

Robotics Spring 2023

Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Recap: Course Overview

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Off-Policy/MBRL

Lecture Outline

Learning Algorithms for Robotics

Simple, performant, Data inefficient Data-efficient, sometimes unstable

Imitation Learning

Performant, efficient, but compounding error and expensive data collection

Policy Gradient - REINFORCE

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

REINFORCE algorithm:

On-policy ____

- On-policy 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
 - 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
 - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

What makes policy gradient challenging?

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

$$\approx \frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \sum_{t'=0}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$

High variance estimator!!

Hard to tell what matters without many samples

Averaged return estimate

What can we do to lower variance?

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

$$\frac{1}{N} \sum_{\theta} \sum_{\theta} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \sum_{t'=t}^{T} r(s_t^i, a_t^i)$$

Idea: bundle this across many (s, a) with a function approximator

Function approximator bundles return estimates across states

Notation: Q functions

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \sum_{t'=t}^{T} r(s_t^i, a_t^i)$$
 Average

Expected sum of rewards in the future, starting from (s, a) on first step, then π

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{t'=t}^T r(s_t', a_t') | s_t, a_t\right] \quad \text{Bundles estimates across (s, a)}$$

Use the magic of (deep) function approximation

Estimation of Q-Functions

$$\frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) Q^{\pi}(s_{t'}^{i}, a_{t'}^{i})$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s_t', a_t') | s_t, a_t \right] \longleftarrow \text{Monte-carlo approximation}$$

Idea: Regression from (s, a) to Monte-Carlo estimate

Return to Go

Unbiased, but high variance!

Can we do better?

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \sum_{t'=t}^{T} r(s_{t}^{i}, a_{t}^{i})$$

Much lower variance if estimated well

Can be learned off-policy!

$$\frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) Q^{\pi}(s_{t'}^i, a_{t'}^i)$$

Has special structure we can exploit!!

Recursive structure in Q functions

Q functions have special recursive structure!

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t'=t}^{T} r(s'_t, a'_t) | s_t, a_t \right]$$

$$= r(s_t, a_t) + \mathbb{E}_{\pi} \left[\sum_{t'=t+1} r(s_{t'}, a_{t'}) | s_{t+1}, a_{t+1} \sim \pi(.|s_{t+1}) \right]$$

Bellman $Q^{\pi}(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \mathbb{E}_{\substack{s_{t+1} \sim p(.|s_{t}, a_{t}) \\ a_{t+1} \sim \pi_{\theta}(.|s_{t+1})}} [Q^{\pi}(s_{t+1}, a_{t+1})]$ equation

Can be from different policies

Decompose temporally via dynamic programming

Learning Q-functions via Dynamic Programming

<u>Policy Evaluation:</u> Try to minimize Bellman Error (almost)

Bellman equation

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{\substack{s_{t+1} \sim p(.|s_t, a_t) \\ a_{t+1} \sim \pi_{\theta}(.|s_{t+1})}} [Q^{\pi}(s_{t+1}, a_{t+1}] \leftarrow \mathbb{E}_{\substack{s_{t+1} \sim \pi_{\theta}(.|s_{t+1}) \\ a_{t+1} \sim \pi_{\theta}(.|s_{t+1})}}$$
Same function approximator

How can we convert this recursion into a learning objective?

Note: this may look like gradient descent on Bellman error, it is not!

Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

$$\max_{\theta} \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta}(a|s)} \left[Q^{\pi_{\theta}}(s, a) \right]$$

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient!

Policy Updates – REINFORCE or Reparameterization

Let's look a little deeper into the policy update

$$\max_{\theta} J(\theta) = \max_{\theta} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[Q^{\pi}(s, a) \right]$$

Likelihood Ratio/Score Function

Pathwise derivative/Reparameterization

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s, a) \right]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_{\theta}(.|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right] \qquad \nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{z \sim p(z)} \left[\nabla_{a} Q^{\pi}(s,a) |_{a = \mu_{\theta} + z\sigma_{\theta}} \nabla_{\theta}(\mu_{\theta} + z\sigma_{\theta}) \right]$$

Easier to Apply to Broad Policy Class

Lower variance

Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

$$\min_{\phi} \mathbb{E}_{(s_t, a_t, s_{t+1}) \sim \mathcal{D}} \left[\left(Q_{\phi}^{\pi}(s_t, a_t) - \left(r(s_t, a_t) + \mathbb{E}_{a_{t+1} \sim \pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1}, a_{t+1}) \right] \right) \right)^2 \right]$$

Lowers variance and is off-policy!

