
Robotics
Spring 2023
Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Courtesy of Maxim Likhachev, CMU, Dieter Fox, UW

Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping

What we have seen so far?
Bayesian Filtering

Localization

Mapping

SLAM

<latexit sha1_base64="p1WGBxE7kLSzOn6kyRnuP72uv5s=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKLWiZkaIiCKVuXFawF2iHIZOmbWjmQnJGrGNfwI2v4saFIm7du/NtTNtZaPWHwMd/zuHk/G4ouALT/DJSc/MLi0vp5czK6tr6RnZzq66CSFJWo4EIZNMlignusxpwEKwZSkY8V7CGO7gY1xs3TCoe+NcwDJntkZ7Pu5wS0JaT3aswkb91oIDPcXUM95ETm2dwaI0O8N0ERwUnmzOL5kT4L1gJ5FCiqpP9bHcCGnnMByqIUi3LDMGOiQROBRtl2pFiIaED0mMtjT7xmLLjyTUjvK+dDu4GUj8f8MT9ORETT6mh5+pOj0BfzdbG5n+1VgTdUzvmfhgB8+l0UTcSGAI8jgZ3uGQUxFADoZLrv2LaJ5JQ0AFmdAjW7Ml/oX5UtI6LpatSrlxJ4kijHbSL8shCJ6iMLlEV1RBFD+gJvaBX49F4Nt6M92lrykhmttEvGR/fGPSZsw==</latexit>

Bel(xt) = P (xt|u0:t�1, z0:t)
<latexit sha1_base64="x2F3RCIHnC9v1pWNFGkIiTfFaXw=">AAACPHicbZA7SwNBEMf34ivGV9TSZjEIETTciaiNINpYRjQq5MKxt5kki3sPduck8cwHs/FD2FnZWChia+0mOcTXwMJv/zPDzPz9WAqNtv1o5cbGJyan8tOFmdm5+YXi4tK5jhLFocYjGalLn2mQIoQaCpRwGStggS/hwr86GuQvrkFpEYVn2IuhEbB2KFqCMzSSVzzdpy4go25Hx4xDalccHvRpXL7x8Lbr4Tp1RYi0WjZ8m3gpbjr9DdodwTo9BFn++jQz8oolu2IPg/4FJ4MSyaLqFR/cZsSTAELkkmldd+wYGylTKLiEfsFNNJjtrlgb6gZDFoBupMPj+3TNKE3aipR5ZtOh+r0jZYHWvcA3lQHDjv6dG4j/5eoJtvYaqQjjBCHko0GtRFKM6MBJ2hQKOMqeAcaVMLtS3mGKcTR+F4wJzu+T/8L5VsXZqWyfbJcODjM78mSFrJIyccguOSDHpEpqhJM78kReyKt1bz1bb9b7qDRnZT3L5EdYH58f6qxF</latexit>

= ⌘ p(zt|xt)

Z
P (xt|ut�1, xt�1)Bel(xt�1)dxt�1

Kalman Filters Particle Filters

What does full stack robotics involve?

State
Estimation

Modeling
and

Prediction

High-level
planning

Low-level
planning

Low-level
control

Bayesian filtering

Motion Planning and Control

Section 2 of this course
Given an accurate estimate of the state – how do we decide what actions to take?

Motion Planning Trajectory Optimization Certification

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Task:
n find a feasible (and cost-minimal) path/motion from the

current configuration of the robot to its goal
configuration (or one of its goal configurations)

Two types of constraints:
n environmental constraints (e.g., obstacles)

n dynamics/kinematics constraints of the robot

Generated motion/path should (objective):
n be any feasible path

n minimize cost such as distance, time, energy, risk, …

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as path planning):

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

CSE-571: Courtesy of Maxim Likhachev, CMU

Path/Motion Planner

Controller

path

commands

pose updatemap update

i.e., Bayesian update (EKF)
i.e., deterministic registration

or Bayesian update

Motion/Path Planning

CSE-571: Courtesy of Maxim Likhachev, CMU

Why is motion planning non-trivial?
n Searching/Optimization through a complex non-convex space
n Combination of discrete/continuous optimization

