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n Minimize sum of costs, subject to dynamics and other constraints

Goal of Optimal Control
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min
u1:T

TX

t=1

g(xt, ut) +G(xT , uT )

s.t. xt+1 = Axt +But

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds
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xt+1 = f(xt, ut)



n Allows for integration of other costs/preferences

n Can be parameterized as closed loop 

n Allows for ”optimal” closed-loop controllers, stable under 
disturbances 

From Motion Planning to PID to Optimal Control
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min
K1:T

T�1X

t=0

g(xt, ut) + g(xT , uT )

s.t. xt+1 = f(xt, ut)

ut = Kt(xt)



n Motion planning and optimal control are not orthogonal à
complementary

n Can set costs for optimal control to track motion planning solution

From Motion Planning to PID to Optimal Control

Seed cost for OC



n Optimal Control for Linear Dynamical Systems and 
Quadratic Cost (aka LQ setting, or LQR setting)
n Very special case: can solve continuous state-space optimal 

control problem exactly and only requires performing linear 
algebra operations

n Running time: O(H n3)

Note 1: Great reference [optional] Anderson and Moore, Linear Quadratic Methods

Note2 : Strong similarity with Kalman filtering, which is able to compute the Bayes’ filter 
updates exactly even though in general there are no closed form solutions and numerical 
solutions scale poorly with dimensionality.

Tractable Optimal Control Problem - LQR



Linear Quadratic Regulator (LQR)



Examples of LQR systems

Double Integrator Many systems can be easily linearized



Extension to Non-Linear Systems



LQR Problem Statement
n Minimize sum of costs subject to linear dynamics 

constraints <latexit sha1_base64="SuBr7ILwcVK8iTsolJJw4mbnOew="></latexit>

min
u1:T

TX

t=1

g(xt, ut) +G(xT , uT )

s.t. xt+1 = Axt +But

<latexit sha1_base64="+GPVDU5hEUtidpGKfDLGwP9+ohg="></latexit>

min
K1:t

TX

t=1

g(xt, ut) +G(xT , uT )

s.t. xt+1 = Axt +But

ut = Kt(xt)



Recursive Solution to LQR Problem 

n LQR:



LQR value iteration: J1



LQR value iteration: J1 (ctd)
n In summary:

n J1(x) is quadratic, just like J0(x).  

à Value iteration update is the same for all times and can be done in closed form for this 
particular continuous state-space system and cost!



Value iteration solution to LQR



n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Penalization for change in control inputs

n Linear time varying (LTV) systems
n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



n Optimal control policy remains linear, optimal cost-to-go function remains 
quadratic

n Two avenues to do derivation:

n 1. Re-derive the update, which is very similar to what we did for standard 
setting

n 2. Re-define the state as:  zt = [xt; 1], then we have:

LQR Ext0: Affine systems



n Exercise: work through similar derivation as we did for the 
deterministic case, but which will now have expectations.

n Result: 

n Same optimal control policy

n Cost-to-go function is almost identical: has one additional term 
which depends on the variance in the noise (and which cannot be 
influenced by the choice of control inputs)

LQR Ext1: stochastic system



Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:
[=standard LQR]

LQR Ext2: non-linear systems

A B



LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n When run in this format on real systems: often high frequency control inputs 
get generated.  Typically highly undesirable and results in poor control 
performance.

n Why?

n Simple special case which works well in practice: penalize for change in 
control inputs. ---- How ??



n Standard LQR:

n How to incorporate the change in controls into the cost/reward function?
n Idea 1: explicitly incorporate into the state by augmenting the state with the past control input 

vector, and the difference between the last two control input vectors.   

n Idea 2: change of control input variables.

LQR Ext3: Penalize for Change in Control Inputs



A’ B’x’t+1 x’t= + u’t

[If R’=0, then “equivalent” to standard LQR.]

LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n Introducing change in controls Δu:



LQR Ext4: Linear Time Varying (LTV) Systems



LQR Ext4: Linear Time Varying (LTV) Systems



LQR Ext5: Trajectory Following for Non-Linear Systems
n A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and 

only if

n Problem statement:

n Transform into linear time varying case (LTV):

At Bt



n Transformed into linear time varying case (LTV):

n Now we can run the standard LQR back-up iterations.

n Resulting policy at i time-steps from the end:

n The target trajectory need not be feasible to apply this technique, 
however, if it is infeasible then there will an offset term in the dynamics:

LQR Ext5: Trajectory Following for Non-Linear Systems



n How about this general optimal control problem?

Most General Case



Iteratively Apply LQR



Iterative LQR in Standard LTV Format

for simplicity and with some 
abuse of notation we 
assumed g(x,u) = g(x) + g(u)



n Yes!

n At convergence of iLQR, we end up with linearizations around the (state,input) trajectory the 
algorithm converged to

n In practice: the system could not be on this trajectory due to perturbations / initial state being 
off / dynamics model being off / …

n Solution: at time t when asked to generate control input ut, we could re-solve the control 
problem using iLQR over the time steps t through H

n Replanning entire trajectory is often impractical à in practice: replan over horizon h.  = 
receding horizon control

n This requires providing a cost to go J(t+h) which accounts for all future costs.  This could be 
taken from the offline iLQR run

n More on this later!

Can We Do Even Better?



Cart-pole

[See also Section 3.3 in Tedrake notes.]

H(q)q̈ + C(q, q̇) +G(q) = B(q)u



Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 0;  [x, theta, xdot, thetadot]

Results of running LQR for the linear time-invariant system obtained from linearizing around 
[0;0;0;0]. The cross-marks correspond to initial states.  Green means the controller succeeded 
at stabilizing from that initial state, red means not.



