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Making Actor-Critic Practical

Model-Based RL



Learning Algorithms for Robotics

On-Policy Algorithms
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Simple, performant,

Data inefficient
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Data-efficient,
sometimes unstable

Imitation Learning
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Performant, efficient, but
compounding error and
expensive data collection




Policy Gradient - REINFORCE
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V 4
VoJ(0) = / po(T)Velogpe(T)dr {COHect Data J [Takesi;?)die”t
“—— I

]

REINFORCE algorithm:
On-policy—==> 1. sample {7} from 7mg(a¢|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Ve log me(ailsh)) (3, r(si, al))
3. 0« 0+aVeJ(6)



What makes policy gradient challenging?

21

What we do
. N T T | Single sample |
Q| 0 i i timat
b Z Z Vg logmg(ay|s}) Z r(sy,ay) estimate
i=0 t=0 t’=0 What we actually want

High variance estimator!

¢ = e e e =

Hard to tell what matters without many samples

L J

Averaged return estimate



What can we do to lower variance?

What we do

Vol(6) = [ po(r)Vologpa(r)dr /\/‘\‘/
S (s '

1 A
~ Y Vylogmg(aj|s;) . -

i=1 t t'=t Single sample estimate
|dea: bundle this across many (s, a) with a function approximator What we actually want N
I
|
I
I
o ;

@/

Averaged return estimate

Function approximator bundles return estimates across
states



Notation: Q functions 3
!

1 L . i Average
~ Yve log 7o (ay|s;) D r(sy, ap) |
1=1 ¢ t/ =t Sum v

Expected sum of rewards in the future, starting from (s, a) on first step, then =
- ]
Q" (s¢,0ar) = Ep, Z 7“(82, a;)|5t; a; Bundles estimates across (s, a)

\ t' =t _

Use the magic of (deep) function approximation
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Estimation of Q-Functions 4

N T
1 7
~ E g Vg log mg at|5t)Q (St’ at’)

i=0 t=0
T
Q™ (s¢,ay) = Ep, E r(sy, a;)|s:, a; |«—— Monte-carlo approximation
t=t

ldea: Regression from (s, a) to Monte-Carlo estimate

Fully-

ted
Convolution cor;:;gr i
layer 1 Convolution
| layer 2 ) o -~
State ‘\\\ el 127 . O 'v) . . . |
) - [ G I o o Return to Go Unbiased, but high variance!
Action 36 4 < y : 3 g L -'-::I:.}:b
9 Max pooling \\.' ---- |
Max pooling ayer2
layer 1 Output
layers

Input Layer



Can we do better?

N

T

A, . o
2> Velogm(ailsy) Y r(si ap

1=1 t t'=t

! ‘ Much lower variance if estimated well

Can be learned off-policy!

1 ML o o
— 3 ) Vylogm(ai|sh) Q™ (sk, al)

N v v
1=0 t=0

Has special structure we can exploit!!




Recursive structure in Q functions

Q functions have special recursive

structure!

QW(Sty CLt) — Ew@

= r(s¢, at) + Ex

- T

Zr(s;,amst,at

| /=t

Z T(St/) a/t/)‘St_|_1, a,t+1 ~J 7‘(‘(_‘875_1_1)

|t/ =t+1

Bellman Q" (st,ar) =7(s¢,a:) +E see1~p(.|st,at) Q™ (St41,at41)]

equation

00800 ®s

ar41~7o (| St41) /

Can be from

different policies

Decompose temporally via dynamic programming




Learning Q-functions via Dynamic Programming

Policy Evaluation: Try to minimize Bellman Error
(almost)
Bellman — Q7 (st,a1) = 7(se,a0) + B,y p(fsp.ar) (@7 (St41, 1]
equation art1~7o (- [st41)

Same function approximator

How can we convert this recursion into a learning objective?

2
m(;nE(St’at,StH)ND (Q¢ St,a/t — (T(St,a/t) +Eat_|_1’v779(at—|—1|3t—l—1) [Qg(8t+17a’t+1)} ))

/4
/
/7,
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Off-policy

Note: this may look like gradient descent on Bellman error, it is not!



Improving Policies with Learned Q-functions

Policy Improvement: Improve policy with policy gradient

I1N1axX {:SND,QNWQ (CL|S) [QTF@ (87 a’)]

/

Replace Monte-Carlo sum of rewards with learned Q function

Lowers variance compared to policy gradient!



