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CSE-571
Sampling-Based Motion Planning

Various slides based on those from Pieter Abbeel, Zoe McCarthy
Many images from Lavalle, Planning Algorithms
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CSE-P590a: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

• Task: 
find a feasible (and cost-minimal) path/motion from the 
current configuration of the robot to its goal configuration 
(or one of its goal configurations)

• Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

• Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, …
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Deterministic, fully observable
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Stochastic, Fully Observable
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Stochastic, Partially Observable
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Motion/Path Planning
Examples (of what is usually referred to as path planning):

6

Examples
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Examples
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Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm
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n Configuration Space

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Extensions

n Smoothing

Motion Planning: Outline
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= { x |  x is a pose of the robot}

n obstacles à configuration space obstacles

Configuration Space (C-Space)

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles
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Motion planning
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Probabilistic Roadmap (PRM)
Free/feasible spaceSpace Rn forbidden space
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Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)
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Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random
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Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)
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The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)
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Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)
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Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)
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The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)
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s

g

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)
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The PRM is searched for a path from s to g

s

g

Probabilistic Roadmap (PRM)
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n Initialize set of points with xS and xG
n Randomly sample points in configuration space

n Connect nearby points if they can be reached from each other

n Find path from xS to xG in the graph

n Alternatively: keep track of connected components incrementally, and 
declare success when xS and xG are in same connected component

Probabilistic Roadmap
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PRM Example 1
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PRM Example 2
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n Pro:

n Probabilistically complete: i.e., with probability one, if run for long 
enough the graph will contain a solution path if one exists.

n Cons:

n Required to solve 2-point boundary value problem

n Build graph over state space but no focus on generating a path

PRM’s Pros and Cons
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Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

n Basic idea:

n Build up a tree through generating “next states” in the tree by 
executing random controls

n However: not exactly above to ensure good coverage
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How to Sample
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Rapidly exploring Random Tree (RRT)

n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region
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Rapidly exploring Random Tree (RRT)

n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

30

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal 
state with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly exploring Random Tree (RRT)
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Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

32



4/30/25

9

n NEAREST_NEIGHBOR(xrand, T): need to find (approximate) 
nearest neighbor efficiently

n KD Trees data structure (upto 20-D)  [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.  
This set could be random, or some well chosen set of primitives.

RRT Practicalities
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n No obstacles, holonomic:

n With obstacles, holonomic:

n Non-holonomic: approximately (sometimes as approximate as picking best of a 
few random control sequences) solve two-point boundary value problem

RRT Extension
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Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif
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n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases
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n Planning around obstacles or through narrow passages can 
often be easier in one direction than the other

Multi-directional RRT
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n Asymptotically optimal

n Main idea:

n Swap new point in as parent for nearby vertices who can be reached 
along shorter path through new point than through their original 
(current) parent

RRT*
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RRT*

Source: Karaman and Frazzoli
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RRT*

Source: Karaman and Frazzoli

RRT

RRT*
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RRT*

Source: Karaman and Frazzoli

RRT RRT*
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Randomized motion planners tend to find not so great paths for 
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting: 

n along the found path, pick two vertices xt1, xt2 and try to connect them 
directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control

n Allows to specify an objective function that includes smoothness in 
state, control, small control inputs, etc.

Smoothing
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n Marco Pavone (http://asl.stanford.edu/ ): 

n Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf

n Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf

n Sidd Srinivasa (https://personalrobotics.cs.washington.edu/)

n Batch informed trees: https://robotic-esp.com/code/bitstar/

n Expensive edge evals: https://arxiv.org/pdf/2002.11853.pdf

n Adam Fishman / Dieter Fox (https://rse-lab.cs.washington.edu/)

n Motion Policy Networks: https://mpinets.github.io/

n Lydia Kavraki (http://www.kavrakilab.org/)
n Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html

Additional Resources
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http://asl.stanford.edu/
https://arxiv.org/pdf/1705.02403.pdf
https://arxiv.org/pdf/1709.05448.pdf
https://personalrobotics.cs.washington.edu/
https://robotic-esp.com/code/bitstar/
https://arxiv.org/pdf/2002.11853.pdf
https://mpinets.github.io/
https://www.ucsdarclab.com/neuralplanning
http://www.kavrakilab.org/
http://www.kavrakilab.org/nsf-nri-1317849.html