Scales poorly with dimensionality of space and number of obstacles – PSPACE complete

CSE-571: Courtesy of Maxim Likhachev, CMU

• Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen

re-plan every time
sensory data arrives or

robot deviates off its path

re-planning needs to be FAST

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

computationally MUCH harder

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

CSE-571: Courtesy of Maxim Likhachev, CMU

Example

Urban Challenge Race, CMU team, planning with Anytime D*

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

CSE-571: Courtesy of Maxim Likhachev, CMU

Defining the Motion Planning Problem

• Problem:
• Given start state xS, goal state xG

• Asked for: a sequence of control inputs that leads from start to
goal

• Why tricky?
• Need to avoid obstacles

• For systems with underactuated dynamics: can’t simply move
along any coordinate at will

• E.g., car, helicopter, airplane, but also robot manipulator
hitting joint limits

CSE-571: Courtesy of Maxim Likhachev, CMU

Configuration Space

CSE-571: Courtesy of Maxim Likhachev, CMU

Configuration Space
Configuration space: space of joint configurations of the robot

Obstacles/constraints do not live in the joint space of the robot but in the world space
à non-convex when projected into configuration space

Finding collision free paths is a non-trivial search problem.

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion Planning in Configuration Space
Cannot directly use optimization techniques like gradient descent,

must solve a non-convex optimization problem.

Idea 1: Modeling as discrete search

Idea 2: Sequential convexification of
non-convex problems

Planning as Search

Convert into a search problem

planning map

S2 S3

S4 S5

S6

search the graph
for a least-cost path
from sstart to sgoal

Can use efficient techniques for discrete graph search

Deterministic Search Sampling Based Search

CSE-571: Courtesy of Maxim Likhachev, CMU

Recasting Planning as Search

Convert into a search problem

planning map

S2 S3

S4 S5

S6

search the graph
for a least-cost path
from sstart to sgoal

Can use efficient techniques for discrete graph search

How?

Which ones?

Motion Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid
(one way to construct a graph)

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of

arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic
robots

discretize

How can we connect states for non-holonomic robots?

Requires solving a 2 point boundary value problem on kinematics

s0 and s1 are connected if there exists a
u such that |f(s0, u) – s1| < 𝜀

Can be extended to dynamics systems too!

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph

action template

replicate it
online

each transition is feasible
(constructed beforehand)

outcome state is the center of
the corresponding cell

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it
online

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

CSE-571: Courtesy of Maxim Likhachev, CMU

Techniques for Search

Goal is to avoid obstacles and reach a particular goal with:
1. As few node expansions as possible
2. Lowest cost path

Goal

Start

CSE-571: Courtesy of Maxim Likhachev, CMU

Techniques for Search

Breadth First Search Uniform Cost Search A* Search

CSE-571: Courtesy of Maxim Likhachev, CMU

Search Attempt 1: Breadth First Search
Breadth First Search

Expand the search uniformly in all directions from start

CSE-571: Courtesy of Maxim Likhachev, CMU

Search Attempt 1: Breadth First Search
Expand the search uniformly in all directions from start

Pro: Guaranteed to find shortest paths

Cons:
1. Doesn’t take costs into account
2. May expand way more nodes than necessary

CSE-571: Courtesy of Maxim Likhachev, CMU

Search Attempt 2: Uniform Cost Search
Expand the search according to lowest cost from the start

Uniform Cost Search

CSE-571: Courtesy of Maxim Likhachev, CMU

Search Attempt 2: Uniform Cost Search
Expand the search according to lowest cost from the start

Pro: Guaranteed to find lowest cost paths

Cons:
1. May expand way more nodes than necessary

Informed Search
What if we knew some (approximate) information about how far a node is from the goal?

