
Robotics
Spring 2023
Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Courtesy of Maxim Likhachev, CMU, Dieter Fox, UW, Pieter Abbeel, UC Berkeley

Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping

Lecture Outline

Incremental Search – LPA*

Sampling Based Motion Planning - PRMs

RRT and RRT*

CSE-571: Courtesy of Maxim Likhachev, CMU

Informed Search Attempt 2: A* Search
Choose the next node to expand as the one that has the lowest heuristic + cost so far

Greedy best first Uniform cost search

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (LPA*)

ATRV navigating
initially-unknown environment planning map and path

n Robot needs to re-plan whenever
n new information arrives (partially-known environments or/and

dynamic environments)
n robot deviates off its path

Incremental version of A* (LPA*/D* Lite)

n Robot needs to re-plan whenever
n new information arrives (partially-known environments or/and

dynamic environments)
n robot deviates off its path

incremental planning (re-planning):
reuse of previous planning efforts

planning in dynamic environments

Tartanracing, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

How to reuse these g-values from one search to
another? – incremental A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

Would # of changed g-values be
very different for forward A*?

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

Any work needs to be done if robot
deviates off its path?

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A* - D* lite
n Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Key idea of LPA*
Reuse as many g-values as possible from previous search

Idea 1: Introduce an idea of g(s) and rhs(s), at convergence these are equal

Corollary: To compute g* can do search or can ensure g(s) == rhs(s) everywhere

Idea 2: Only put locally inconsistent (g(s) == rhs(s)) cells in the queue, not all cells

Idea 3:
1. If g(s) > rhs(s) [Locally overconsistent] à bring g(s) down to rhs(s), update neighbors
2. If g(s) < rhs(s) [Locally underconsistent] à send g(s) to infinity, update neighbors

CSE-571: Courtesy of Maxim Likhachev, CMU

Example for LPA*

First search

Edge cost changed

Second search

Node being expanded next

Nodes in the queue

CSE-571: Courtesy of Maxim Likhachev, CMU

Broad Pseudocode of LPA*
Do A*, keep executing until you observe an error, then you need to replan

1. Carry over g
2. Update the edge costs, and see where LHS and RHS disagree, put those on the

open queue.
3. if overconsistent, g is brought down to RHS à a shorter path exists
4. if underconsistent, g to infinity à no path can be trusted, set to infinity

1. If locally consistent – removed
2. If overconsistent then key is updated.

5. Idea 5: End when goal is consistent or priority queue has key greater than goal.
6. Idea 6: Finally get path greedily

CSE-571: Courtesy of Maxim Likhachev, CMU

Pseudocode of LPA*

CSE-571: Courtesy of Maxim Likhachev, CMU

Going from LPA* to D* lite
LPA* always computes paths from same start to goal, but robots often encounter
change to the map/connectivity during execution à LPA* no longer works, g
values are totally different

D* lite has 2 key ideas:

1. Perform search backwards à flip all the edges and compute distance from
goal to every state (allows for changing start)

2. Account for changing goal using some extra bookkeeping in the heuristic
(since the “goal” [current robot state] changes)

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Search in Practice: D* lite

Lecture Outline

Incremental Search – LPA*

Sampling Based Motion Planning - PRMs

RRT and RRT*

Motion Planning in Practice

Motion Planning in Practice

Motion Planning in Practice

Why is A* not enough?

Scales poorly both computationally and memory wise for high dimensional, non-
convex systems

Can be hard to know how to properly discretize the space, especially as dimensions
of configuration space are very different

discretize

How can we do better?

What if we just “sampled” the discretization rather than did this deterministically?
à Note this is still deterministic planning on the graph, just sample the graph

Not optimal, but maybe this is ok!

discretize

Sample

Probabilistic Roadmap (PRM)
Free/feasible spaceSpace Rn forbidden space

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

s

g

Probabilistic Roadmap (PRM)

n Initialize set of points with xS and xG
n Randomly sample points in configuration space

n Connect nearby points if they can be reached from each other

n Find path from xS to xG in the graph

n Alternatively: keep track of connected components incrementally, and
declare success when xS and xG are in same connected component

Probabilistic Roadmap

n A* is resolution complete, but wastes significant space and is
hard to know how to discretize

n PRMs tradeoff optimality for speed, typically much faster due
to sparse exploration of a space rather than complete
discretization

n Trades off resolution completeness for probabilistic
completeness

n Can control memory and computational usage

Why are PRMs better than A*?

PRM Example 1

PRM Example 2

n Pro:

n Probabilistically complete: i.e., with probability one, if run for long
enough the graph will contain a solution path if one exists.

n Cons:

n Required to solve 2-point boundary value problem

n Build graph over state space but no focus on generating a path

PRM’s Pros and Cons

Why are PRMs not enough?

n Sampling indiscriminately wastes a significant number of points in parts of the
space not needed.

n Requires accurately solving the 2 point BVP for non-holonomic systems

n We don’t care about going from anywhere to anywhere, just start to goal

n Q: can we build up the graph/tree incrementally with only a little more work and no 2-point BVP?

