
CSE 571 - Robotics

Homework 3 - Reinforcement Learning

Due Monday June 5th @ 11:59pm

The key goal of this homework is to get an understanding of imitation learning and reinforcement learning
methods - Behavior Cloning, DAgger and Policy gradient. Please refer to the git link for the assignment can
be found at https://github.com/jiafei1224/cse571-25sp.

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late. If you have used up your 6 late days this
quarter, there will be a penalty of 20% of the maximum grade per day.

1 Code Overview

The starter code is written in Python and depends on NumPy and Matplotlib as well as pytorch. If you are
new to pytorch, please refer to the following tutorial. The README describes how to install packages in a
conda environment to solve this assignment. We also provide a notebook which can be uploaded to Google
Colab. We recommend either using a linux machine or using the colab, rather than windows. This section
gives a brief overview and the README provides detailed instructions.

• main.py - overall launcher with hyperparameters and environment creation [DO NOT MODIFY]

• environment.yml - Conda env file to install dependencies [DO NOT MODIFY]

• policy.py - Code to load in expert policy [DO NOT MODIFY]

• pytorch utils.py - Helper functions for pytorch [DO NOT MODIFY]

• utils.py - Helper functions for taking rollouts and collecting data [DO NOT MODIFY]

• evaluate.py - Evaluating learned policy reward and success rate [DO NOT MODIFY]

• data - Contains the expert data and interactive expert policy [DO NOT MODIFY]

• bc.py - Code for behavior cloning [FILL THIS IN]

• dagger.py - Code for DAgger [FILL THIS IN]

• policy gradient.py - Code for REINFORCE [FILL THIS IN]

• CSE571 HW3.ipynb - Notebook for colab

1

https://github.com/jiafei1224/cse571-25sp
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

2 Behavior Cloning [25 points]

2.1 Environment Details

You are provided with the Reacher environment, a 2D environment where a double-jointed arm aims to move
its end effector to a target location. Details about the observation space and action space can be found at
https://www.gymlibrary.dev/environments/mujoco/reacher.

2.2 Pseudo-code

This is approximate pseudocode for behavior cloning. Please make sure to convert to the appropriate pytorch
commands. While it’s anticipated that you will achieve a success rate exceeding 0.2, it’s not strictly necessary
for every run to surpass this threshold.

def behavior_cloning(expert_data, kwargs**):

initialize policy

for i in range(max_training_iters): // typical supervised learning loop

s_batch, a_batch = sample_batch(expert_data)

a_hat = policy(s_batch)

loss = l2norm(a_hat, a_batch).mean() // MSE on the actions

loss.backward()

return

This serves as a reference for the expected output; please note that the success rate and reward may fluctuate:

$ python main.py --task behavior_cloning

using device cuda

Imported Expert data successfully

[0] loss: 0.06146659

[50] loss: 0.00734198

[100] loss: 0.00544504

[150] loss: 0.00429730

[200] loss: 0.00343579

[250] loss: 0.00285021

[300] loss: 0.00247725

[350] loss: 0.00232647

[400] loss: 0.00231698

[450] loss: 0.00318722

...

Success rate: 0.26

Average reward (success only): -5.443988106540766

Average reward (all): -10.3634220280316

2.3 Execution

1. Fill in the blanks in the code marked with TODO in the simulate policy bc function in bc.py.

2. Plot the loss during the training with default hyper-parameters. Report the success rate and average
reward using the evaluate function that is provided to you.

3. Experiment with one set of hyperparameters that affects the performance of the behavioral cloning
agent, such as the amount of training steps, the amount of expert data provided, or something that you

2

https://www.gymlibrary.dev/environments/mujoco/reacher

come up with yourself. For one of the tasks used in the previous question, show a graph of how the BC
agent’s performance varies with the value of this hyperparameter. In the caption for the graph, state
the hyperparameter and a brief rationale for why you chose it

To run the behavioral cloning assignment use:

python3 main.py --task behavior cloning

3 DAgger [25 points]

3.1 Environment Details

You will use the same Reacher environment as in Sec. 2.

3.2 Pseudo-code

This is approximate pseudocode for DAgger. Please make sure to convert to the appropriate pytorch com-
mands. You are expected to get a success rate high than 0.8.

def dagger(expert_data, expert_policy, kwargs**):

initialize policy

dataset = expert_data

for i in range(max_dagger_iters):

for i in range(max_training_iters): // run standard behavior cloning

s_batch, a_batch = sample_batch(dataset)

a_hat = policy(s_batch)

loss = l2norm(a_hat, a_batch).mean()

loss.backward()

rollouts = rollout(policy) // roll out learned policy

relabelled_rollouts = relabel_action(rollouts, expert_policy) // relabel actions with expert

dataset += relabelled_rollouts // aggregate dataset

return

When you execute the code, you may get similar outputs as below. Please note that the success rate and
reward may fluctuate.