Actor: updated using learned critic (Policy Improvement)

$$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$

Actor-Critic in Action

Lecture Outline

Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Allows for much more immediate updates

Challenges of doing online updates

When updates are performed online, two issues persist:

- 1. Correlated updates since samples are correlated
- 2. Optimization objective changes constantly, unstable

Decorrelating updates with replay buffers

Updates can be decorrelated by storing and shuffling data in a replay buffer

Instead of doing updates in order, sample batches from replay buffer

- Sampled from replay buffer $\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[Q_{\phi}^{\pi}(s_{t},a_{t}) (r(s_{t},\alpha_{t}) + \mathbb{E}_{a_{t+1}\sim\pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right] \right]^{2}$ $\max_{\pi} \mathbb{E}_{s\sim\mathcal{D}} \mathbb{E}_{a\sim\pi(.|s)} \left[Q^{\pi}(s,a) \right]$
- 1. Sample uniformly
- 2. Prioritize by TD-error
- 3. Prioritize by target error
- 4. ... open area of research!

Slowing moving targets with target networks

Continuous updates can be unstable since there is a churn of projection and backup

$$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + \mathbb{E}_{a_{t+1}\sim\pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1}, a_{t+1}) \right] \right]^2$$

If we set $\,\phi\,$ to $\,\phi\,$ every update, the update becomes very unstable

Move ϕ to ϕ slowly!

$$\bar{\phi} = (1 - \tau)\phi + \tau\bar{\phi}$$

Polyak averaging

A Practical Off-Policy RL Algorithm

Simplify -- Can we get rid of a parametric actor?

Critic Update

$$\min_{\phi} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[Q_{\phi}^{\pi}(s_t,a_t) - (r(s_t,a_t) + \mathbb{E}_{a_{t+1}\sim\pi(.|s_{t+1})} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right] \right]^2$$
 Actor Update
$$\max_{\pi} \mathbb{E}_{s\sim\mathcal{D}} \mathbb{E}_{a\sim\pi(.|s)} \left[Q^{\pi}(s,a) \right]$$

What if we removed this explicit actor completely?

Directly Learning Q*

$$\min_{\phi} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\begin{bmatrix} Q^\pi_\phi(s_t,a_t) - (r(s_t,a_t) + \max_{a_{t+1}} \left[Q_{\bar{\phi}}(s_{t+1},a_{t+1}) \right]) \end{bmatrix}^2 \right] \\ \pi(a|s) = \max_{a} Q(s,a) \qquad \text{Directly do max in the Bellman update} \\ \text{Add to} \\ \text{Buffer} \qquad \text{Sample batch from buffer} \\ \text{1 sample} \qquad \text{Collect} \\ \text{Data} \qquad \text{Directly do max in the Bellman update} \\ \text{Sample batch from buffer} \\ \text{Sample batch from buffer} \\ \text{Polyak} \\ \text{Averaging} \qquad \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates, just learn Q!} \\ \text{No actor updates} \\ \text{No actor updates} \\ \text{Data} \\ \text{No actor updates} \\ \text{No actor updates} \\ \text{Data} \\ \text{Data}$$

How can we maximize w.r.t a?

$$\pi(a|s) = \max_{a} Q(s, a)$$

Analytic maximization can be very difficult to perform in continuous action spaces Much easier in discrete spaces!

just do categorical max!

Some ideas to do maximization:

- 1. Sampling based (QT-opt (Kalashnikov et al))
- 2. Optimization based (NAF, Gu et al)

Practical Actor-Critic in Action

Trained using QT-Opt

Practical Actor-Critic in Action

Trained using DDPG

What makes off-policy RL hard?

These in combination lead to many of the difficulties in stabilizing off-policy RL with function approximation

Zooming out – what makes off-policy RL hard?

Deadly triad:

- 1. Function Approximation
- 2. Bootstrapping
- 3. Off-policy learning

61% of runs show divergence of Q-values

Diverges even with linear function approximation, when off-policy + bootstrapping

Lecture Outline

What if we just learned how the world worked?