Lecture Outline

Incremental Search – LPA*

Sampling Based Motion Planning - PRMs

RRT and RRT*

Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:

n Build up a tree through generating “next states” in the tree by
executing random controls à no need to solve 2 point BVP exactly

n Execute tree search in the RRT, same as before

n Caveat: not exactly above to ensure good coverage

How to Sample

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state
with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

n NEAREST_NEIGHBOR(xrand, T): need to find (approximate)
nearest neighbor efficiently

n KD Trees data structure (upto 20-D) [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

RRT Practicalities

n No obstacles, holonomic:

n With obstacles, holonomic:

n Non-holonomic: approximately (sometimes as approximate as picking best of a
few random control sequences) solve two-point boundary value problem

RRT Extension

Growing RRT

n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG
xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases

n Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

n Issue: nearest points chosen for expansion are
(too) often the ones stuck behind an obstacle

Resolution-Complete RRT (RC-RRT)

RC-RRT solution:

n Choose a maximum number of times, m, you are willing to try to expand each node

n For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

n Initialize CVF to zero when node is added to tree

n Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

n Increase CVF of that node by 1

n Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

n When a node is selected for expansion, skip over it with probability CVF/m

Why is RRT not enough?
n RRT guarantees probabilistic completeness but not optimality

(shortest path)

n In practice leads to paths that are very roundabout and non-direct ->
not shortest paths

n Asymptotically optimal version of RRT*

n Main idea:

n Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent

n Consider path lengths and not just connectivity

Asymptotically optimal RRT à RRT*

RRT*

Source: Karaman and Frazzoli

Connect new node to a better parent

Rewire nearby nodes through new node

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

RRT*

Source: Tim Chinenov

n Probabilistically Complete

n Asymptotically optimal

n Efficient

Theoretical properties of RRT*

Real Time RRT*

Combining the best of A* and RRT*

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting:

n along the found path, pick two vertices xt1, xt2 and try to connect them
directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control

n Allows to specify an objective function that includes smoothness in
state, control, small control inputs, etc.

Post Processing for Motion Planning

n Sampling-based methods are typically much easier to get working. One of the
great thing about RRT is that it doesn't require careful discretization of the action
space and instead takes advantage of an extend operator (i.e., local controller or
an interpolation function) which naturally exists in most robotics systems

n For planning in a continuous space, when comparing a quick implementation of
RRT and a quick implementation of Anytime version of A*, RRT is typically much
faster due to sparse exploration of a space.

n A* and its variants are typically harder to implement because they require a)
careful design of discretization of the state-space and action-space (to make sure
edges land where they are supposed to land); b) careful design of the heuristic
function to guide the search well.

Maxim Likhachev on A*/D* vs PRM/RRT

n A* and its variants (including anytime variants) typically generate better quality
solutions and very consistent solutions (similar solutions for similar queries) which
is beneficial in many domains.

n A* and its variants can often be made nearly as fast as RRT and sometimes even
faster if one analyzes the robotic system well to derive a powerful heuristic
function. Many robotic systems have natural low-dimensional manifolds (e.g., a 3D
workspace for example) that can be used to derive such heuristic functions.

n A* and its variants can be applied to both discrete and continuous (as well as
hybrid) systems, whereas sampling-based systems tend to be more suitable for
continuous systems since they rely on the idea of sparse exploration. (Within the
same point, it should be noted that A* and its variants apply to PRMs and its
variants. PRM is just a particular graph representation of the environment.)

Maxim Likhachev on A*/D* vs PRM/RRT

n In summary, I think for continuous planning problems, A* and its variants require
substantially more development efforts (careful analysis of the system to derive
proper graph representation and a good heuristic function) but can result in a
better performance (similar speed but better quality solutions and more
consistent behavior).

Maxim Likhachev on A*/D* vs PRM/RRT

Lecture Outline

Incremental Search – LPA*

Sampling Based Motion Planning - PRMs

RRT and RRT*

Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping

n Marco Pavone (http://asl.stanford.edu/):

n Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf

n Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf

n Siddhartha Srinivasa (https://personalrobotics.cs.washington.edu/)

n Batch informed trees: https://robotic-esp.com/code/bitstar/

n Expensive edge evals: https://arxiv.org/pdf/2002.11853.pdf

n Michael Yip (https://www.ucsdarclab.com/)

n Neural Motion Planners: https://www.ucsdarclab.com/neuralplanning

n Lydia Kavraki (http://www.kavrakilab.org/)

n Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html

Additional Resources

http://asl.stanford.edu/
https://arxiv.org/pdf/1705.02403.pdf
https://arxiv.org/pdf/1709.05448.pdf
https://personalrobotics.cs.washington.edu/
https://robotic-esp.com/code/bitstar/
https://arxiv.org/pdf/2002.11853.pdf
https://www.ucsdarclab.com/
https://www.ucsdarclab.com/neuralplanning
http://www.kavrakilab.org/
http://www.kavrakilab.org/nsf-nri-1317849.html

