
CSE 571 - Robotics

Homework 1 - Particle Filters for Localization

Due Tuesday April 22th @ 11:59pm

The key goal of this homework is to get an understanding of the properties of Particle filters for state estimation.
In the programming assignment, you will implement a Particle Filter (PF) for landmark based localization,
and a learned observation model from camera images. You will also analyze their performance under various
conditions. The zip file containing the starter code for this homework can be found at https://github.com/
tdzzcy/cse571_25_sp.

Useful reading material: Lecture notes, Chapters 3,4,5,7 & 8 of Probabilistic Robotics, Thrun, Burgard and
Fox (pdf shared with class).

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late. If you have used up your 6 late days this
quarter, there will be a penalty of 20% of the maximum grade per day.

1 Environment Setup

Figure 1: Odometry-based motion model

1.1 Motion Model

Figure 1 describes a simple motion model. The state of the robot is its 2D position and orientation: s = [x, y, θ],
where x and y are it’s location on the 2D ground plane, and θ is the angular direction the robot is facing. The
control to the robot is u = [δrot1, δtrans, δrot2]. This means that the robot controls itself at each time step by
first rotating by δrot1, then driving forward some distance δtrans, then rotating again by δrot2.

1

https://github.com/tdzzcy/cse571_25_sp
https://github.com/tdzzcy/cse571_25_sp


Given the current state st = [xt, yt, θt] and controls u = [δrot1, δtrans, δrot2], we can use this motion model to
describe an estimate for the next state st+1 = [xt+1, yt+1, θt+1] using the following equations:

xt+1 = xt + δtrans ∗ cos(θt + δrot1)

yt+1 = yt + δtrans ∗ sin(θt + δrot1)

θt+1 = θt + δrot1 + δrot2

We refer to these functions as the motion model g such that g(u, st) = st+1. For more details about odometry
motion model, please refer to Section 5.4 of Probabilistic Robotics [1].

1.2 Observation Model

Assume there is a landmark l at position (lx, ly). Suppose the robot receives measurement of the landmark in
terms of the bearing angle ϕ relative to the direction it is currently facing. The estimation for ϕ in terms of
the landmark’s position (lx, ly) and the robot’s state (xt, yt, θt) follows

ϕ = tan−1 ly − yt
lx − xt

− θt

For more information about landmark-based observation model, see Sec. 6.6.2 of Probabilistic Robotics [1].

2 Programming assignments

Environment Requirement

We strongly encourage you to use a Linux machine for coding assignments. For training Neural Networks, we
have provided colab notebook. Please see detailed instructions below.

(a) Linux / Mac

Virtual environment is strongly recommended! To set up a virtual environment, first install conda from
https://www.anaconda.com/, then run:

conda create -n cse571 python=3.9

conda activate cse571

pip install numpy

pip install pybullet

pip install matplotlib

pip install torch # optional

(b) Windows

If you have a windows machine and would like to use Ubuntu, please go to: https://www.vmware.com/

products/workstation-player.html and download VMware Workstation Player for Windows. You will
also need to download both the .vmdk and the .ovf files. However, VM is not mandatory.

To set up the VM on your Windows machine, click the .exe file and follow installation steps. Once the VMware
player is installed, open VMWare Workstation 17 Player, and choose ”Open a Virtual Machine” and select
”ros-noetic-22wi.ovf” and import. You should be good to go! Once you set up your VM, log in ”robotics”
with the password: ”robotics”.

2

https://www.anaconda.com/
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://courses.cs.washington.edu/courses/cse478/data/ros-noetic-22wi-disk1.vmdk
https://courses.cs.washington.edu/courses/cse478/data/ros-noetic-22wi.ovf


Inside your VM machine, open a terminal, and please follow (a) Linux/Mac to set up the virtual environment
on your VM machine.

(c) CoLab

CoLab is a free Jupyter notebook environment that runs entirely in the cloud hosted by Google. Please go to
https://colab.research.google.com and click ”Upload”. Select your ”.ipynb” jupyter notebook and you
are all set!

Problem Overview

In the programming component of this assignment, you will implement an Particle Filter (PF) for localizing
a robot based on landmarks. Then you will also implement a learned observation model which estimates
landmark bearing angles from images. In our environment, the robot is driving in a path that would cause it
to follow a rectangle. However, because it’s motion is noisy, it’s true path will deviate substantially from the
intended path. The goal is to use the PF to find out where the robot actually is, given information about how
the robot is moving and the landmark observations.

We will use the odometry-based motion model in question 1.2. We assume that there are landmarks present
in the robot’s environment. The robot receives the bearings (angles) to the landmarks and the ID of the
landmarks as observations: (bearing, landmark ID).

