
Robotics
Spring 2023
Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Most slides courtesy of Sidd Srinivasa (UW), Pieter Abbeel (UC Berkeley)

Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping

n Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

n Issue: nearest points chosen for expansion are
(too) often the ones stuck behind an obstacle

Resolution-Complete RRT (RC-RRT)

RC-RRT solution:

n Choose a maximum number of times, m, you are willing to try to expand each node

n For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

n Initialize CVF to zero when node is added to tree

n Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

n Increase CVF of that node by 1

n Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

n When a node is selected for expansion, skip over it with probability CVF/m

Why is RRT not enough?
n RRT guarantees probabilistic completeness but not optimality

(shortest path)

n In practice leads to paths that are very roundabout and non-direct ->
not shortest paths

n Asymptotically optimal version of RRT*

n Main idea:

n Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent

n Consider path lengths and not just connectivity

Asymptotically optimal RRT à RRT*

RRT*

Source: Karaman and Frazzoli

Connect new node to a better parent

Rewire nearby nodes through new node

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

RRT*

Source: Tim Chinenov

n Probabilistically Complete

n Asymptotically optimal

n Efficient

Theoretical properties of RRT*

Real Time RRT*

Combining the best of A* and RRT*

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting:

n along the found path, pick two vertices xt1, xt2 and try to connect them
directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control

n Allows to specify an objective function that includes smoothness in
state, control, small control inputs, etc.

Post Processing for Motion Planning

n Sampling-based methods are typically much easier to get working. One of the
great thing about RRT is that it doesn't require careful discretization of the action
space and instead takes advantage of an extend operator (i.e., local controller or
an interpolation function) which naturally exists in most robotics systems

n For planning in a continuous space, when comparing a quick implementation of
RRT and a quick implementation of Anytime version of A*, RRT is typically much
faster due to sparse exploration of a space.

n A* and its variants are typically harder to implement because they require a)
careful design of discretization of the state-space and action-space (to make sure
edges land where they are supposed to land); b) careful design of the heuristic
function to guide the search well.

Maxim Likhachev on A*/D* vs PRM/RRT

n A* and its variants (including anytime variants) typically generate better quality
solutions and very consistent solutions (similar solutions for similar queries) which
is beneficial in many domains.

n A* and its variants can often be made nearly as fast as RRT and sometimes even
faster if one analyzes the robotic system well to derive a powerful heuristic
function. Many robotic systems have natural low-dimensional manifolds (e.g., a 3D
workspace for example) that can be used to derive such heuristic functions.

n A* and its variants can be applied to both discrete and continuous (as well as
hybrid) systems, whereas sampling-based systems tend to be more suitable for
continuous systems since they rely on the idea of sparse exploration. (Within the
same point, it should be noted that A* and its variants apply to PRMs and its
variants. PRM is just a particular graph representation of the environment.)

Maxim Likhachev on A*/D* vs PRM/RRT

n In summary, I think for continuous planning problems, A* and its variants require
substantially more development efforts (careful analysis of the system to derive
proper graph representation and a good heuristic function) but can result in a
better performance (similar speed but better quality solutions and more
consistent behavior).

Maxim Likhachev on A*/D* vs PRM/RRT

Lecture Outline

From Motion Planning to Control

PID Control

LQR

Motion Planning at a Glance

S1 S2 S3

S4 S5

S6

Deterministic Planning Sampling Based Planning

Returns a series of valid
configurations from start to goal

How do we actually execute on a robot?

State
Estimation

Modeling
and

Prediction

High-level
planning

Low-level
planning

Low-level
control

Bayesian filtering

Motion Planning and Control
How??

Kinodynamic Motion Planning
Requires solving a 2 point boundary value problem on dynamics

s0 and s1 are connected if there exists a
u such that |f(s0, u) – s1| < 𝜀

Gives us u for every connection, not just configurations

à Can execute on the robot

Kinodynamic Motion Planning

Gives us u for every connection, not just configurations

à Can execute on the robot

Why is this not enough?

Pitfalls of Open-Loop Control

n Drifts off the path with no corrections

n Doesn’t account for costs like
smoothness / preferences etc

From Motion Planning to Control

n Drifts off the path with no corrections

n Doesn’t account for costs like
smoothness / preferences etc

Feedback Control (eg PID)

Optimal Control (eg LQR)

Where does this fit in the stack?

