CSE-571 **Sampling-Based Motion Planning** Various slides based on those from Pieter Abbeel, Zoe McCarthy Many images from Lavalle, Planning Algorithms

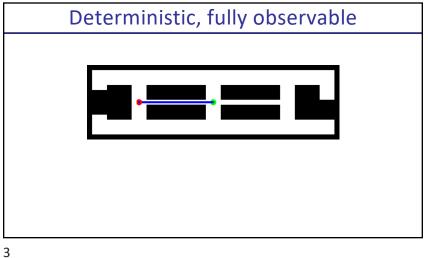
Motion/Path Planning

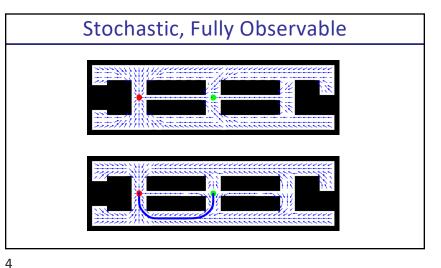
• Task:

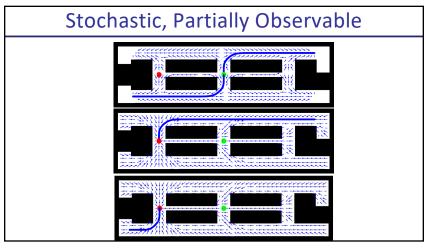
2

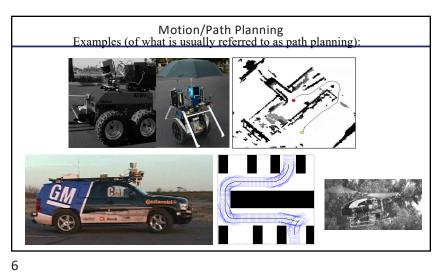
find a feasible (and cost-minimal) path/motion from the current configuration of the robot to its goal configuration (or one of its goal configurations)

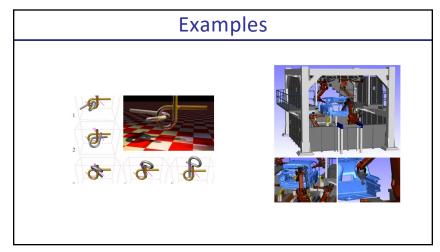
- Two types of constraints: environmental constraints (e.g., obstacles) dynamics/kinematics constraints of the robot
- Generated motion/path should (objective): be any feasible path minimize cost such as distance, time, energy, risk, ...

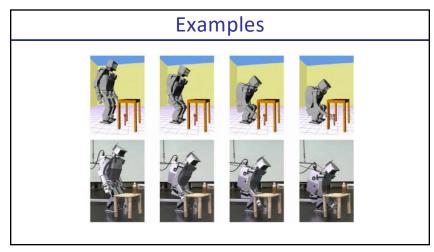


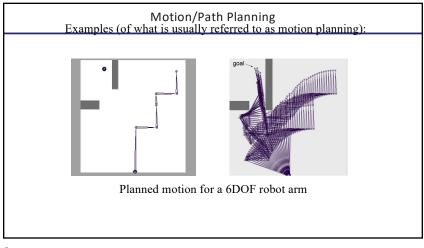












Motion Planning: Outline

- Configuration Space
- Probabilistic Roadmap
- Rapidly-exploring Random Trees (RRTs)
- Extensions
- Smoothing

10

9

Configuration Space (C-Space)