We assume a noise model for the odometry motion model with parameters α as shown below([1] Table 5.6),
and a separate noise model for the bearing observations with parameter β (see [1], Section 6.6). Note that for
the current problem set, data association has already been assumed to be correct. Therefore, there is no need
to worry about the data association problem while attempting the questions. However, it is important to keep
in mind that in real-world scenarios, data association can be a significant challenge in multi-object tracking
and should be carefully considered in developing any tracking algorithm.

Figure 2: Table 5.6 from [1]. The sample function samples a single random value with mean 0 and variance
equal to the function argument.

At each timestep, the robot starts from the current state and moves according to the control input plus noise.
The robot then receives a noisy landmark observation from the world. You will use this information to localize

3

https://colab.research.google.com


the robot over the whole time sequence with a PF.

The result will be evaluated on the metric of mean position error, mean mahalanobis error and ANEES(Average
Normalized Estimation Error Squared). In short words, the lower, the better.

Figure 3: The test environment in pybullet. The blue line traces out the robot’s true position, which is a
result of noisy actions. The green line traces the robot’s position assuming that actions weren’t noisy. The
black line indicates the bearing angle to the current landmark.

Code Overview

The starter code is written in Python and depends on matplotlib, numpy, pybullet and torch. This section
gives a brief overview of each file.

• localization.py – This is your main entry point for running experiments.

• train_localization_model.ipynb – A jupyter notebook that will train your observation model once
you have implemented it.

• utils.py – This contains a useful function for normalizing an angle between [−π, π].

• policies.py – This contains a simple policy, which you can safely ignore.

• racecar.urdf – The robot description of the racecar.

• meshes/ – Meshes used by the racecar.

• make_data.py – A script which generates a dataset to use for training your learned observation model.

• requirements.txt – A list of pip packages necessary to run the assignment code.

• soccer_field.py – This implements the dynamics and observation functions, as well as the noise models
for both. It also contains the interface to display the robot in pybullet.

• pf.py – Add your particle filter implementation here!

• observation_model.py – Add your observation model implementation here!

Command-Line Interface To visualize the robot in the soccer field environment, run

4

https://en.wikipedia.org/wiki/Mahalanobis_distance
https://kalman-filter.com/normalized-estimation-error-squared/


$ python localization.py --plot none

The blue line traces out the robot’s position, which is a result of noisy actions. The green line traces the
robot’s position assuming that actions weren’t noisy. The black line indicates the bearing angle to the current
landmark. After you implement a filter, the filter’s estimate of the robot’s position will be drawn in red.

To check the implementation of particle filter, run

$ python localization.py pf --plot

To see other command-line flags available to you, run

$ python localization.py -h

Data Format

• state: [x, y, θ]

• control: [δrot1, δtrans, δrot2]

• observation: [θbearing]

Hints

• Make sure to call utils.minimized_angle any time an angle or angle difference could exceed [−π, π].

• Make sure to use the low-variance systematic sampler from lecture. It gives you a smoother particle
distribution and also requires only a single random number per resampling step.

• Switch pybullet from GUI to DIRECT (headless) for a significant speedup. This can be done by omitting
the --plot flag when running localization.py

2.1 PF Implementation [60 points]

Implement the particle filter algorithm in pf.py. You will need to fill in ParticleFilter.update and
ParticleFilter.resample.

python localization.py pf --seed 1

...

Mean position error: 7.4464918380817995

Mean Mahalanobis error: 7.018081273538514

ANEES: 2.339360424512838

python localization.py pf --seed 1 --data-factor 16 --filter-factor 16

...

Mean position error: 39.67240074809783

Mean Mahalanobis error: 6.610035061476349

ANEES: 2.2033450204921166

5



python localization.py pf --seed 1 --data-factor 0.0625 --filter-factor 16

...

Mean position error: 9.72115743733739

Mean Mahalanobis error: 0.3513419286184077

ANEES: 0.1171139762061359

python localization.py pf --seed 1 --data-factor 16 --filter-factor 16 --num-particles 200

...

Mean position error: 49.14857442421298

Mean Mahalanobis error: 2.4300966694407857

ANEES: 0.8100322231469286

python localization.py pf --multi_run 10 --seed 0

Data factor: 1

Filter factor: 1

Mean MPE: 8.275366675257736

Standard deviation of MPE: 1.6082609959005343

Mean ANEES: 2.7597135229244274

Standard deviation of ANEES: 1.3569377486950798

Note that these numbers are included for reference and you are not expected to exactly replicate these numbers.
Depending on your implementation, you may get different results than this. When reporting numbers of
position error and ANEES, make sure to include param --multi_run 10 --seed 0 like

python localization.py pf --multi_run 10 --seed 0 --data-factor 16 --filter-factor 16

to run 10 trails with different seeds and report the mean and standard deviation of position error and ANEES.

(a) Plot the real robot path and the filter path under the default parameters.

(b) Plot the mean and standard deviation of the position error and ANEES as both the data and the filter
noise factors range over [1/16, 1/4, 1, 4, 16]. Discuss anything interesting you observe.