State
Estimation

Modeling
and

Prediction

High-level
planning

Low-level
planning

Low-level
control

Bayesian filtering

Motion Planning and Control
PID/LQR etc

Lecture Outline

From Motion Planning to Control

PID Control

LQR

n Obtain controller that stabilizes around a particular “setpoint”

Goal of PID Control

Going from Open Loop to Feedback Control

u
x

x’ u
x

x’

e = x’ - xdesired

System System

Open-loop control Closed-loop control

Closed loop (feedback) control allows for correction of modeling errors and disturbances

How should we do feedback control?

state errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs

Apply control action, robot moves a bit, compute new error, repeat

(steering angle, speed)

Bang-bang control

Simple control law - choose between hard left and hard right

What happens when we run this control?

Need to adapt the magnitude of control proportional to the error …

Error does not stay 0!

Bang-bang control

Proportional-Integral-Derivative (PID) Controller

n One of the most popular controllers in practice!
n Used widely in industrial control since 1900s (regulating

temp., speed, etc.)

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)

Proportional Control

The proportional gain matters!

What happens when gain is low?

What happens when gain is high?

Proportional Integral (PI) Control

Proportional cannot
overcome wind alone!

WIND

Proportional Derivative (PD) Control
we want to minimize the magnitude of the overshoot

PID Intuition

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)

n Proportional: minimize the current error!
n Integral: if I’m accumulating error, try harder!
n Derivative: if I’m going to overshoot, slow down!

PID Control in Action

Lecture Outline

From Motion Planning to Control

PID Control

LQR

n Minimize sum of costs, subject to dynamics and other constraints

Goal of Optimal Control

<latexit sha1_base64="SuBr7ILwcVK8iTsolJJw4mbnOew=">AAACVnicbVFNb9QwEHXSlpalQIAjl1FXVK2KogRVgJAq9eMAxyJl20qbbeR4vVurthPsMdpVlD9JL/BTuKA62z1Ay5MsvXkzT2M/l7UUFpPkVxCurK49Wt943Huy+fTZ8+jFyzNbOcP4gFWyMhcltVwKzQcoUPKL2nCqSsnPy+uTrn/+nRsrKp3hvOYjRadaTASj6KUiUrkSumhc0aSfsraF7dw6VTR4kLaXGUx3ZgW+BVfgLuzBZ19lXZXtQp73cuQzNKqxMcYt5N8cHcM2zLx5L23hAI6817uOvRs8vKNXRP0kThaAhyRdkj5Z4rSIfuTjijnFNTJJrR2mSY2jhhoUTPK2lzvLa8qu6ZQPPdVUcTtqFrG08MYrY5hUxh+NsFD/djRUWTtXpZ9UFK/s/V4n/q83dDj5OGqErh1yze4WTZwErKDLGMbCcIZy7gllRvi7AruihjL0P9GFkN5/8kNy9i5O38f7X/f7h8fLODbIa7JFdkhKPpBD8oWckgFh5Ib8DsJgJfgZ/AnXwvW70TBYel6RfxBGt5QFrks=</latexit>

min
u1:T

TX

t=1

g(xt, ut) +G(xT , uT)

s.t. xt+1 = Axt +But

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds

n Allows for integration of other costs/preferences

n Can be parameterized as closed loop

n Allows for ”optimal” closed-loop controllers, stable under disturbances

From Motion Planning to PID to Optimal Control

<latexit sha1_base64="+GPVDU5hEUtidpGKfDLGwP9+ohg=">AAACe3icbVFdaxQxFM2MX3X86KqPglxcrLu2DDNSPxAWan1Q6EuF3baws4ZMNrsNnWTG5EZ2GeZP+NN885/4IpjZrmBbDwTOPSeHm9ybV4W0mCQ/g/Da9Rs3b23cju7cvXd/s/Pg4ZEtneFixMuiNCc5s6KQWoxQYiFOKiOYygtxnJ99aP3jb8JYWeohLisxUWyu5Uxyhl6ine+ZkprWB7RO32HTwFZmnaI1DtLmyxDmvQXFHXAU+7ANH301bKthH7IsylAs0Kjaxhg3kH11bApbsPDh7bSBAbz3WZ/a92nw8Am4gL+J1h/AAcW2WT+KaKebxMkKcJWka9IlaxzSzo9sWnKnhEZeMGvHaVLhpGYGJS9EE2XOiorxMzYXY081U8JO6tXsGnjmlSnMSuOPRlip/yZqpqxdqtzfVAxP7WWvFf/njR3O3k5qqSuHQvPzRjNXAJbQLgKm0giOxdITxo30bwV+ygzj6NfVDiG9/OWr5OhlnL6Odz/vdvf21+PYII/JU9IjKXlD9sgnckhGhJNfwZPgedALfofd8EW4c341DNaZR+QCwld/AGGotms=</latexit>

