
Maxim Likhachev 1

CSE-571

Deterministic Path Planning
Courtesy of Maxim Likhachev
Carnegie Mellon University

1

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

2

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

i.e., Bayesian update (EKF)
i.e., deterministic registration

or Bayesian update

3

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

4

Maxim Likhachev 2

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

re-plan every time
sensory data arrives or

robot deviates off its path

re-planning needs to be FAST

5

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happencomputationally MUCH harder

6

Example

Urban Challenge Race, CMU team, planning with Anytime D*

7

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

8

Maxim Likhachev 3

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

9

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

10

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

11

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid
(one way to construct a graph)

12

Maxim Likhachev 4

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity and representation of
 arbitrary obstacles
 - Problem: transitions difficult to execute on non-holonomic
 robots

discretize

13

Planning via Cell Decomposition
• Graph construction:

- lattice graph

action template

replicate it
online

each transition is feasible
(constructed beforehand)

outcome state is the center of the corresponding cell

14

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it
online

15

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

16

Maxim Likhachev 5

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

the cost of a shortest path
from sstart to s found so far

an (under) estimate of the cost
of a shortest path from s to sgoal

at any point of time:

A* Search

17

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

18

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

19

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

20

Maxim Likhachev 6

• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

21

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ¥
h=02

S4 S33

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

A* Search

22

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

A* Search

23

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search

24

Maxim Likhachev 7

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

A* Search

25

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search

26

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search

27

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search

28

Maxim Likhachev 8

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

A* Search

helps with robot deviating off its path
if we search with A*

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

29

Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values

30

Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

31

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

32

Maxim Likhachev 9

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal 20DOF simulated robotic arm

state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)

33

Adaptive Real-Time A*

34

Anytime Aspects

35

Anytime Aspects

36

Maxim Likhachev 10

Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with R* (randomized version of weighted A*)

37

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

38

Incremental version of A* (D*/D* Lite)

ATRV navigating
initially-unknown environment planning map and path

• Robot needs to re-plan whenever
– new information arrives (partially-known environments or/and

dynamic environments)
– robot deviates off its path

39

Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

40

Maxim Likhachev 11

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

41

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

How to reuse these g-values from one search to
another? – incremental A*

42

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be

very different for forward A*?

43

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Any work needs to be done if robot

deviates off its path?

44

Maxim Likhachev 12

Incremental Version of A*
• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

45
46

Searching the Graph
• Incremental behavior of Anytime D*:

initial path a path after re-planning

46

47

Searching the Graph
• Performance of Anytime D* depends strongly on

heuristics h(s): estimates of cost-to-goal

h(s)

S=

Sgoal

should be consistent and admissible (never overestimate cost-to-goal)

47
48

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment
constraints and ignores dynamics

48

Maxim Likhachev 13

49

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment
constraints and ignores dynamics

pre-computed as a table lookup
for high-res. lattice

computed online by running
a 2D A* with late termination

49

Heuristics

50

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

51

Summary
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

used a lot in real-time

think twice before trying to use it in real-time

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

52

Maxim Likhachev 14

Manipulation Planning Examples

53