(c) Plot the mean and standard deviation of the position error and ANEES as the filter noise factors vary
over [1/16, 1/4, 1, 4, 16] while the data noise factor is kept as default. How does the results compare with
what you get using the default parameters? Discuss anything interesting you observe.

(d) Plot the mean and standard deviation of the position error and ANEES as both the data and the filter noise
factors range over = [1/16, 1/4, 1, 4, 16] (as 2.1.b) and the number of particles varies over n = [20, 100, 500].
Discuss anything interesting you observe.

(e) Discuss any challenges you faced and describe your debugging process.

2.2 Observation Model Learning [40 points]

In this section you will learn a model which takes panoramic images of the scene around the racecar, and
predicts the bearing angles to each landmark. The racecar has four evenly spaced cameras that have been
stitched together into a single panoramic image that is 32 pixels tall and 128 pixels wide that look like Figure
4.

6



Figure 4: An illustration on the observation input of the car

(a) Generate Datasets: The first step in any learning problem is to aquire your dataset. We have provided
the script make_data.py to generate data for you. This will randomly place the car in the scene, capture
a panoramic image, and record the ground-truth bearing angle to each landmark. You can generate the
train and test dataset using the following code:

$ python make_data.py --split train --seed 1234 --size 10000

$ python make_data.py --split test --seed 12345 --size 1000

Do not change --seed if you want consistent result. This will generate the folders hw1_train_dataset
and hw1_test_dataset containing rgb_XXXXXX.png and label_XXXXXX.npy. The rgb images in each
should look like 4. Zip these folders as hw1_train_dataset.zip and hw1_test_dataset.zip.

(b) Implement Neural Network: Next you will build a neural network to predict landmark heading
directions from visual observations. To do this, it will be easiest to work in the provided colab note-
book. Go to colab and upload train_observation_model.ipynb. Then click the folder icon next to
the notebook shown in Figure 5 to open the file browser of your colab runtime. From here, upload
observation_model.py, hw1_train_dataset.zip and hw1_test_dataset.zip.

Figure 5: Click the file upload icon to upload your files.

We have already implemented a basic neural network in observation_model.py but you are encour-
aged to change it and check the various results. Your network should take a single output_channels

argument that allows you to change how many values the network predicts (we will use this to change
the prediction format in the next section). The forward function should take a batch of images in as a
[batch_size x 3 x 32 x 128] tensor and output a batch_size x output_channels tensor. Note that

7

https://colab.research.google.com/


this assignment should not require a complicated model. Feel free to use external sources for network
ideas, but please mention which ones you used in your writeup.

WARNING: Make sure you download your observation_model.py from colab frequently, and include
it in your writeup when you are finished! If your runtime disconnects, you may lose the changes you made
to this file!

(c) Train Models: In this section you will train two different versions of your model, one that predicts the
bearing angles ϕ directly, and the other which predicts cos(ϕ) and sin(ϕ) instead.

(i) At the top of the notebook, a variable supervision_mode is defined. Set this to "phi" and run all
the cells in the training notebook. This will train your network to predict the bearing angles of each
landmark directly (6 channels, one for each landmark). After each epoch of training, the script will
generate a set of debugging images that look like Figure 6. The first row of lines under the image
shows the ground truth heading of the landmarks, while the second row shows the network’s current
predictions.

Figure 6: Debug images produced by the evaluation.

Report the error mean and standard deviation of your trained model.

(ii) Change supervision_mode to "xy". This will train your network to predict cos(ϕ) and sin(ϕ) instead
of the bearing angles directly (12 channels, two for each landmark). Report the mean and std of
your model.

For reference, you should be able to get a model with less than 0.07 mean error for at least one of the
supervision modes. Figure 7 shows the loss curve for a fairly simple convolutional neural network
(using "xy" as supervision_mode) that achieves less than 0.05 mean error after 20 epochs.

Figure 7: Loss curve for a simple convolutional network.

(iii) Did one of these work better than the other? Why do you think one might be superior?

(iv) Run particle filter with the learned observation model using the following command.

8



python localization.py pf --use-learned-observation-model \

checkpoint.pt --supervision-mode xy

Report the position error output in the writeup across 10 different random seeds.

(d) Discuss any challenges you faced and describe your debugging process.

(e) Extra Credit: Analysis [10 points]: Train your network again, with (1) an increased training dataset
of 50000 examples (2) make the network deeper and/or wider (3) adjust training parameters such as
learning rate (4) more epochs. What modifications are most helpful? Summarize your observation in the
writeup.

3 Submission

We will be using the Canvas for submission of the assignments. Please submit a PDF writeup and a zip file
of your entire working directory, excluding the training and test data for 2.2.

References

[1] Thrun, Burgard and Fox (2005), Probabilistic Robotics.

9


	Environment Setup
	Motion Model
	Observation Model

	Programming assignments
	PF Implementation [60 points]
	Observation Model Learning [40 points]

	Submission

