
Maxim Likhachev 1

CSE-571

Deterministic Path Planning
Courtesy of Maxim Likhachev
Carnegie Mellon University

1

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

2

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

i.e., Bayesian update (EKF)
i.e., deterministic registration

or Bayesian update

3

Example

Urban Challenge Race, CMU team, planning with Anytime D*

4

Maxim Likhachev 2

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

5

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

6

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

7

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

8

Maxim Likhachev 3

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid
(one way to construct a graph)

9

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity and representation of
 arbitrary obstacles
 - Problem: transitions difficult to execute on non-holonomic
 robots

discretize

10

Planning via Cell Decomposition
• Graph construction:

- lattice graph

action template

replicate it
online

each transition is feasible
(constructed beforehand)

outcome state is the center of the corresponding cell

11

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it
online

12

Maxim Likhachev 4

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

13

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

the cost of a shortest path
from sstart to s found so far

an (under) estimate of the cost
of a shortest path from s to sgoal

at any point of time:

A* Search

14

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

15

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

16

Maxim Likhachev 5

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

17

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

18

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ¥
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

A* Search

19

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

A* Search

20

Maxim Likhachev 6

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search

21

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

A* Search

22

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search

23

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search

24

Maxim Likhachev 7

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search

25

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

A* Search

helps with robot deviating off its path
if we search with A*

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

26

Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values

27

Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

28

Maxim Likhachev 8

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

29

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal 20DOF simulated robotic arm

state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)

30

Adaptive Real-Time A*

31

Anytime Aspects

32

Maxim Likhachev 9

Anytime Aspects

33

Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with R* (randomized version of weighted A*)

34

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

35

Incremental version of A* (D*/D* Lite)

ATRV navigating
initially-unknown environment planning map and path

• Robot needs to re-plan whenever
– new information arrives (partially-known environments or/and

dynamic environments)
– robot deviates off its path

36

Maxim Likhachev 10

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

37

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

38

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

How to reuse these g-values from one search to
another? – incremental A*

39

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be

very different for forward A*?

40

Maxim Likhachev 11

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Any work needs to be done if robot

deviates off its path?

41

Incremental Version of A*
• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

42

43

Searching the Graph
• Incremental behavior of Anytime D*:

initial path a path after re-planning

43
44

Searching the Graph
• Performance of Anytime D* depends strongly on

heuristics h(s): estimates of cost-to-goal

h(s)

S=

Sgoal

should be consistent and admissible (never overestimate cost-to-goal)

44

Maxim Likhachev 12

45

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment
constraints and ignores dynamics

45
46

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment
constraints and ignores dynamics

pre-computed as a table lookup
for high-res. lattice

computed online by running
a 2D A* with late termination

46

Heuristics

47

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

48

Maxim Likhachev 13

Summary
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

used a lot in real-time

think twice before trying to use it in real-time

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

49

Manipulation Planning Examples

50

n 1. Sampling-based methods are typically much easier to get working. One of the
great thing about RRT is that it doesn't require careful discretization of the action
space and instead takes advantage of an extend operator (i.e., local controller or an
interpolation function) which naturally exists in most robotics systems

n 2. For planning in a continuous space, when comparing a quick implementation of
RRT and a quick implementation of Anytime version of A*, RRT is typically much
faster due to sparse exploration of a space.

n 3. A* and its variants are typically harder to implement because they require a)
careful design of discretization of the state-space and action-space (to make sure
edges land where they are supposed to land); b) careful design of the heuristic
function to guide the search well.

Maxim Likhachev on A*/D* vs PRM/RRT

51

n 4. A* and its variants (including anytime variants) typically generate better quality
solutions and very consistent solutions (similar solutions for similar queries) which
is beneficial in many domains.

n 5. A* and its variants can often be made nearly as fast as RRT and sometimes even
faster if one analyzes the robotic system well to derive a powerful heuristic
function. Many robotic systems have natural low-dimensional manifolds (e.g., a 3D
workspace for example) that can be used to derive such heuristic functions.

n 6. A* and its variants can be applied to both discrete and continuous (as well as
hybrid) systems, whereas sampling-based systems tend to be more suitable for
continuous systems since they rely on the idea of sparse exploration. (Within the
same point, it should be noted that A* and its variants apply to PRMs and its
variants. PRM is just a particular graph representation of the environment.)

Maxim Likhachev on A*/D* vs PRM/RRT

52

Maxim Likhachev 14

n Anyway, in summary, I think for continuous planning problems, A* and its variants
require substantially more development efforts (careful analysis of the system to
derive proper graph representation and a good heuristic function) but can result in
a better performance (similar speed but better quality solutions and more
consistent behavior).

Maxim Likhachev on A*/D* vs PRM/RRT

53

