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Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update
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Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

i.e., Bayesian update (EKF)
i.e., deterministic registration 

or Bayesian update
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Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose 

• Planning approaches:
- deterministic planning: 
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action 
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen
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Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose 

• Planning approaches:
- deterministic planning: 
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action 
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

re-plan every time 
sensory data arrives or 

robot deviates off its path

re-planning needs to be FAST 

5

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose 

• Planning approaches:
- deterministic planning: 
 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action 
and minimizes expected cost-to-goal
- re-plan if unaccounted events happencomputationally MUCH harder
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Example

Urban Challenge Race, CMU team, planning with Anytime D*
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Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*
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Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*
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Planning via Cell Decomposition
• Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map
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Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph 
for a least-cost path 
from sstart to sgoal
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Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph 
for a least-cost path 
from sstart to sgoal

eight-connected grid
(one way to construct a graph)
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Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
     - VERY popular due to its simplicity and representation of 
    arbitrary obstacles
 - Problem: transitions difficult to execute on non-holonomic
         robots

discretize
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Planning via Cell Decomposition
• Graph construction:

- lattice graph

action template

replicate it 
online

each transition is feasible
(constructed beforehand)

outcome state is the center of the corresponding cell
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Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it 
online
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Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

… 

…

the cost of a shortest path 
from sstart to s found so far 

an (under) estimate of the cost 
of a shortest path from s to sgoal

at any point of time:

A* Search
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

… 

…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance
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• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search
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• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search
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• Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ¥
h=1

g= ¥
h=02

S4 S33

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ¥
h=02

S4 S33

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)
   remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED
 if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

A* Search
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• Is guaranteed to return an optimal path (in fact, for every 
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions 
required to guarantee optimality – optimal in terms of the 
computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search
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• Is guaranteed to return an optimal path (in fact, for every 
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions 
required to guarantee optimality – optimal in terms of the 
computations

A* Search

helps with robot deviating off its path
if we search with A* 

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S33

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3
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Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values
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Effect of the Heuristic Function

sgoal
sstart

… …

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly 
running out of memory (memory: O(n))
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Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f = 
g+εh values, ε > 1 = bias towards states that are closer to 
goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)
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Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f = 
g+εh values, ε > 1 = bias towards states that are closer to 
goal 20DOF simulated robotic arm

state-space size: over 1026 states 

planning with ARA* (anytime version of weighted A*)

33

Adaptive Real-Time A*

34

Anytime Aspects

35

Anytime Aspects

36
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Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with R* (randomized version of weighted A*)

37

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*
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Incremental version of A* (D*/D* Lite)

ATRV navigating 
initially-unknown environment planning map and path

• Robot needs to re-plan whenever
– new information arrives (partially-known environments or/and 

dynamic environments)
– robot deviates off its path
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Motivation for Incremental Version of A*
Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

40
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Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 
done backwards

41

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 
done backwards

How to reuse these g-values from one search to
another? – incremental A*
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Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be 

very different for forward A*?
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Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Any work needs to be done if robot 

deviates off its path?
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Incremental Version of A*
• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

45
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Searching the Graph
• Incremental behavior of Anytime D*:

initial path a path after re-planning

46

47

Searching the Graph
• Performance of Anytime D* depends strongly on 

heuristics h(s): estimates of cost-to-goal

h(s)

S=

Sgoal

should be consistent and admissible (never overestimate cost-to-goal)

47
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Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment 
constraints and ignores dynamics

48



Maxim Likhachev 13

49

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic
– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints
and ignores environment

henv(s) – considers only environment 
constraints and ignores dynamics

pre-computed as a table lookup 
for high-res. lattice 

computed online by running 
a 2D A* with late termination
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Heuristics

50

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*
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Summary
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

used a lot in real-time

think twice before trying to use it in real-time

think three or four times before trying to use 
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!
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Manipulation Planning Examples
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