Policy Updates — REINFORCE or Reparameterization

Let's look a little deeper into the policy update

meax J(@) — m@ax ESNDEaNWQ(.|S) [QW(S, CL)]

Likelihood Ratio/Score Function Pathwise derivative/Reparameterization

VQJ(‘9> — ESNDanwQ(.|s) [VO log g (CI,‘S)QT((S, a)] VQJ(H) = ESND]EZNp(z) [VQQW(S, a)|a=,u9+209 Vi (,u@ + 209)]

Easier to Apply to Broad Policy Class Lower variance



Actor-Critic: Policy Gradient in terms of Q functions

Critic: learned via the Bellman update (Policy Evaluation)

minE(st,at,st+1)~D [(Qg(stv a’t) o (T(St7 a’t) + Eat+1N7T(-|3t+1) [QQE(SH'l’ at+1)] ))2]

@
—
Learn Q function
via Bellman

[ Collect ] | Lowers variance and is off-policy!

Data

Take Gradient
\ Steponm
Actor: updated using learned critic (Policy Improvement)

m?JX ESNDEQNW(.|S) [Qﬂ- (87 a)}




Actor-Critic in Action

Approach B.|: Natural Actor-Critic

s

Peters & Schaal (2003). Reinforcement Learning for Humanoid Robotics, HUMANOI
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Going from Batch Updates to Online Updates

This algorithm can go from full batch mode to fully online updates

Collect W | Learn Q function Critic: 1 gradient step on
I sample [ Data { via Bellman Bellman error

Target 1 ( Take Gradie.nt Actor: 1 gradient step

Update J L Step on pi on policy gradient

Allows for much more immediate updates



Challenges of doing online updates

1 sample Collect W .| Learn Q function Critic: 1 gradient step on
P Data via Bellman Bellman error
Target 1 ( Take Gradient Actor: 1 gradient
Update J L Step on pi step on policy

gradient

When updates are performed online, two issues persist:
1. Correlated updates since samples are correlated
2. Optimization objective changes constantly, unstable



Decorrelating updates with replay butfers 7
Updates can be decorrelated by storing and shuffling data in a replay buffer
125 Instead of doing updates in order,
N
D sample batches from replay buffer
w D |
/ — How?
Writ f\
Sampled from replay buffer 1 Sample uniformly

4. ... open area of research!

_— )ND{Q{% o0 g+ Bt [Qa(sensarn)]] 2. Pr!or!t!ze by TD-error
3. Prioritize by target error
s~DLg~m(. |S)

max K
T



Slowing moving targets with target networks :

Continuous updates can be unstable since there is a churn of projection and backup

. T 2
m(bln]E(s,a,s’)ND [ng(st? at) o (T(St7 a’t) + Eat+1N7T(-|3t+1) [QQE(SH'l’ a't+1)]]

If we set ¢ to ¢ every update, the update becomes very unstable

U

Move & to ¢ slowly!

= (1 — 7-)¢ + T& Polyak averaging



A Practical Oft-Policy RL Algorithm

Add to
Buffer Sample batch from buffer

Learn Q function Critic: 1 gradient step on
1 sample Collect
P [ Data via Bellman Bellman error
N r : .
Polyak Target |, Take Gradient Actor: 1 gradient
Averaging Update Step on pi step on policy
J \.

gradient



Simplify -- Can we get rid of a parametric actor?

Critic Update

. . 2
mq;n]E(s,a,s’)ND [ch(stv a’t) o (T(St7 at) + ]Eat+1N7T(-|5t+1) [QQE(SH'L at+1)“

Actor Update

mgx gD “3am7r(.|s) [QW(Sa a)}

What if we removed this explicit actor completely?




Directly Learning Q*

2
minlE; 4 s/)~p [Qg(st, at) — (r(st, ar) + max [qu(StJrl, at—H)])

¢ at41
m(als) = max Q(s,a) Directly do max in the Bellman update
a
N
Add to
Buffer Sample batch from buffer
y,
-
Learn Q function P :
1 sample Collect . Critic: 1 gradient step on
P Data via Beliman Bellman error
\
Polyak Target

, No actor updates, just learn Q!
Averaging Update P J




How can we maximize w.r.t a?

m(als) = max Q(s,a)

T

Analytic maximization can be very difficult to perform in continuous action spaces
Much easier in discrete spaces! = just do categorical max!

Some ideas to do maximization:
1. Sampling based (QT-opt (Kalashnikov et al))
2. Optimization based (NAF, Gu et al)



Practical Actor-Critic in Action
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Trained using QT-Opt



Practical Actor-Critic in Action

Trained using DDPG



What makes off-policy RL hard?

Deadly triad:

1. Function Approximation
2. Bootstrapping—
3. Off-policy learning

) 2

mqbinE(s,a,S’)ND Qg(stv at) - (T(Sh at) + Igl?j( [qu(sﬂ’l’ Clt+1)})

These in combination lead to many of the difficulties in stabilizing
off-policy RL with function approximation



/ooming out — what makes off-policy RL hard?