= {x | x is a pose of the robot}

• obstacles → configuration space obstacles

Workspace

Configuration Space

(2 DOF: translation only, no rotation)

free space obstacles

**Incomplete the robot of the robot

Motion planning

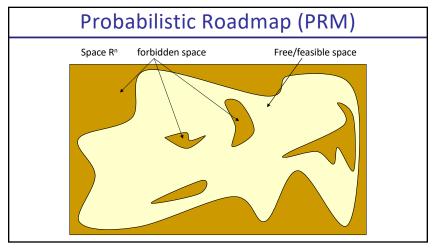
conf-2

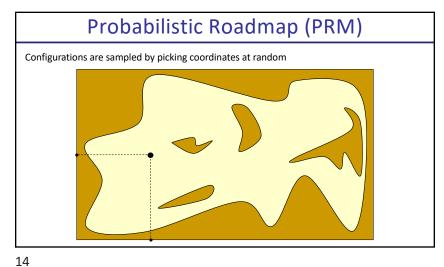
conf-3

velb

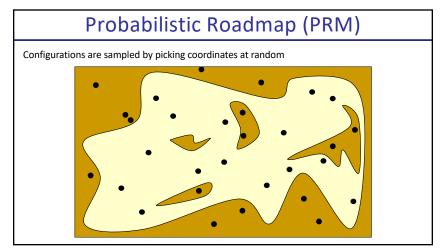
vel

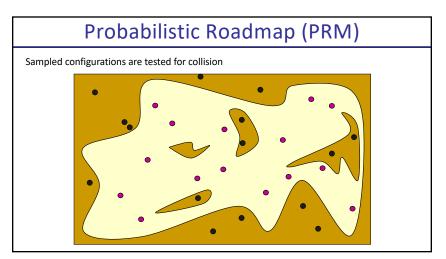
11 12





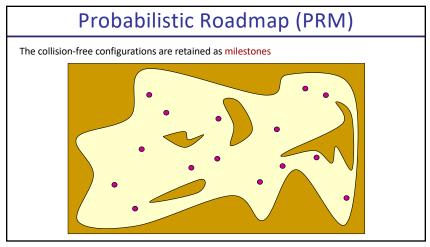
13

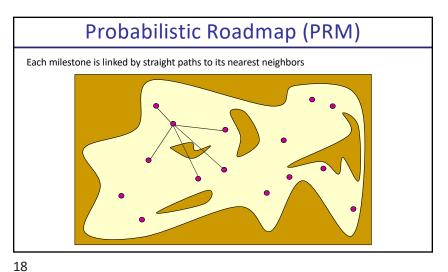




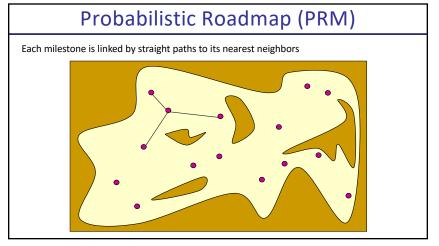
15

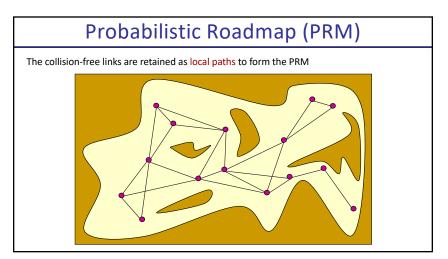
Δ





17

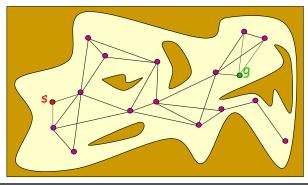




19 20

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones



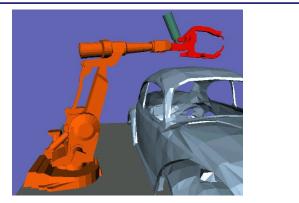
Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

21 22

Probabilistic Roadmap

- Initialize set of points with X_S and X_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X_S to X_G in the graph
 - Alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component



23

PRM Example 2

PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.
- Cons:

26

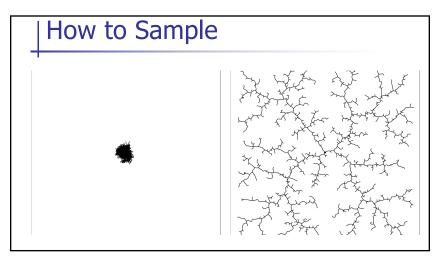
- Required to solve 2-point boundary value problem
- Build graph over state space but no focus on generating a path

