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Recap: Course Overview
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What we have seen so far?

Bayesian Filtering

Bel(x;) = P(x¢|ug:t—1, 20:¢) Localization
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Kalman Filters Particle Filters Mapping

SLAM




What does full stack robotics involve?

High-level
planning
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Section 2 of this course

Given an accurate estimate of the state - how do we decide what actions to take?

Motion Planning Trajectory Optimization Certification
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Motion/Path Planning

Task:

= find a feasible (and cost-minimal) path/motion from the
current configuration of the robot to its goal
configuration (or one of its goal configurations)

Two types of constraints:
= environmental constraints (e.qg., obstacles)
= dynamics/kinematics constraints of the robot
Generated motion/path should (objective):
= be any feasible path

= minimize cost such as distance, time, energy, risk, ...



Motion/Path Planning

Examples (of what is usually referred to as path planning):




Motion/Path Planning

Examples (of what is usually referred to as motion planning):
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Whole-body motion planning




Motion/Path Planning

Examples (of what is usually referred to as motion planning)
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Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials



Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm



Motion/Path Planning

Path/Motion Planner

path

Controller

lcommands

map update pose update




Motion/Path Planning

Path/Motion Planner

path

Controller

lcommands

pose update

@ian update (EKF)

map update

.e., deterministic registration
or Bayesian update




Why is motion planning non-trivial?

= Searching/Optimization through a complex non-convex space
= Combination of discrete/continuous optimization
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Scales poorly with dimensionality of space and number of obstacles - PSPACE complete



Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen



Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

re-plan every time
sensory data arrives or

- Planning approaches: robot deviates off its path

- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption

- re-plan as new information arrives .
e-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen



Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty: computationally MUCH harder

- associate probabilities with some elements or everything

-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal

- re-plan if unaccounted events happen



Urban Challenge Race, CMU team, planning with Anytime D*



Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning



Defining the Motion Planning Problem

Problem:

Given start state xS, goal state xG

Asked for: a sequence of control inputs that leads from start to
goal

Why tricky?
Need to avoid obstacles

For systems with underactuated dynamics: can’t simply move
along any coordinate at will

E.g., car, helicopter, airplane, but also robot manipulator
hitting joint limits



Configuration Space
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Configuration Space

Configuration space: space of joint configurations of the robot

Obstacles/constraints do not live in the joint space of the robot but in the world space
-> non-convex when projected into configuration space

Finding collision free paths is a non-trivial search problem.

Workspace Configuration Space

(2 DOF: translation only, no rotation)

A free space

obstacles ..




Motion Planning in Configuration Space

Cannot directly use optimization techniques like gradient descent,
must solve a non-convex optimization problem.

/ A ldea 1: Modeling as discrete search
{ y /i

ldea 2: Sequential convexification of
non-convex problems

Overview



Planning as Search

planning map

&2 (s

Convert into a search problem @ @

£

search the graph
for a least-cost path
from s, to Sgoal

Can use efficient techniques for discrete graph search

/ \

Deterministic Search Sampling Based Search




Recasting Planning as Search

How?

&2 (s

Convert into a search problem @ @

£

planning map

search the graph
for a least-cost path
from s, to Sgoal

Can use efficient techniques for discrete graph search

Which ones?




Motion Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

planning map

(882 (s
convert into a graph‘ @. @
(85

search the graph
for a least-cost path
from s, to s

goal




Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

~

N

eight-connected grid \

(one way to construct a graph)

T

> search the graph

convert into a graph
Ss | Ss stapt, @ @ for a least-cost path
Se from S, 10 Sgpq)

planning map




Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic
robots

discretize

\ 4




How can we connect states for non-holonomic robots?