à Heuristics

Example: for shortest path goal reaching
around obstacles, reasonable heuristics are:

1. Euclidean distance

2. Manhattan distance

Incorporate domain knowledge while always underestimating cost

Admissible heuristic

CSE-571: Courtesy of Maxim Likhachev, CMU

Informed Search Attempt 1: Best-First Search
Choose the next node to expand as the one that has the lowest heuristic – “greedy best first”

CSE-571: Courtesy of Maxim Likhachev, CMU

Informed Search Attempt 1: Best-First Search

Pro: Great without obstacles

Con: Can return suboptimal
paths with obstacles

CSE-571: Courtesy of Maxim Likhachev, CMU

Informed Search Attempt 2: A* Search
Choose the next node to expand as the one that has the lowest heuristic + cost so far

Greedy best first Uniform cost search

CSE-571: Courtesy of Maxim Likhachev, CMU

Computes optimal g-values for relevant states at any point of time

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

Cost-accumulated: the cost of
a shortest path from sstart to s
found so far

Heuristic: an (under) estimate of the
cost of a shortest path from s to sgoal

A* Search: Setup

g-value: shortest path so far from the start to a particular state

CSE-571: Courtesy of Maxim Likhachev, CMU

h(s)
g(s)

Sstart

S

S2

S1
Sgoal

…

…

…

A* Search: Setup

heuristic function

one popular heuristic function – Euclidean distance

Computes optimal g-values for relevant states at any point of time

CSE-571: Courtesy of Maxim Likhachev, CMU

Why A* Search?
Combines the best of both greedy best first search and uniform cost search

Small number of node expansions Guaranteed lowest cost path (assuming positive costs)

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ¥
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

A* Search

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

A* Search

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

Maxim Likhachev, University of Pennsylvania

n Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

A* Search

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

CSE-571: Courtesy of Maxim Likhachev, CMU

n Is guaranteed to return an optimal path (in fact, for
every expanded state) – optimal in terms of the
solution

n Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of
the computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search

CSE-571: Courtesy of Maxim Likhachev, CMU

n Is guaranteed to return an optimal path (in fact, for
every expanded state) – optimal in terms of the
solution

n Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of
the computations

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

helps with robot
deviating off its path
if we search with A*

backwards (from goal to
start)

Connecting A* Search back to Motion Planning

discretize

planning map

S1 S2 S3

S4 S5

S6

search the graph
for a least-cost path

Step 1:
form the graph

Step 2:
Search the graph

S2 S1
Sgoal

2
g=1
h=2

g= 3
h=1 g= 5

h=0
2

S4 S33
g= 2
h=2

g= 5
h=1

1
Sstart

1
1

g=0
h=3 Step 3:

Execute on the robot

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

… …

for large problems this results in A* quickly
running out of memory (memory: O(n))

A* Search: expands states in the order of f = g+h values

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function
n Weighted A* Search: expands states in the order of f =

g+εh values, ε > 1 = bias towards states that are closer
to goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function
Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with R* (randomized version of weighted A*)

Is A* always optimal for all heuristics?

Admissible à underestimate Consistent à monotone

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

h(s) < h*(s) h(s) < c(s, s’) + h(s’)

A* search returns optimal paths
on graphs only when the heuristic

is admissible and consistent

CSE-571: Courtesy of Maxim Likhachev, CMU

Common Heuristics in Robotics
Art more than a science – commonly used heuristics are Euclidean/Manhattan distance or distance

through coarse/convexified obstacles

CSE-571: Courtesy of Maxim Likhachev, CMU

Visualization of Search

Uniform cost search A* search Weighted A* search

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion Planning via Search

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (LPA*)

ATRV navigating
initially-unknown environment planning map and path

n Robot needs to re-plan whenever
n new information arrives (partially-known environments or/and

dynamic environments)
n robot deviates off its path

Incremental version of A* (LPA*/D*/D* Lite)

n Robot needs to re-plan whenever
n new information arrives (partially-known environments or/and

dynamic environments)
n robot deviates off its path

incremental planning (re-planning):
reuse of previous planning efforts

planning in dynamic environments

Tartanracing, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

How to reuse these g-values from one search to
another? – incremental A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

Would # of changed g-values be
very different for forward A*?

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
n Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

Any work needs to be done if robot
deviates off its path?

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
n Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