min
K1:t

TX

t=1

g(xt, ut) +G(xT , uT)

s.t. xt+1 = Axt +But

ut = Kt(xt)

n Motion planning and optimal control are not orthogonal à
complementary

n Can set costs for optimal control to track motion planning solution

From Motion Planning to PID to Optimal Control

Seed cost for OC

n Optimal Control for Linear Dynamical Systems and Quadratic
Cost (aka LQ setting, or LQR setting)

n Very special case: can solve continuous state-space optimal control
problem exactly and only requires performing linear algebra
operations

n Running time: O(H n3)

Note 1: Great reference [optional] Anderson and Moore, Linear Quadratic Methods

Note2 : Strong similarity with Kalman filtering, which is able to compute the Bayes’ filter
updates exactly even though in general there are no closed form solutions and numerical
solutions scale poorly with dimensionality.

Tractable Optimal Control Problem - LQR

Linear Quadratic Regulator (LQR)

Examples of LQR systems

Double Integrator Many systems can be easily linearized

Extension to Non-Linear Systems

LQR Problem Statement
n Minimize sum of costs subject to linear dynamics constraints

<latexit sha1_base64="SuBr7ILwcVK8iTsolJJw4mbnOew=">AAACVnicbVFNb9QwEHXSlpalQIAjl1FXVK2KogRVgJAq9eMAxyJl20qbbeR4vVurthPsMdpVlD9JL/BTuKA62z1Ay5MsvXkzT2M/l7UUFpPkVxCurK49Wt943Huy+fTZ8+jFyzNbOcP4gFWyMhcltVwKzQcoUPKL2nCqSsnPy+uTrn/+nRsrKp3hvOYjRadaTASj6KUiUrkSumhc0aSfsraF7dw6VTR4kLaXGUx3ZgW+BVfgLuzBZ19lXZXtQp73cuQzNKqxMcYt5N8cHcM2zLx5L23hAI6817uOvRs8vKNXRP0kThaAhyRdkj5Z4rSIfuTjijnFNTJJrR2mSY2jhhoUTPK2lzvLa8qu6ZQPPdVUcTtqFrG08MYrY5hUxh+NsFD/djRUWTtXpZ9UFK/s/V4n/q83dDj5OGqErh1yze4WTZwErKDLGMbCcIZy7gllRvi7AruihjL0P9GFkN5/8kNy9i5O38f7X/f7h8fLODbIa7JFdkhKPpBD8oWckgFh5Ib8DsJgJfgZ/AnXwvW70TBYel6RfxBGt5QFrks=</latexit>

min
u1:T

TX

t=1

g(xt, ut) +G(xT , uT)

s.t. xt+1 = Axt +But

<latexit sha1_base64="+GPVDU5hEUtidpGKfDLGwP9+ohg=">AAACe3icbVFdaxQxFM2MX3X86KqPglxcrLu2DDNSPxAWan1Q6EuF3baws4ZMNrsNnWTG5EZ2GeZP+NN885/4IpjZrmBbDwTOPSeHm9ybV4W0mCQ/g/Da9Rs3b23cju7cvXd/s/Pg4ZEtneFixMuiNCc5s6KQWoxQYiFOKiOYygtxnJ99aP3jb8JYWeohLisxUWyu5Uxyhl6ine+ZkprWB7RO32HTwFZmnaI1DtLmyxDmvQXFHXAU+7ANH301bKthH7IsylAs0Kjaxhg3kH11bApbsPDh7bSBAbz3WZ/a92nw8Am4gL+J1h/AAcW2WT+KaKebxMkKcJWka9IlaxzSzo9sWnKnhEZeMGvHaVLhpGYGJS9EE2XOiorxMzYXY081U8JO6tXsGnjmlSnMSuOPRlip/yZqpqxdqtzfVAxP7WWvFf/njR3O3k5qqSuHQvPzRjNXAJbQLgKm0giOxdITxo30bwV+ygzj6NfVDiG9/OWr5OhlnL6Odz/vdvf21+PYII/JU9IjKXlD9sgnckhGhJNfwZPgedALfofd8EW4c341DNaZR+QCwld/AGGotms=</latexit>

min
K1:t

TX

t=1

g(xt, ut) +G(xT , uT)

s.t. xt+1 = Axt +But

ut = Kt(xt)

Recursive Solution to LQR Problem
n Back-up step for i+1 steps to go:

n LQR:

LQR value iteration: J1

LQR value iteration: J1 (ctd)
n In summary:

n J1(x) is quadratic, just like J0(x).