Requires solving a 2 point boundary value problem on kinematics

1 e ! q‘
So and s; are connected if there exists a
u such that |f(sy, u) — 54| < €
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Differentially Constrained On the Reachability of Quantized Control Systems
MOb“eil:‘o;::r I:i:g:gl;lanmng Antonio Bicchi, Alessia Marigo, Benedetto Piccoli

Mihail Pivtoraiko, Ross A. Knepper,
and Alonzo Kelly
Robotics Institute

C je Mellon Universi M

Cornege Mellon Uniority s Can be extended to dynamics systems too!
e-mail: mihail@cs.cmu.edu, rak@ri.cmu.edu,
alonzo@ri.cmu.edu

August 2008; accepted 4 January 2009




Planning via Cell Decomposition

- Graph construction:
- lattice graph

outcome state is the center of each transition is feasible

the corresponding cell (constructed beforehand)

Mem plate

"” 37
C(s,,5,) = 100

C(s;Se) =5

replicate it
online




Planning via Cell Decomposition

- Graph construction:

- lattice graph

- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it

>HAD online




Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning



Techniques for Search

Goal

Start

Goal is to avoid obstacles and reach a particular goal with:
1. As few node expansions as possible
2. Lowest cost path



Techniques for Search

Breadth First Search Uniform Cost Search A* Search

Q




Search Attempt 1: Breadth First Search

Breadth First Search

Expand the search uniformly in all directions from start

frontier = Queue()
frontier.put(start ")
came_from = dict()
came_from[start] = None

while not frontier.empty():
current = frontier.get()

if current == goal: "
break

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current



Search Attempt 1: Breadth First Search

Expand the search uniformly in all directions from start
rrrrrrrrrrrrrrrrr ey PPl

Pro: Guaranteed to find shortest paths

Cons:
1. Doesn't take costs into account
2. May expand way more nodes than necessary



Search Attempt 2: Uniform Cost Search

Uniform Cost Search

Expand the search according to lowest cost from the start

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
current = frontier.get()

if current == goal:
break

for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost
frontier.put(next, priority)
came_from[next] = current



Search Attempt 2: Uniform Cost Search

Expand the search according to lowest cost from the start

Breadth First Search Dijkstra’s Algorithm

Pro: Guaranteed to find lowest cost paths

Cons:
1. May expand way more nodes than necessary



Informed Search

What if we knew some (approximate) information about how far a node is from the goal?
—> Heuristics

Example: for shortest path goal reaching

around obstacles, reasonable heuristics are:
- X
1. Euclidean distance

2. Manhattan distance

Incorporate domain knowledge while always underestimating cost

\

Admissible heuristic



Informed Search Attempt 1: Best-First Search

Choose the next node to expand as the one that has the lowest heuristic - “greedy best first”

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = None

while not frontier.empty():

current = frontier.get()
if current == goal:
break

for next in graph.neighbors(current):
if next not in came_from:
priority = heuristic(goal, next)
frontier.put(next, priority)
came_from[next] = current



Informed Search Attempt 1: Best-First Search

Dijkstra's Algorithm Greedy Best-First Search

g —

Pro: Great without obstacles

Dijkstra's Algorithm Greedy Best-First Search

% *

Con: Can return suboptimal
paths with obstacles




Informed Search Attempt 2: A* Search

Choose the next node to expand as the one that has the lowest heuristic + cost so far

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
current = frontier.get()

if current == goal:
break

for next in graph.neighbors(current):

new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:

cost_so_far[next] = new_cost

priority = new_cost + heuristic(goal, next)

frontier.put(next, priority)
came_from[next] = current

-

Greedy best first

T~

Uniform cost search




A* Search: Setup

Computes optimal g-values for relevant states at any point of time

Heuristic: an (under) estimate of the

Cost-accumulated: the cost of cost of a shortest path from s to s,

a shortest path froms, . to s
found so far —

h(s)

g-value: shortest path so far from the start to a particular state



A* Search: Setup

Computes optimal g-values for relevant states at any point of time

heuristic function

hs)

S )—,

——®

one popular heuristic function - Euclidean distance



Why A* Search?
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A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g= g= oo
h= h=1
o B8 .
- h:3 2 hZO
CLOSED = {}
OP EN - {Sstart} ! Sgoal

next state to expand: S, @

h2 h]



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

. Vi + 4
1fg(S ’) > g(S) C(S’S,) g(Sz) > g(SsmrJ + C(Sslart’SZ)
g(s’) =g(s) +c(s,s ), /
insert s~ into OPEN;
= Qo0
=]

M‘ﬁ
WQ

S goal

OP EN — {Sstart}

next state to expand: S, @

h2 h]

@ @\ )
CLOSED = {} , 0



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g= o0
h=1
g TR
CLOSED = {s., ] ’“:3 S k=0
start |
OPEN — {Sz} Sgoal

next state to expand: s, @

h2 h]