- 1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
- 2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model

Why do model-based RL?

Why would we do this?

Transfer/Adaptive

Efficiency

Simplicity

Naturally off-policy!

Why do model-based RL?

Just 2 hours of real robot training

Model Based RL – Problem Statement

Model Learning

$$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$

Planning

$$\arg\max_{\pi} \mathbb{E}_{\hat{p},\pi} \left[\sum_{t} r(s_t, a_t) \right]$$

Can also just be a single trajectory

How should we instantiate these?

Model Based RL – A template

Model Based RL – Naïve Algorithm (v0)

Model Based RL – Naïve Algorithm (Model Learning) (v0)

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Fit 1-step models

Choice of \hat{p}_{θ} distribution determines the loss function: better, at the risk of 1. Gaussian \rightarrow L₂ overfitting

Trick: Model Residual's (s' – s)

- 2. Energy Based Model → Contrastive Divergence
- 3. Diffusion Model \rightarrow Score Matching

Model Based RL – Naïve Algorithm (Planning)

Planning

$$\max_{a_0, a_1, \dots, a_T} \sum_{t=0}^{T} r(\hat{s}_t, a_t)$$

$$\hat{s}_{t+1} \sim \hat{p}_{\theta}(s_{t+1} | \hat{s}_t, a_t)$$

$$\hat{s}_1 \sim \hat{p}_{\theta}(s_{t+1} | s_0, a_0)$$

Just do random search!

Just execute actions open loop!

Can soften by taking softmax rather than argmax

Model Based RL – Naïve Algorithm (MPC)

Without feedback, an open loop controller can diverge even for minimal

noise

Replanning can help with divergence

Model-Predictive/Receding Horizon Control

- 1. Plan with random shooting from s_t
- 2. Execute the first action a_0 and reach s_{t+1}

Model Based RL – Naïve Algorithm (v0)

Does it work?

Just 20 minutes of training time with random data!

Does it work?

What might be the issue?

Rollouts under learned model != Rollouts under true model

——→ Model bias/compounding error

Predicted Rollout Under Model

Why does this happen? → lack of data

- 1. Errors in state go to OOD next states
- 2. Deviations in actions go to OOD next states

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!

How might we deal with compounding error?

Idea: Estimate when OOD and account for it

→ Measure uncertainty!

Maximum likelihood models

<u>Uncertainty-aware models</u>

Being aware of uncertainty allows us to account for the effects of model bias!

What is uncertainty?

Alleatoric Uncertainty

(environment stochasticity)

Easier, can use stochastic models

Epistemic Uncertainty

(Lack of data)

More challenging, need to compute posterior

Let's largely focus on epistemic uncertainty

How might we measure uncertainty?

$$p(\theta|\mathcal{D})$$

Difficult to estimate directly!

Learn an ensemble of models

- 1. Bayesian neural networks
- 2. Ensemble methods ————
- 3. ...

Low data regime → high ensemble variance

Approximate posterior

Model Based RL – Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

Learn ensembles by either subsampling the data or having different initializations

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Expected value over ensemble

$$\arg\max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) \\ (\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Can also swap which ensemble element is propagated at every step or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take **pessimistic** value under the uncertain dynamics

Penalize ensemble variance

$$\arg \max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) - \lambda \operatorname{Var}((\hat{s}_t^j)^i)$$

$$(\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Avoids overly OOD settings since these states are explicitly penalized

Does this work?

What might be the issue?

Huge number of samples needed to reduce variance

Amortize planning into a policy

a Output Layer Hidden Layers Input Layer

Extremely slow, hard to run in real time

Speeding Up Model-Based Planning

Use model(s) to generate data for policy optimization

Can use PG or off-policy!

Generating Data for Policy Optimization

Test time

Model Based RL – Using Models for Policy Optimization (v3)

More expensive/harder at training time, faster at test time

Does this work?

Does this work?

A1 Quadruped Walking

UR5 Multi-Object Visual Pick Place

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

Course Overview

Filtering/Smoothing Localization

Mapping SLAM

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Off-Policy/MBRL

What we covered in this class – modular robotics pipelines

Motion Planning

What we covered in this class – end to end RL/IL

Policy Gradient Actor Critic Model-Based RL Imitation Learning

Thank you!