LQR in Action

Klemm et al 2020



n Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller
https://arxiv.org/abs/1506.07365

n Deep Spatial Autoencoders for Visuomotor Learning
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
https://arxiv.org/abs/1509.06113

n SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine
https://arxiv.org/abs/1808.09105

Learning Linear Dynamics Latent Spaces

https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1509.06113
https://arxiv.org/abs/1808.09105
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Zooming out: Optimal Control
n LQR is a special case of optimal control with analytic 

solution

n Optimal control more generally solves this problem

n Challenge: often non-convex and challenging to optimize!
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xt+1 = f(xt, ut)



Two techniques for optimal control
n Shooting: 

n Optimize for actions such that cost is minimized and future states 
are implicitly defined by actions

n LQR is a shooting method with linear dynamics and quadratic cost

n Collocation: 
n Optimize for actions and states such that cost is minimized and 

the dynamics are explicitly satisfied as a constaint

Shooting 
(optimize actions) Collocation (also opt states)



Optimal Control -- Approaches

shooting

collocation

Return open-loop 
controls u0, u1, …, uH

Return feedback policy 
(e.g. linear or neural net)



Optimal Control: Shooting
n Only optimize over actions to minimize cost

n Usually easier to specify valid domain, but worse conditioning

Only optimize these



Optimal Control: Collocation
n Jointly optimize over both states and actions to minimize 

cost, subject to constraints

n Better numerical conditioning



n Let’s reconsider:

n Rolling out u0, u1, …, uH can often be unstable because small numerical 
errors (or noise) can amplify in case of unstable dynamics

n In turn, this can make this formulation unstable to optimize

n Solutions:
n During roll-out, use re-planning (model-predictive control)

n Use collocation

(In)stability of Open-loop Shooting



n Shooting: 
n Improve sequence of controls over time, at all times u (or pi) are meaningful

n Often poorly conditioned (effect of early u so much higher than later u)

n Not clear how to initialize in a way that nudges towards a goal state

n Collocation
n Might converge to a local optimum that’s infeasible, and until converged often not feasible

n x provides decoupling between time-steps, making computation stable

n Can initialize with simple linear interpolation or guess of good trajectory

n Iterative LQR?
n Specific example of a shooting method, with linear controllers, and second order optimization

Collocation versus Shooting



Let’s look a little closer



Solving Problems with Direct Shooting

Solution 1:
Linearize and perform iLQR/DDQP

Solution 2:
If differentiable, direct backpropagation through time

Solution 3:
Formulate as a convex optimization problem, 
use convex solver (gurobi/snopt)



Visualization of Direct Shooting



Visualization of Direct Shooting



Visualization of Direct Shooting



Visualization of Direct Shooting



Visualization of Direct Shooting



Poor Conditioning in Direct Shooting



Poor Conditioning in Direct Shooting



Poor Conditioning in Direct Shooting



Poor Conditioning in Direct Shooting



Poor Conditioning in Direct Shooting



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Narrow Feasible Region



Comparison between Shooting and Collocation



Comparison between Shooting and Collocation



Let’s think about collocation



Solving Collocation Problems

Idea 1: Direct constrained optimization 
through forward dynamics

Idea 2: constrained optimization 
through inverse dynamics



Collocation with Inverse Dynamics



Collocation with Inverse Dynamics



Advantages of Direct Collocation



Feasibility under Direct Collocation



Feasibility under Direct Collocation



Shooting vs Collocation



Optimal control methods in action



Optimal control methods in action



Optimal control methods in action
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How can we prove that a controller is stable?

Lyapunov Stability



What is stability?

t

e(t)

Time

Er
ro

r

Technically: this is global asymptotic 
stability, there are other notions of stability



More technically precise definitions

Stable i.s.l: doesn’t go 
unbounded

Asymptotically stable à
converges

Exponentially stable à
converges fast



Let’s start with a simple system

Can derive via method of Lagrange or newtons laws of motion



Is a pendulum stable?

Choose such that 

What control law should we use to stabilize the pendulum, i.e.



How does the passive error dynamics behave?

Set u=0. Dynamics is not stable, pendulum keeps oscillatin



How do we verify if a controller is stable?

Is this stable? How do we know?

We can simulate the dynamics from different start point and check….

but how many points do we check? what if  we miss some points?

Lets pick the following law: 



Key Idea: Think about energy!



Make energy decay to 0 and stay there

Choose a control law



Lyapunov function:
A generalization of energy 



Lyapunov function for a closed-loop system
1. Construct an energy function that is always positive

Energy is only 0 at the origin, i.e.

2. Choose a control law such that this energy always decreases

Energy rate is 0 at origin, i.e.

No matter where you start, energy will decay and you will reach 0!



Intuition for Lyapunov Functions

1. V can only be 0 at 0, and is always positive
2. dV/dt is negative, meaning V is going towards 0

à since it is positive and can only be 0 at 0,   
eventually this will converge to 0 



Why are Lyapunov functions useful?

Provides a way to guarantee stability of a 
system/controller without exhaustive 

forward simulation



Finding Lyapunov Functions

Strategy 1: Use domain knowledge and hand-design

Strategy 2: For linear systems, can solve LMI to obtain a function

Strategy 3: For non-linear functions, can use ideas like sum of squares 
programming to find V

Strategy 4: Do bilevel optimization to find V or learn V



Uses of Lyapunov Functions
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