Deadly triad:
1. Function Approximation
2. Bootstrapping 61% of runs show divergence of Q-values

3. Off-policy learning

100000 - Q -
o 12222(:51% 14%1 33%| 10% ] Diverges even with linear
Q  100- | function approximation,
w  10- <P <|> _ when off-policy +
g 1- - bootstrapping
0.1 - ”
0.01 - -

I | I I
Q Target Q Inverse Double Q
Double Q

Deadly Triad, Van Hasselt et al
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What it we just learned how the world worked?

Agent )

T
sta}te reward action maX ETNWQ g r St7 at
\Y R, A, t—=0

i Rr+l P
= :
St Environment ]4

L @
o
\

t

v

1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model



Why do model-based RL?

Transfer/Adaptive
' kx
J/ s
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Why would we do this?

Efficiency

Handwriting: Arbitrary Trajectories

— SAC

— NPG

—— PDDM (Ours)
0.0 0.1 0.2 0.3 0.4

Number of datapoints (M)

Naturally off-policy!

Simplicity

7

=

Ut sy,
7

1y
At

2
7
7

2

7
it
LI
7548
by

./
v,

4
)

- SGD
== Momentum
- NAG
sl — Adagrad
'”'I"'#I:"};/f,"# Adadelta

anlly
D1
i Rmsprop

s

EPIRNNIA]

XA
BN
NN

1.0



Why do model-based RL?

Just 2 hours of real robot training



Model Based RL — Problem Statement

Model Learning

@4» Do — arg minE(D,ﬁg)

Peo

Planning

arg Hl;lXEﬁm Zr(st,at)
é 5 é fi '\t _

Can also just be a single trajectory

How should we instantiate these?



Model Based RL — A template

4 )

- Model Learning
/ - J
A

Data Collection

/
A 4

Planning

-

-




Model Based RL — Naive Algorithm (v0)

Maximum likelihood supervised Learning

4 N
maXE(s,a,s’)ND [lOgﬁg(S/‘S, CL)]
/' Model Learning / ‘
4 AN /

Data Collection

g J v

\f N
PIanning Random Search

\

‘ =




Model Based RL — Naive Algorithm (Model Learning) (vO)

A /
meax E(S’Q’S/)ND [log pQ(S ‘S, CL)] Fit 1-step models
Input Layer A‘I-idden Layirs Output Layer

= SGD
- Momentum

NAG
7 Adagrad
Adadelta
4 — Rmsprop
2 ST,
— 0 5508
-2
-4
2 3 1.0
’ -1.5 '

— \More expressive may be

Choice of pg distribution determines the loss function: petter at the risk of

Trick: Model Residual’s (s’ — 1. Gaussian 2 L o overfitting
) 2. Energy Based Model & Contrastive Divergence

3. Diffusion Model - Score Matching




Model Based RL — Naive Algorithm (Planning)

T
max Zr(ét,at)
) aop,aq,..., aT —0
Planning o ) )
St+4+1 p0(5t+1|5t7 Clt)
S1 ~ po(sta1]so,ap)
! ‘ Just do random search!
T
arg max E r(s,a}) Just execute
ap,a7, 07 g / actions open

11~ bo(-13,af) - ooP

Can soften by taking softmax rather than argmax



Model Based RL — Naive Algorithm (MPC)

Without feedback, an open loop

controller can diverge even for minimal Replanning can help with divergence

%
= ~d Model-Predictive/Receding Horizon Control

1. Plan with random shooting from s,
2. Execute the first action ay and reach s, ;




Model Based RL — Naive Algorithm (v0)

Data collected
from planner

loop planning

-

_—

(

\_

\

Model Learning

N\ Y,
Data Collection
J ¥ N
\ Planning
. Y

A, A7 ey ar i—o

T
Better than open arg max » r(s,a])
because of feedback |

Sip1 ~ Dol )

Maximum likelihood supervised Learnin

max E(s,a,5')~D [log Po(s'|s, a)]

Planning with Shooting + MPC




Does it work?

2X SPEED

Just 20 minutes of training time with random data!



Does it work?

Significant gap from MFRL

Cumulati\L Reward

Cheetah
6000
5000 M
4000
3000
2000
1000
—  Mb
0 — Mf
—— Mb-Mf (ours)
—~1000 ) _
103 104 10° 106 10° 108 10°

Steps



What might be the issue?

Rollouts under learned model = Rollouts under true model

\—> Model bias/compounding error

True Rollout
Why does this happen? - lack of data

N 1. Errors in state go to OOD next states
S 2. Deviations in actions go to OOD next
Predicted Rollout Under Model states l

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!



How might we deal with compounding error?

|dea: Estimate when OOD and account for it

> Measure uncertainty!

Maximum likelihood models Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!



What is uncertainty?

Alleatoric Uncertainty Epistemic Uncertainty

(environment stochasticity)

—— CrouRd THith Epistemic Uncertainty

- Bootstrap 1 .
-—— Bootstrap 2 ¥
x  Training Data @

Easier, can use
stochastic
models

Aleatoric uncertainty

(Lack of data)

More challenging, need
to compute posterior

Let's largely focus on epistemic uncertainty



How might we measure uncertainty?

p(6|D)
1. Bayesian neural networks
2. Ensemble methods > ;-
3. ... N

Low data regime = high ensemble variance

[
>
)
-
c
v
: %
>
&

Difficult to estimate directly!

Learn an ensemble of models

)v
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o
3
c
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]
=
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Approximate posterior



“Model Based RL — Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

] 5 .
= 9 g
? 7 E
5 5 5
p’ " pot
=3 > >
Q Q o
= = =
p=3 -] p=l
3 3 3
0 0 0
s g S
> > >
< < <
5 5 3
c P p=
@ @ [
EW £\ eoe 2\
9] 5 .

> 9 g

[} ] <

k) ) k)

o cee " ceoe = eee
=3 p=3 =3

Q Q o

£ £ £

mQaXE(s,a,s’)ND [lOgﬁ9(8/|S, a)] mGaX]E(s,a,s’)ND [logﬁ9(5/|87 CZ)] meaX]E(s,a,s’)ND [lOgﬁ9(8,|S, CL)]

Learn ensembles by either subsampling the data or having different
Initializations



Model Based RL — Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Low uncertainty Expected value over ensemble

S |
Mv arg  max ZZT

WA 7T _ \ (ao ai ..., CLT)J 1 i—1 =0
\L-7~ L L "—@‘\ -~ J i A AV
\ - =N —- (St—|—1> ~ pg, (-|(57)", ay)
/ '\ - —

High uncertainty Can also swap which ensemble
element is propagated at every
step or just pick randomly amongst

them
Avoids overly OOD settings since the expected reward is affected by uncertainty




Model Based RL — Integrating Uncertainty into MBRL (v2)

Take pessimistic value under the uncertain
dynamics

Low uncertainty Penalize ensemble variance

K 1 l
arg - max Y0y r((3)af) — AVar((8]))

High uncertainty

Avoids overly OOD settings since these states are explicitly penalized



Does this work?




What might be the issue?

Huge number of samples - 5
needed to reduce variance

Output Laye

Amortize planning
into a policy

Hidden Layers
¥ M

%
\/

Extremely slow, hard to run in real time

Input Layer




Speeding Up Model-Based Planning

max E N log Dol s’ Use model(s) to generate data for
GX (5,a,5') D[ gpe(s |8’a)] policy optimization

Input Layer Hidden Layers Output Layer
’J Agent |

C N
{ Wit

>< state| |reward action
S, R, A
R ~

t+1

S.. | Environment ]<

<

Can use PG or off-policy!



Generating Data for Policy Optimization

Add Fake Sampled

Data to Buffer Policy Optimization

Learn models

Y
—

Train time

2
— D — mgnE(s,aﬁ/)ND “Qg(st, ag) — (r(se, ae) + {E?f [Q$<5t+1,at+1)])} ]

N—

Rollout in environment

7TQ <

Test time




‘Model Based RL — Using Models for Policy Optimization (v3) .

r A
Model Learning
- J
A 4
r R

e A
@ Data Collection —
_ Y
A
e N
Policy
Optimization
. Y
m(gnE(s,a,s/)ND “Q;Z(st,at) — (r(st,a¢) + %ﬁ@l{ [Q&(Stﬂ, at—l—l)]) ]

\_

Generate Data

J

Maximum likelihood supervised Learnin

mHaX ]E(s,a,s’)ND [lOg ﬁQ (8/ ‘ S, CL)]

More expensive/harder at training time, faster at test time



Does this work?




Does this work?

S
~

A1 Quadruped UR5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation



Course Overview

e | &




“What we covered in this class — modular robotics pipelines

4 )
High-level
N\ ~N planning - ~
' - J
State Mo;jneclllng Low-level |
Estimation . control
Prediction - ~
O\ J N\ J
Low-level
planning
EKF/UKF/Particle Filter SLAM % ) LQR/PID

Motion Planning



What we covered in this class — end to end RL/IL

4 )
High-level
N ~ planning - ~N
' \_ J
State S Moadne(!llng Low-level
Estimation . 4 ) control
Prediction
J J Low-level \ J
planning
\_ J
-
End to end policy —
— perception + control
\_ A W

Policy Gradient Actor Critic Model-Based RL Imitation Learning



Thank youl!



