Robot Manipulation and Generative Al

We're seeing astonishing progress in capabilities of Gen-Al models to generate and
reason about language, images, tasks, and videos. Main contributors to this progress are:

¥ Availability of vast amounts of suitable training data (trillions of tokens for LLMs) such that open-
world reasoning becomes in-distribution
¥ Very large models that can digest this data (100s of billions to trillions parameters)
® Mainly behavior cloning for training (w/ careful data curation, RLHF for fine-tuning)
Gen-Al doesn’t readily provide broadly applicable manipulation skills for next gen robots
® Moravec's paradox: "the hard problems are easy, and the easy problems are hard.” [Pinker-94]

" Data: we don’t have the vast amounts of demonstration data needed to train a RobotGPT model

Hypothesis: If we can generate very large data sets demonstrating robot tasks, then
Gen-Al models with BC can greatly elevate robot manipulation capabilities

Question: Where do we get sufficient high-quality data that covers the vast space of
manipulation tasks?
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* Provides strong, robust priors for visual data * Low-cost, scalable, reproducible

* Excellent for pre-training / behavior cloning

* Large gap between human and robot hands * Very significant effort, limited variability * Sim2Real gap

* Not accurate enough to provide fine-grained * Asset generation
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Robotics and Large Models

Large Models are changing the world

e Large Language Models (LLMs)

e Vision-Language Models (VLMs)
Robotics traditionally difficult

e Real-world data collection difficult to scale

e Human demonstrations is a bottleneck

e Autonomous collection requires bootstrapping

e Sim-to-real does not offer real world diversity
How do we get Large Model knowledge into Robotics?
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Our journey
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Vision-Language Models

Transformer

Vi T Encoder

Transformer
Decoder

Google DeepMind

e VLMs encompass both visual and semantic understanding of the world
e InRobotics we have to deal a lot with both of these

e How do we leverage all of this knowledge?

[1] PaLl: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022,

Our journey
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Let’'s dive into RT-2!
VLMs as Robot Policies —_
§ . Positional Transformer et Pall architecture [1]

RT-1 architecture [2]

e RT-1: image + text — discretized actions

e Similar to a Visual-Language Model (VLM) with different output tokens
e Use large pre-trained VLMs directly as the policy!

e How do we deal with actions when using pre-trained VLMs?

[1] PaLl: A Jointly-Scaled Multilingual Language-Image Model. Chen et al. 2022.
[2] RT-1: Robotics Transformer for Real-World Control at Scale, Robotics at Google and Everyday Robots, 2022.
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Representing Actions in VLMs
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e Robot actions:
o Moving the robot arm and gripper

o Discretized into 256 bins
e ActionsinVLMs
o Convert to a string of numbers
o Example: “1127 115 218 101 56 90 255"
o Alternatives:
m  Float numbers - more tokens needed
m  Extra-IDs, least used language tokens

m Human language (left, right etc.) - can’t be directly executed on a robot
— Vision-Language-Action (VLA) model!

Training data and underlying models

Internet-Scale VQA + Robot Action Data

"

o 17 months 5
B ! | & Translation = [0.1, -0.2, 0]

o 130k demos o m [A Rotation = [10°, 25°, -7°]

Models
e Pall-X (5B, 55B)
e PalLM-E (12B)

Co-Fine-Tune

Q: What is happening
in the image?

Data

e Pretraining: Web-data

Q: Que puis-je faire
avec ces objets?
e Robot data

o RT-1data

o 13 robots

Q: What should the
robot do to <task>?
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Results: Emergent skills
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Results: Emergent skills
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Results: Quantitative evals
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(a) Unseen Objects

RT2 w/ PaLI-X-55B ablations
e Co-Fine-Tuning with VQA data
e Fine-Tuning on robot data only

e Training on robot data from scratch
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(b) Unseen Backgrounds
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(c) Unseen Environments
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Results: Quantitative evals
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Results: Language Table Results: Chain-of-Thought with RT-2-PaLM-E

[ Push the ketchup to the blue cube | Push the blue cube to the tabasco } : . . : . . : . . : . .
) ¢ Given <img> Instruction: Given <img> Instruction: Given <img> Instruction: Given <img> Instruction:
Bring me a drink. Move all the objects Pick the object that is Move the green objects
: together. different from all other together.
Plan: pick 7up can. : objects :
Action: 1 143 129 123 145 Plan: move green can near : Plan: move green can near
114 115 127 green rice chip bag. Plan: pick rxbar green rice chip bag.
Action: 1 128 126 127 135 chocolate. Action: 1 128 Action: 1 130 129 121 131
123 119 127 129 125 131 125 128 127 127 128 127

Language Table Benchmark Model Language-Table
e Trained on pushing cubes only ~ BC-Zero (Jang et al., 2021) 72+3
RT-1 (Brohan et al., 2022) 74 + 13 Given <img> I need to
e Generalizing to new objects LAVA (Lynch et al., 2022) 77 + 4 hamnez o nail, what
object from the scene
RT-2-PaLI-3B (ours) 90 + 10 miane b usefui?

Rocks. Action: 1 129 138
122 132 135 106 127
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Results: Chain-of-Thought with RT-2-PaLM-E Conclusions

Vision-Language-Action models

e Improved generalization

e New tasks and objects

e Chain-of-Thought (CoT) reasoning

e Improving underlying VLM model

can improve robot control

Future

e Increasing motion diversity

e Extending on CoT capabilities

e Performing RL with VLAs

e Many more!
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Integration With Large Language Models

How Should Robotics Leverage LLMs / VLMs / VLAs?

text, images text, images, robot state text, images, robot state

Off-the-shelf
Vision-Language Vision-Language-
Model Action Model
End-to-End
call skill Vision-Language-
Action Model

embeddings

Robot Skill
obot Skills Low-level Policies

control control control

Vision-Language-Action Models for Robots
Align Pre-Trained Modalities and Fine-Tune on Robot Tasks

LLMs provide open-world reasoning backbone based on immense training data

VMs provide robust representations of images and videos trained via weak supervision
(MAE, I-JEPA, DINO, CLIP, ..), providing strong readout performance on downstream tasks

Open-source VLMs such as Llava first perform feature alignment (project vision representation
into word embedding space), followed by full model fine-tuning on supervised instruction

dataset
Language Response X, ’ ’ .
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Vision-Language-Action Models for Robots

Align Pre-Trained Modalities and Fine-Tune on Robot Tasks

LLMs provide open-world reasoning backbone based on immense training data

VMs provide robust representations of images and videos trained via weak supervision
(MAE, I-JEPA, DINO, CLIP, ...), providing strong readout performance on downstream tasks

Open-source VLMs such as Llava first perform feature alignment (project vision representation
into word embedding space), followed by full model fine-tuning on supervised instruction

dataset
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MM-LLMs: Recent Advances in MultiModal Large Language Models [Zhang-Yu-Li-Dong-Su-Chu-Yu: 2024]

‘Multimodal Understanding
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23

22

5/23/24



