://cs.stanford.edu/~ermon/
https://people.eecs.berkeley.edu/~anca/research.html
https://people.eecs.berkeley.edu/~anca/research.html