à Value iteration update is the same for all times and can be done in closed form for this particular
continuous state-space system and cost!

Value iteration solution to LQR

n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Penalization for change in control inputs

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.

n Optimal control policy remains linear, optimal cost-to-go function remains
quadratic

n Two avenues to do derivation:

n 1. Re-derive the update, which is very similar to what we did for standard setting

n 2. Re-define the state as: zt = [xt; 1], then we have:

LQR Ext0: Affine systems

n Exercise: work through similar derivation as we did for the
deterministic case, but which will now have expectations.

n Result:

n Same optimal control policy

n Cost-to-go function is almost identical: has one additional term which
depends on the variance in the noise (and which cannot be
influenced by the choice of control inputs)

LQR Ext1: stochastic system

Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:
[=standard LQR]

LQR Ext2: non-linear systems

A B

LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n When run in this format on real systems: often high frequency control inputs get
generated. Typically highly undesirable and results in poor control performance.

n Why?

n Simple special case which works well in practice: penalize for change in control
inputs. ---- How ??

n Standard LQR:

n How to incorporate the change in controls into the cost/reward function?
n Soln. method A: explicitly incorporate into the state by augmenting the state with the past

control input vector, and the difference between the last two control input vectors.

n Soln. method B: change of control input variables.

LQR Ext3: Penalize for Change in Control Inputs

A’ B’x’t+1 x’t= + u’t

[If R’=0, then “equivalent” to standard LQR.]

LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n Introducing change in controls Δu:

LQR Ext4: Linear Time Varying (LTV) Systems

LQR Ext4: Linear Time Varying (LTV) Systems

LQR Ext5: Trajectory Following for Non-Linear Systems

n A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and only if

n Problem statement:

n Transform into linear time varying case (LTV):

At Bt

n Transformed into linear time varying case (LTV):

n Now we can run the standard LQR back-up iterations.

n Resulting policy at i time-steps from the end:

n The target trajectory need not be feasible to apply this technique, however, if it
is infeasible then there will an offset term in the dynamics:

LQR Ext5: Trajectory Following for Non-Linear Systems

n How about this general optimal control problem?

Most General Case

Iteratively Apply LQR

Iterative LQR in Standard LTV Format

for simplicity and with some
abuse of notation we
assumed g(x,u) = g(x) + g(u)

n f is non-linear, hence this is a non-convex optimization
problem. Can get stuck in local optima! Good initialization
matters.

n g could be non-convex: Then the LQ approximation can fail to
have positive-definite cost matrices.
n Practical fix: if Qt or Rt are not positive definite à increase penalty for

deviating from current state and input (x(i)t, u(i)
t) until resulting Qt and Rt

are positive definite.

Iteratively Apply LQR: Practicalities

n Yes!

n At convergence of iLQR, we end up with linearizations around the (state,input)
trajectory the algorithm converged to

n In practice: the system could not be on this trajectory due to perturbations / initial
state being off / dynamics model being off / …

n Solution: at time twhen asked to generate control input ut, we could re-solve the
control problem using iLQR over the time steps t through H

n Replanning entire trajectory is often impractical à in practice: replan over horizon h.
= receding horizon control

n This requires providing a cost to go J(t+h) which accounts for all future costs. This
could be taken from the offline iLQR run

Can We Do Even Better?

Cart-pole

[See also Section 3.3 in Tedrake notes.]

H(q)q̈ + C(q, q̇) +G(q) = B(q)u

Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 0; [x, theta, xdot, thetadot]

Results of running LQR for the linear time-invariant system obtained from linearizing around
[0;0;0;0]. The cross-marks correspond to initial states. Green means the controller succeeded
at stabilizing from that initial state, red means not.

LQR in Action

Klemm et al 2020

n Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller
https://arxiv.org/abs/1506.07365

n Deep Spatial Autoencoders for Visuomotor Learning
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
https://arxiv.org/abs/1509.06113

n SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine
https://arxiv.org/abs/1808.09105

Learning Linear Dynamics Latent Spaces

https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1509.06113
https://arxiv.org/abs/1808.09105

Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping

