Robotics

Spring 2023
Abhishek Gupta
TAs: Yi Li, Srivatsa GS

Recap: Course Overview

MDPs and RL

Imitation Learning

Solving POMDP:

Lecture Outline

Reinforcement Learning: Motivation

Imitation Learning

Policy Gradient and Beyond

10

When is optimal control + planning not enough?

/ Unstructured Environments \

|
Diversity Variability Complexity

Challenging to model these environments

How does a typical robotics pipeline look?

/_ ;
M(q)ga+ C(q,q)q =T + Bu ,
(@)d + C(a,4)q = 74(q) 1 High-leve
- N\ N /| planning f\ - D
Modeling \-
_| State R and Low-level |
Estimation . control
Prediction - ~
_ J _ J
Low-level —
planning © g o] ¢ — +21 g v
\- J ot —

Deep reinforcement learning pipeline for robotics

State
Estimation

~

-

J

_

Modeling
and
Prediction

~

-

J

_

High-level
planning

~

J

-

_

Low-level
planning

~

-

J

_

Low-level
control

~

J

End to end policy —
perception + control

What is reinforcement learning?

Remove assumption for known environment Y

model, learn directly from data /

Modeling assumptions

Agent g Actions % Environment
A &
LS ;
>’ N 3
. agd |

VA "A
‘LL’ Q Observations/Rewards D

Agent has: Environment accepts:
* Sensing * Actions from agent
* Actuation

Produces
* Observations for sensors(usually unknown)

Why would you do this?

Remove assumption for known environment Y

model, learn directly from data /

Modeling assumptions

Pros: Cons:

1. Continual improvement on 1. Potentially prohibitive data
deployment requirements

2. Avoid significant modeling 2. Sometimes unstable, lacks
assumptions and simulation guarantees

3. Scale across tasks easily! 3. Poor extrapolation

Promising and useful tool in unstructured, dynamic environments

Connection to Optimal Control

Closely related: typically problem of finding control given a plant
model

X
/ L(t, 2(t), u(t)).dz
r,u

w.r.t

Main difference: model known vs unknown
Minor differences: Cost vs reward, discrete vs continuous time

Is it useful for robotics?

Robots that get better over time, adapting to new environments

iRobot

Is it useful for robotics?

Robots that get better over time, adapting to new objects

Kalashnikov et al 18

Is it useful for robotics?

Robots that get better over time, adapting to new terrains

Miki et al 22

Is it useful for robotics?

Robots that get better over time, adapting to new tasks

%‘

Gupta et al 21

Why should we care about RL?

Allows agents to continue improving/adapting on deployment with minimal human
effort

Locomotion Manipulation

Agents can overfit to domains at test time rather than per-domain human design

Why should we care about RL?

Hypothesis: By designing algorithms that can improve themselves, we can reach fully intelligent systems

“Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child's? If this
were then subjected to an appropriate course of
education one would obtain the adult brain” —

Alan Turing

Rather than try to directly replicate behaviors,
try to replicate adaptative learning
mechanisms

Markov Decision Processes

States: S

Actions: A

Rewards: R

Transition Dynamics -p(s;11]|s¢, at)

Markov property p(sl, S92, 83) — p(SS‘SQ)p(SQ \sl)p(sl)
Trajectory T — (SQ, ap,T7o,S1,41,71,...,ST,0T, TT)

MDPs to the Real World

Task: Place kettle in sink

State: Camera Images / Joint Encoders

Action: Joint torques/velocities

D

)

|) Reward: Distance from kettle to sink

Transition: World physics

Reinforcement Learning Formalism

* Rules for choosing actions
——————————————————————— At
f
’,[AgentJ— 4 N
state| |reward action Policy
S | |R A
< R f i \\‘\ | 7-‘-9
, < Environment _ : _/
T "

Maximize the sum of expected rewards under policy

Needs to be learned

Reinforcement Learning Formalism

* Rules for choosing actions
——————————————————————— At
f
’,[AgentJ— - “
state| |reward action Policy
S | |R A
R f | o
P Environment _ : _/
& "

T
m@ax S E r(s¢, at)
T | t=0

Needs to be learned
Trajectory sampled using policy

Why Is this not just supervised learning?

Supervised Learning Reinforcement Learning
T
ngX E(x,y)ND log po(y|x)] mQaXETNW@ ZT St,Q¢)
| =0
Sampling from expert Sampling from policy
Dx1, (p*Hpe) 11D Dx1, (per*) Non-IID

——~~
- ‘\
- —
\ - —
PR

Main thing to learn - Policies

Policies are mappings from states to optimal actions

Tabular Linear Arbitrary function approx
Fully-
Convolution . cor?;yeecrted
y 26 | Z Q1 ----
! 3 ’ Max9 oolin: * 'HYE'ZV I
3 ayer 1 utput
ayers
Input Layer
. Decision Node) Root Nod
—_ |
m(a|s) = (P(s,a), w) s Voo v
= : Sub-Tree "5 icion Nod : Decision Nod
! I ' I
| |
. : Leaf Node Leaf Node | Leaf Node Decision Node
_____________) |
ea ode

Where is Reinforcement Learning not useful?

Not the right call for very safety-critical, repetitive applications

3D Trajectory

\ tﬁ)
‘l. ".
\
X
-+
L
\

Paosition y [m]

Where is Reinforcement Learning “potentially” useful?

Domains which have high diversity, yet relatively cheap autonomous data collection

But these domains are not as simple as just running RL algorithms!

Learning Algorithms for Robotics

On-Policy Algorithms

t

@ &

'

Update\‘

Simple, performant,

Data inefficient

Off-Policy

Algorithms

|

t

v EBuﬁerj
? Update\‘

Data-efficient,
sometimes unstable

Imitation Learning

r‘

@

AR
H
¥Buffer j

Performant, efficient, but
compounding error and
expensive data collection

Objective of Reinforcement Learning

* Rules for choosing actions
——————————————————————— Uy
f
’,[AgentJ— - “
state | |reward action Policy
X R A, 9

E RI+1 (\\\\

[.
, |5,+1| Enwronment} \ : _/
@ \\\\\\\\ St E

T
max K-, E r(s¢, ar)
6
T | t=0

. Needs to be learned
Trajectory sampled using policy

Objective of Reinforcement Learning

state reward
S, R,

i

max K-,

T

Trajectory sampled using policy

&

pott

| =0

r Staat

:[AgentJ—
4 R (
| S | Environment]4

Assumptions:
action 1. Rewards are additive
A, 2. Dynamics can be sampled
from, but functional form is
unknown
3. Rewards are provided as
every state is visited,
functional form is unknown

Lecture Outline

Reinforcement Learning: Motivation

Imitation Learning

Policy Gradient and Beyond

What makes RL hard?

state

Exploration: Find the right data

reward
R,

t+1

’_I Agent J

~

iR
-
N
-

-
t+1

\,

action
A,

Environment]4

Exploitation: Using the exploration data

Exploration is challenging in itself in large state spaces, and
exploration + exploitation is particularly tough

- let’s avoid for now!

Imitation Learning (IL) in a Nutshell

Given Demonstration

Goal a policy to mimic the demonstrator

Behavior Cloning

Given demonstration D* = s}, a3, s;, as, ...

Optimize argminE: ,:y-p- L(a; | m(als;))

e.g. (n(s]) — a;)*

Credit: Deep Reinforcement Learning, Sergey Levine.

ALVINN: Autonomous Land Vehicle In a Neural Network

What’s Hidden in the Hidden Layers?

The contents can be easy to find with a geometrical problem,
but the hidden layers have yet to give up all their secrets

David S. Touretzky and Dean A. Pomerleau AUGUST 1989 « BYTE 231

Road Intensity 45 Direction milliseconds on the Sun-3/160 worksta- work chooses a representation in which

Feedback Unit Output Units tion installed on the NAVLAB. hidden units act as deteetors for complete

The hidden-layer representations AL- roads at various positions and orienta-
VINN develops are interesting. When tions. When trained on roads of variable
trained on roads of a fixed width, the net- continued

8x32 Range Finder
Input Retina
30x32 Video
Input Retina SRS
Figure 1: ALVINN ite ;::-‘rr?all:r::: NAVLAB autonomous navigation test-bed vehicle and the road used

Covariate Shift

= Imitation Learning # Supervised Learning

— training tra

Image Credit: Deep Reinforcement Learning. Sergey Levin.
Video Credit: Skydio Autonomy, “Deep Neural Pilot on Skydio 2”

Covariate Shift

= |Imitation Learning # Supervised Learning

— training tra
— Ty expectec

arg min L(a;k | T(als]))

Image Credit: Deep Reinforcement Learning. Sergey Levin.
Video Credit: Skydio Autonomy, “Deep Neural Pilot on Skydio 2”

Learn to Recover from Mistakes

Training the classifier

.\

Is there a more general purpose solution?

DAgger

Reformulate Imitation Learning as an Online Learning

|
problem Po(8¢) — Pirain(S¢)

DAgger: Dataset Aggregation, 2011

1 Initialize 7r; to any policy in II.

Query Expert
2 fori=1to N do [

3 Sample trajectories using ;.

i Query expert for labels: D; = {(s,7*(s))} of visited states
, Aggregate datasets: D+~ DD

7 Train classifier 7;,1 on D.

Combats covariate shift by bringing py and py.i, together

Credit: “A Reduction of Imitation Learning and Structure Prediction to
No-Regret Online Learning” Ross 2011. Video Credit: The Bird MURI project.
Drew Bagnell’s group.

Lecture Outline

Reinforcement Learning: Motivation

Imitation Learning

Policy Gradient and Beyond

Let's revisit the overall RL problem

:l Agent Jl
state reward action d
S, R, A, max Erer, E r(se, at)
§< Rr+l 4 t=0
<< Environment]4
| k.

_—

Gradient Ascent Dynamic Programming Model-Based Optimization

Each method has it's own +/-

~What if we just performed gradient ascent?

T
max K, r, g r(st, az)

0
| t=0
:/pQ(T)R(T)dT
Standard gradient descent (supervised learning) REINFORCE gradient descent (RL)
VoEg~g(z) [fo(2)] VoEqpy(z) [f (7))

Gradient wrt expectation variable, not of integrand!

14

Taking the gradient of sum of rewards

7(6) = / po(r)R(r)d(r)
VoI (0) = / (1) R(r)d(r)
= [Vono(r -/ PoT) G o () R(7)d(7)

po(T)
/ o(T)Vglog pg(T)R(1)d(T) = Epy(r) [V log po(T)R(T)]

REINFORCE trick

Taking the gradient of return

15

Initial State

Dynamics Policy

po(T) = p(s0) L,y p(ses1]s¢, ar)m(ar|se)

T—1

(@ @) @ @
OROROR0)
(0 @ @ @

log po(7) = log p(s0) + Z log p(st+1]st, at) + log m(at|st)

g}\iﬂ s¢,at) + Vglogm(ag|st)

Vologpe(T) = Vg IEg{(

Vo logpg(T

t=0
T—1

s0) + » Vglo

tOTl

t=0

Z Vo log W(at\st)\

Model Free!!

16

Taking the gradient of return

T
VoJ(0) = Erpy(r) |Vologpe(r) Y r(se,an)

! t=0
ap - -
VoJ(0) =F op(so) > Vologmo(ag|se) » r(se,a)
St4+1~D(St+1]5¢,a+) | =0 t'=0 i
atww(at|st)
N T T
N : :Vg log g (ay|s}) Z r(sy,ay) (approximating using samples)
i=0 t=0 t/=0

What does this mean?