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g=1 g=3
h=2 h=1
g=0 @# g= oo
CLOSED = h=3 R =0
o {Sstart’SZ} @ i
OPEN — {S],S4} Sgoal

next state to expand: s; @ 3 @/



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

2
h= | @ 2
CLOSED = {s,.,555;} @\

OPEN = {548 gou1f

next state to expand: s, @ 3 @/



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g=0 2,
h:3 @ 2
CLOSED = {54,555 1,84} @\

OPEN = {535 goulf :

next state to expand.: S goal @



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;

for every successor s ~ of s such that s " not in CLOSED

if g(s’) > g(s) +c(s.s)

g(s’) =g(s) +cfs.s’);

insert s~ into OPEN;

CLOSED = {s.,..,55,,5,S goaz}

OPEN = {s;}
done



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —»@
we can now compute a least-cost path



A* Search

s  Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —»@
we can now compute a least-cost path



A* Search

Is guaranteed to return an optimal path (in fact, for
every expanded state) — optimal in terms of the
solution

Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of

. g=1 g=73
the computations | _, b



A* Search

Is guaranteed to return an optimal path (in fact, for [
every expanded state) — optimal in terms of the
solution

\_

~

helps with robot
deviating off its path
if we search with A*
backwards (from goal to

start) )

Performs provably minimal number of state expansions

required to guarantee optimality — optimal in terms of

. g=1 g=73
the computations | _, b

0 (G,
h:3 2 h:()
» ’

1
OEO
g=>5

g=2
h=2 h=1



Connecting A Search back to Motion Planning

/ planning map \

9%@

. search the graph
for a least-cost p@/
g=1 g=73

N
-0 &= _
Step 2: @i;ff/ l | 05 Step 3:

Search the graph Execute on the robot
SRS

g=72 g=>5

\_ h=2  h=I N

discretize

Step 1:
form the graph

\
;




Effect of the Heuristic Function

A* Search: expands states in the order of f= g+h values




Effect of the Heuristic Function

A* Search: expands states in the order of f= g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))




Effect of the Heuristic Function

s Weighted A* Search: expands states in the order of f=
g+eh values, € > T = bias towards states that are closer

to goal
solution 1s always e-suboptimal:
ost(solution) < g-cost(optimal solution
' Sgoal




Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f=g+&h

values, € > 1T = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A¥)



Effect of the Heuristic Function

- planning in 8D (<x,y> for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
. cost of edges based on kinematic stability of the robot and quality of footholds

& s

- >

planning with R* (randomized version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza



Is A* always optimal for all heuristics?

Admissible 2 underestimate

h(s) < h*(s)

Consistent - monotone

h(s) < c(s, s’) + h(s")

A* search returns optimal paths
on graphs only when the heuristic
is admissible and consistent



Common Heuristics in Robotics

Art more than a science — commonly used heuristics are Euclidean/Manhattan distance or distance
through coarse/convexified obstacles

NTELLIGENT SEARCH
STRATEGES FOR COMPUTER
PROSLEM SOLVING

G




Visualization of Search

Uniform cost search A* search Weighted A* search



Motion Planning via Search




Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning



Incremental version of A* (LPA¥*)

= Robot needs to re-plan whenever

= new information arrives (partially-known environments or/and
dynamic environments)

= robot deviates off its path

ATRYV navigating
mitially-unknown environment planning map and path
‘:i G P o




Incremental version of A* (LPA*/D*/D¥* Lite)

= Robot needs to re-plan whenever
= new information arrives (partially-known environments or/and

dynamic environments) incremental planning (re-planning):
= robot deviates off its pa reuse of previous planning efforts

planning in dynamic environments

Tartanracing, CMU



goal INitially

ious searches

cost of least-cost paths to s

Reuse state values from prev

Motivation for Incremental Version of A*
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Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially
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Motivation for Incremental Version of A*

s Reuse state values from previous searches
cost of least-cost paths to s, initially
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These costs are optimal g-values if search is
done backwards
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How to reuse these g-values from one search to
another? — incremental A*

cost of least-cost paths to s, after
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~ Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially
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cost of least-cost paths to s, a sed
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~ Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially
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deviates off its path?

cost of least-cost paths to s, a
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Incremental Version of A*

= Reuse state values from previous searches

initial search by backwards A*

initial search by D* Lite

second search by backwards A*

second search by D* Lite
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