25

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage



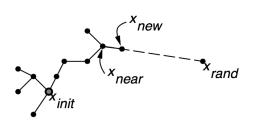
27 28

Rapidly exploring Random Tree (RRT)

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region



29 30

Rapidly exploring Random Tree (RRT)

```
GENERATE_RRT (x_{init}, K, \Delta t)

1 \mathcal{T}.\text{init}(x_{init});

2 for k=1 to K do

3 x_{rand} \leftarrow \text{RANDOM\_STATE}();

4 x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T});

5 u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near});

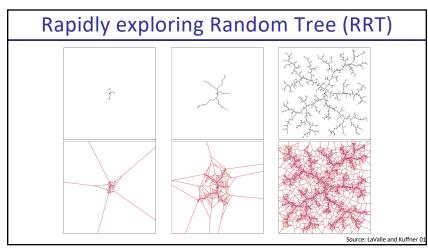
6 x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);

7 \mathcal{T}.\text{add\_vertex}(x_{new});

8 \mathcal{T}.\text{add\_edge}(x_{near}, x_{new}, u);

9 Return \mathcal{T}

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly
```



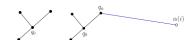
31

RRT Practicalities

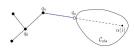
- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing
- SELECT_INPUT(x_{rand}, x_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences. This set could be random, or some well chosen set of primitives.

RRT Extension

No obstacles, holonomic:



With obstacles, holonomic:

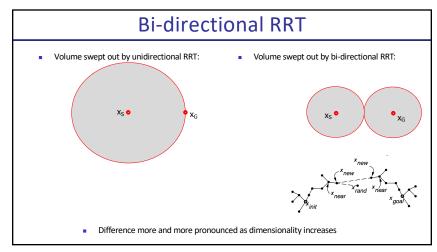


 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem

33

34

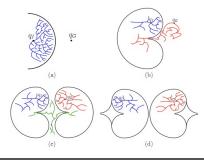
Growing RRT 45 iterations 390 iterations Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif



35

Multi-directional RRT

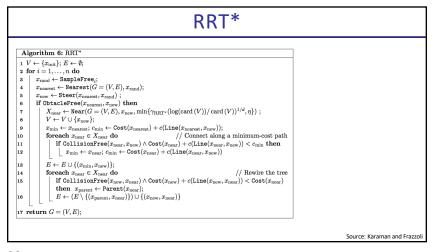
 Planning around obstacles or through narrow passages can often be easier in one direction than the other

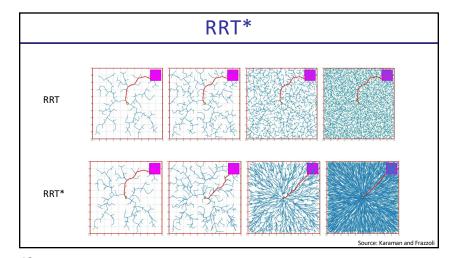


RRT*

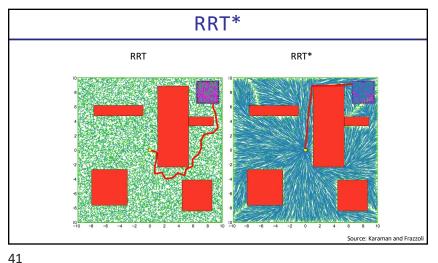
- Asymptotically optimal
- Main idea:
 - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent

37





39



Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

→ In practice: do smoothing before using the path

- Shortcutting:
 - along the found path, pick two vertices X_{t1}, X_{t2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

41

Additional Resources

- Marco Pavone (http://asl.stanford.edu/):
 - Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf
 - Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf
- Sidd Srinivasa (https://personalrobotics.cs.washington.edu/)
 - Batch informed trees: https://robotic-esp.com/code/bitstar/
 - Expensive edge evals: https://arxiv.org/pdf/2002.11853.pdf
- Adam Fishman / Dieter Fox (https://rse-lab.cs.washington.edu/)
 - Motion Policy Networks: https://mpinets.github.io/
- Lydia Kavraki (http://www.kavrakilab.org/)
 - Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html