T
Vo J(0) = / o(T)Vglogpe(T S‘S‘Vg log g (at|st) Zr(si,,ai/)

zOtO t'=0

Increase the likelihood of actions in high return trajectori

0.5 A

R =30

0.3 A

l
ol /)

Density

R =100

004 =T e l "

Action

Resulting Algorithm (REINFORCE)

-l 4

VoJ(0) = / po(T)Velogpe(T)dr {COHect DataJ [Takesi;die”t]
“—— I

REINFORCE algorithm:
On-policy—==> 1. sample {7} from 7mg(a¢|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Ve log me(ailsh)) (3, r(si, al))
3. 0« 0+aVeJ(6)

19

How Is this related to supervised learning?

Reinforcement Learning Supervised Learning

V@J(e) — /pg (T)V@ logpQ(T)dT meax E(aj,y)ND [logpﬁ (y‘x)]

T
. 1 i
il Y S‘Ve log g (a|st) Z r(sy,ay) ~ N Z Vo logpe(y*|z’)

zOtO t’'=0

PG = select good data + increase likelihood of selected data

What makes policy gradient challenging?

21

What we do
. N T T | Single sample |
Q| 0 i i timat
b Z Z Vg logmg(ay|s}) Z r(sy,ay) estimate
i=0 t=0 t’=0 What we actually want

High variance estimator!

¢ = e e e =

Hard to tell what matters without many samples

L J

Averaged return estimate

Variance Reduction with Causality

Idea: Trajectory returns depend on past and future, but we only care about the
future, since actions cannot affect the past. Instead, consider “return-to-go”

—vielogﬁe at|8t>z (Si/,ai,) /\/\/
1=0 t=0 =0

{ J

Full trajectory return

(J
|

Includes t’ < t
Ignore past terms ‘ ‘

| N T T /—\\,i/./_‘\/
~ 22 Vologmo(ails;) p _r(s}.ap)
— . .

—
1=0 1t t'=t

Return to go

Can we reduce variance further?

high variance

Arbitrarily uncentered, scaled returns can lead to huge variance:
- Imagine all rewards were positive, every action would be pushed up, some more than others
- What if instead, we pushed down some actions and pushed up some others (even if rewards are posi

Credit: Sergey Levine

Variance Reduction with a Baseline

ldea: We can reduce variance by subtracting a current state dependent function
from the policy gradient return

T
Vo log mg(alls?) Z r(stal) — b(s;)

1l ~—
N v
1=1 t= _th i

Baseline: Centers the returns, reduces variance

N

l(J%

But does this increase bias??

Variance Reduction with a Baseline

T
//p(St,a,t)VQ log g (a|st) {Z r(sy,ap) b(st)} dsy day
sJa Py

//p(st,at)ve log g (a¢|st)b(st) dsy day
SJA

T
//p(St at)Velogﬂe at\St {ZT } ds; day —
SJA

t'=t

———————~

-—— e = = mm =

Let us show this is O!

Variance Reduction with a Baseline

//p(st,at)Vg log mg(as|s;) [b(sy)] dsyday ://p(st)m(at]st)VQ log g (a¢|s¢) [b(s¢)] dsiday

_ / p(s)b(s1) / ro(as]50) Vo log mo(ar|s,)dagds,
_ / p(s0)b(s,) / Vormo(as|s)dasds,

:/p(st)b(St)VQ/779(@t|3t)daftd3t — /p(St)b(St)VG(l)dSt — (

Unbiased!