$ python main.py --task dagger

using device cuda

Imported Expert data successfully

Expert policy loaded

Average DAgger return is -8.43009561903899

Average DAgger return is -11.894969315160871

Average DAgger return is -6.679199372623998

Average DAgger return is -6.588657506211716

Average DAgger return is -6.287488364928622

Average DAgger return is -3.184413268215377

Average DAgger return is -4.609909559022624

Average DAgger return is -4.303682550954855

Average DAgger return is -3.6138667664531994

Average DAgger return is -5.071428497248543

3

...

Success rate: 1.0

Average reward (success only): -4.018171099077643

Average reward (all): -4.018171099077643

3.3 Execution

1. Fill in the blanks in the code marked with TODO in the simulate policy dagger function in dagger.py.

2. Plot the loss during the training with default hyper-parameters. Report the success rate and average
reward using the evaluate function that is provided to you.

3. Compare the success rate and reward of the DAgger policy with the behavior cloning policy and explain
why DAgger performs better.

4. Experiment with one set of hyperparameters that affects the performance of the agent, such as the amount
of training steps, the amount of expert data provided, or something that you come up with yourself. For
one of the tasks used in the previous question, show a graph of how the agent’s performance varies with
the value of this hyperparameter. In the caption for the graph, state the hyperparameter and a brief
rationale for why you chose it.

4 Policy Gradient [50 points]

4.1 Environment Details

The Inverted Pendulum environment is a simulation of a classic control problem called the inverted pendulum.
The objective is to control the movement of an inverted pendulum by applying appropriate forces to keep it
balanced. To learn about the observation space and action space, check out https://www.gymlibrary.

dev/environments/mujoco/inverted_pendulum. You may also find https://spinningup.openai.com/en/

latest/algorithms/vpg.html useful as a reference for the policy gradient method.

4.2 Pseudo-code

You are expected to get a success rate high than 0.8 and average reward (all) higher than 180.

def policy_gradient():

initialize policy neural network

instantiate baseline neural network

for i in range(max_num_iters):

trajectories = rollout(policy) // roll out current learned policy

returns = compute_returns(policy) // compute return to go from observations

returns = (returns - returns.mean())/(returns.std() + 1e-9) // normalize returns

for i in range(baseline_training_iters): // train baseline via regression

baseline_prediction = baseline(trajectories[’observations’])

loss_baseline = l2norm(baseline_prediction, returns).mean()

loss_baseline.backward() // update baseline only

baseline_prediction = baseline(trajectories[’observations’]) // compute final baseline

prediction

mean_predicted, std_predicted = policy(trajectories[’observations’])

log_probs = log_density(trajectories[’actions’], mean_predicted, std_predicted)

4

https://www.gymlibrary.dev/environments/mujoco/inverted_pendulum
https://www.gymlibrary.dev/environments/mujoco/inverted_pendulum
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html

loss_policy = -log_probs*(returns - baseline_prediction)

loss_policy.backward() // update policy only

return

When you execute the code, you may get outputs similar to the one below. Please note that the success rate
and reward may fluctuate.

$ python main.py --task policy_gradient

using device cuda

Episode: 0, reward: 8.48, max path length: 24

Episode: 10, reward: 10.08, max path length: 39

Episode: 20, reward: 15.85, max path length: 48

Episode: 30, reward: 28.73, max path length: 88

Episode: 40, reward: 52.75, max path length: 129

Episode: 50, reward: 109.34, max path length: 200

Episode: 60, reward: 152.19, max path length: 200

Episode: 70, reward: 173.68, max path length: 200

Episode: 80, reward: 189.03, max path length: 200

Episode: 90, reward: 195.31, max path length: 200

...

Success rate: 0.9

Average reward (success only): 200.0

Average reward (all): 197.45

4.3 Execution

1. Fill in the blanks in the code marked with TODO in the train model function in policy gradient.py.

2. Plot the loss during the training with default hyper-parameters. Report the success rate and average
reward using the evaluate function that is provided to you.

3. Experiment with one set of hyperparameters that affects the performance of the agent, such as the amount
of training steps, the amount of expert data provided, or something that you come up with yourself. For
one of the tasks used in the previous question, show a graph of how the agent’s performance varies with
the value of this hyperparameter. In the caption for the graph, state the hyperparameter and a brief
rationale for why you chose it.

5 Submission

We will be using the Canvas for submission of the assignments. Please submit the written assignment answers
as a PDF. For the code, submit a zip file of the entire working directory.

5

	Code Overview
	Behavior Cloning [25 points]
	Environment Details
	Pseudo-code
	Execution

	DAgger [25 points]
	Environment Details
	Pseudo-code
	Execution

	Policy Gradient [50 points]
	Environment Details
	Pseudo-code
	Execution

	Submission