Learning Baselines

Baselines are typically learned as deep neural nets from RS - R’

Fully-
. connected
Convolution layer
layer 1 Convolution
layer 2 1ot lo
| R e 6 5 ,;‘i’,:.::-’ .v
T 5 T e
! [=y 12 7 v S 6 @1‘,;"'- ..’:,"\‘:‘\\
36 . 5 , 1 |
3 i N | -9
, 9 Max pooling @[
Max pooling ayers
layer 1 Output
layers
Input Layer
1 M H o T
—E Vsjaj—grsjaj _ ,
N |V (st,az) (51, a1)l] A(ss,ap) = r(sy,a;) — V(st)
j=1 t=1 iy

Minimize with Monte-carlo regression at ,
every iteration, club with policy loss Allows us to define advantages

Lecture Outline

Reinforcement Learning: Motivation

Imitation Learning

Policy Gradient and Beyond

Take a deeper look at REINFORCE

Vo J(0) = /pg(T)Vg log pg(7)dT ~ ZZVQ log 7 (at|s?) Z r(st,at)

zOtO

Gradient descent is steepest descent on linear approximation under the Euclidean metric

Take a deeper look at REINFORCE

Vo J(0) = /pg(T)Vg log pg(7)dT ~ ZZVQ log 7 (at|s?) Z r(st,at)

1=0 t=0
Gradient descent is steepest descent on linear approximation under the Euclidean metric

max J(0;) + VgJ(0)|p=e,(0 — 0;) Linear approximation
(0 —0,)1(0—-6;) <e Quadratic Constraint

|

0=20;,+ &V@J(@)’gzgi

When might this fail?

Large step sizes may cause collapse Sensitive to Policy Parameterization

—

Very different!

Must use very small step sizes, slow! Can struggle for a deep neural network!

Parameterization dependence of PG

Sensitive to Policy Parameterization

L(0) = 6, + 6, L(¢) = ¢1° + ¢5
¢ = 07
P2 = 92_1
Vo, L = Vs, L =0.5¢7°° =0.507"

V@QL =1 Not covariant! VQSQL — _sz_z — _‘93

Modified Constraint on Policy Gradient

max J(9)+V9J()|9 6, (0 0;) max J(0;) + VoJ(0)|o=s,(0 — 6;)

(0 —6,)"G(0—0;) <e
(ﬁ =

Oiv1 = 0; + aG~'VyJ(0)]g=s,

|— Rescales according to G

Adaptive choice of G can avoid sensitivity to policy parameterization!

Covariant Policy Gradient Updates

max J(0;) + VoJ(0)|o=g, (0 — 0;)

- What should G be?

max J(0;) + VgJ(0)|g=g, (0 — 6;) Let us use the constraint
as KL divergence on the
Dxgv(mo||mo,) < € solicy
(2"d order Taylor
expansion)

Measures functional distance, not parameter distance

Resulting “Natural” Policy Gradient
4 max J(60;) + VeJ(0)|g=e, (0 — ;) A
Dy (mol|mg,) < €
2"d order approximation of KL = Fisher Information Metric
\ F=E,, [(V@ log) (Vg log W@)T]/
4 max J(0;) + Vo J(0)|o—p, (0 — 6;))

(0 —0,) ' F(0—0;) <e

\ Resulting update (9@'_|_1 — 97, + CMF_1VQ J((g) ’9:91- Covariant to parameteriza

tion
/

Natural Policy Gradient in Action

-10!

Expected Return
.

Rollouts [log-scale]

10° 10' 10° 10° 10*

(b) Minimum motor command with mo-
tor primitives

-10!
£
2
3 & |
5"10 S wwr %
£ wlt (7]
412 el 4
] F7/
o« |
38
g o8 Rollouts [log-scale]
2% 0% 100 102 10 10* 0% 108
9 (c) Passing through a point with splines
1
-10 —
Trials [linear] § 11
0 100 200 300 400 § /{
(a) Performance. (b) Imitation learning. (c) Initial reproduction. (d) After reinforcement ’i W
learning. 102(d)
//
/.
Rollouts [log-scale]

10° 10! 102 103 104

(d) Passing through a point with motor

primitives
- Finite Difference Gradient
Vanilla Policy with

Vanilla Policy Gradient with time-variant baseline
Episodic Natural Actor-Critic with single offset basis functions
— Episodic Natural Actor-Critic with time-variant offset basis functions

Peters, Schaal ‘08

Recap: Course Overview

Solving POMDP:

