Robotics

Spring 2023
Abhishek Gupta
TAs: Yi Li, Srivatsa GS

Courtesy of Maxim Likhachev, CMU, Dieter Fox, UW

Recap: Course Overview

[Fitering/Smoothing | [Localization] | | 222! Motion Planning
- - TrajOpt Stability/Certification
MDPs and RL

Imitation Learning

Solving POMDPs

What we have seen so far?

Bayesian Filtering

Bel(x;) = P(x¢|ug:t—1, 20:¢) Localization

:Up(zt|$t)/P($t|ut—1aCUt—l)B@l(ﬂJt—l)dﬂUt—l

Kalman Filters Particle Filters Mapping

SLAM

What does full stack robotics involve?

High-level
planning

g ——
N
Y

N o o o |

~

li g J
State R Mo:lne dlngl I Low-level
Estimation Predictiorl 4) | control
J I/ Low-level \I J
planning

Section 2 of this course

Given an accurate estimate of the state - how do we decide what actions to take?

Motion Planning Trajectory Optimization Certification

—

rad V

/ grad V

—4{7
- A

Motion/Path Planning

Task:

= find a feasible (and cost-minimal) path/motion from the
current configuration of the robot to its goal
configuration (or one of its goal configurations)

Two types of constraints:
= environmental constraints (e.qg., obstacles)
= dynamics/kinematics constraints of the robot
Generated motion/path should (objective):
= be any feasible path

= minimize cost such as distance, time, energy, risk, ...

Motion/Path Planning

Examples (of what is usually referred to as path planning):

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

K&

Whole-body motion planning

Motion/Path Planning

Examples (of what is usually referred to as motion planning)

|
|
|

4< /Immovable
_—"|-Obstacles
e
DJ < n <
A

Goal Configuration

/

Start
Configuration

Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

Motion/Path Planning

Path/Motion Planner

path

Controller

lcommands

map update pose update

Motion/Path Planning

Path/Motion Planner

path

Controller

lcommands

pose update

@ian update (EKF)

map update

.e., deterministic registration
or Bayesian update

Why is motion planning non-trivial?

= Searching/Optimization through a complex non-convex space
= Combination of discrete/continuous optimization

4

DU U N N U EE— ‘
‘ T B

Ovarview

Scales poorly with dimensionality of space and number of obstacles - PSPACE complete

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

re-plan every time
sensory data arrives or

- Planning approaches: robot deviates off its path

- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption

- re-plan as new information arrives .
e-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Uncertainty and Planning

- Uncertainty can be in:
- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

- Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty: computationally MUCH harder

- associate probabilities with some elements or everything

-plan a policy that dictates what to do for each outcome of sensing/action and
minimizes expected cost-to-goal

- re-plan if unaccounted events happen

Urban Challenge Race, CMU team, planning with Anytime D*

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

Defining the Motion Planning Problem

Problem:

Given start state xS, goal state xG

Asked for: a sequence of control inputs that leads from start to
goal

Why tricky?
Need to avoid obstacles

For systems with underactuated dynamics: can’t simply move
along any coordinate at will

E.g., car, helicopter, airplane, but also robot manipulator
hitting joint limits

Configuration Space

conf-2

conf-1 ™

conf-3

i conf-1
conf-2

i > ©shou

Configuration Space

Configuration space: space of joint configurations of the robot

Obstacles/constraints do not live in the joint space of the robot but in the world space
-> non-convex when projected into configuration space

Finding collision free paths is a non-trivial search problem.

Workspace Configuration Space

(2 DOF: translation only, no rotation)

A free space

obstacles ..

Motion Planning in Configuration Space

Cannot directly use optimization techniques like gradient descent,
must solve a non-convex optimization problem.

/ A ldea 1: Modeling as discrete search
{ y /i

ldea 2: Sequential convexification of
non-convex problems

Overview

Planning as Search

planning map

&2 (s

Convert into a search problem @ @

£

search the graph
for a least-cost path
from s, to Sgoal

Can use efficient techniques for discrete graph search

/ \

Deterministic Search Sampling Based Search

Recasting Planning as Search

How?

&2 (s

Convert into a search problem @ @

£

planning map

search the graph
for a least-cost path
from s, to Sgoal

Can use efficient techniques for discrete graph search

Which ones?

Motion Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

planning map

(882 (s
convert into a graph‘ @. @
(85

search the graph
for a least-cost path
from s, to s

goal

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

~

N

eight-connected grid \

(one way to construct a graph)

T

> search the graph

convert into a graph
Ss | Ss stapt, @ @ for a least-cost path
Se from S, 10 Sgpq)

planning map

Planning via Cell Decomposition

- Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic
robots

discretize

\ 4

How can we connect states for non-holonomic robots?

Requires solving a 2 point boundary value problem on kinematics

1 e ! q‘
So and s; are connected if there exists a
u such that |f(sy, u) — 54| < €

A

AN

Differentially Constrained On the Reachability of Quantized Control Systems
MOb“eil:‘o;::r I:i:g:gl;lanmng Antonio Bicchi, Alessia Marigo, Benedetto Piccoli

Mihail Pivtoraiko, Ross A. Knepper,
and Alonzo Kelly
Robotics Institute

C je Mellon Universi M

Cornege Mellon Uniority s Can be extended to dynamics systems too!
e-mail: mihail@cs.cmu.edu, rak@ri.cmu.edu,
alonzo@ri.cmu.edu

August 2008; accepted 4 January 2009

Planning via Cell Decomposition

- Graph construction:
- lattice graph

outcome state is the center of each transition is feasible

the corresponding cell (constructed beforehand)

Mem plate

"” 37
C(s,,5,) = 100

C(s;Se) =5

replicate it
online

Planning via Cell Decomposition

- Graph construction:

- lattice graph

- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it

>HAD online

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

Techniques for Search

Goal

Start

Goal is to avoid obstacles and reach a particular goal with:
1. As few node expansions as possible
2. Lowest cost path

Techniques for Search

Breadth First Search Uniform Cost Search A* Search

Q

Search Attempt 1: Breadth First Search

Breadth First Search

Expand the search uniformly in all directions from start

frontier = Queue()
frontier.put(start ")
came_from = dict()
came_from[start] = None

while not frontier.empty():
current = frontier.get()

if current == goal: "
break

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

Search Attempt 1: Breadth First Search

Expand the search uniformly in all directions from start
rrrrrrrrrrrrrrrrr ey PPl

Pro: Guaranteed to find shortest paths

Cons:
1. Doesn't take costs into account
2. May expand way more nodes than necessary

Search Attempt 2: Uniform Cost Search

Uniform Cost Search

Expand the search according to lowest cost from the start

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
current = frontier.get()

if current == goal:
break

for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost
frontier.put(next, priority)
came_from[next] = current

Search Attempt 2: Uniform Cost Search

Expand the search according to lowest cost from the start

Breadth First Search Dijkstra’s Algorithm

Pro: Guaranteed to find lowest cost paths

Cons:
1. May expand way more nodes than necessary

Informed Search

What if we knew some (approximate) information about how far a node is from the goal?
—> Heuristics

Example: for shortest path goal reaching

around obstacles, reasonable heuristics are:
- X
1. Euclidean distance

2. Manhattan distance

Incorporate domain knowledge while always underestimating cost

\

Admissible heuristic

Informed Search Attempt 1: Best-First Search

Choose the next node to expand as the one that has the lowest heuristic - “greedy best first”

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = None

while not frontier.empty():

current = frontier.get()
if current == goal:
break

for next in graph.neighbors(current):
if next not in came_from:
priority = heuristic(goal, next)
frontier.put(next, priority)
came_from[next] = current

Informed Search Attempt 1: Best-First Search

Dijkstra's Algorithm Greedy Best-First Search

g —

Pro: Great without obstacles

Dijkstra's Algorithm Greedy Best-First Search

% *

Con: Can return suboptimal
paths with obstacles

Informed Search Attempt 2: A* Search

Choose the next node to expand as the one that has the lowest heuristic + cost so far

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
current = frontier.get()

if current == goal:
break

for next in graph.neighbors(current):

new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:

cost_so_far[next] = new_cost

priority = new_cost + heuristic(goal, next)

frontier.put(next, priority)
came_from[next] = current

-

Greedy best first

T~

Uniform cost search

A* Search: Setup

Computes optimal g-values for relevant states at any point of time

Heuristic: an (under) estimate of the

Cost-accumulated: the cost of cost of a shortest path from s to s,

a shortest path froms, . to s
found so far —

h(s)

g-value: shortest path so far from the start to a particular state

A* Search: Setup

Computes optimal g-values for relevant states at any point of time

heuristic function

hs)

S)—,

——®

one popular heuristic function - Euclidean distance

Why A* Search?

12

1"

10

13

12

1

10

14

13

12

1"

10

Combines the best of both greedy best first search and uniform cost search

15

14

13

12

1

10

Dijkstra’s Algorithm
16N 178 R8N 198 F20N F218 22
15 16 17 18 19 20 21

14

13

12

1

10

14

13

12

1

10

15
14
13
12
1

10

16

15

14

13

12

1

10

17

16

15

14

13

12

1

10

10

18
17
16
15
14
13
12
1

10

10

1

19
18
17
16
15
14
13
12

1"

1"

12

12 13 14

13 14 15

17

16

15

16

18

20 |19

Small number of node expansions

16

17

18

19

14

15

16

17

Greedy Best-First

12

13

14

15

10

1"

12

13

10

1

10

Sh 2
2 1
4 3 2
5 4 3
6 5 4
i RBR b
88 =78 N6
o Nah =7 22
9 8 22 22
9 S22 22
22 22)pee
* 22
24

b

R R R B R RRRBRNR

24

22

R R R R R R

A* Search

24

24

22

24

22

Guaranteed lowest cost path (assuming positive costs)

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g= g= oo
h= h=1
o B8 .
- h:3 2 hZO
CLOSED = {}
OP EN - {Sstart} ! Sgoal

next state to expand: S, @

h2 h]

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

. Vi + 4
1fg(S ’) > g(S) C(S’S,) g(Sz) > g(SsmrJ + C(Sslart’SZ)
g(s’) =g(s) +c(s,s), /
insert s~ into OPEN;
= Qo0
=]

M‘ﬁ
WQ

S goal

OP EN — {Sstart}

next state to expand: S, @

h2 h]

@ @\)
CLOSED = {} , 0

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g= o0
h=1
g TR
CLOSED = {s.,] ’“:3 S k=0
start |
OPEN — {Sz} Sgoal

next state to expand: s, @

h2 h]

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g=1 g=3
h=2 h=1
g=0 @# g= oo
CLOSED = h=3 R =0
o {Sstart’SZ} @ i
OPEN — {S],S4} Sgoal

next state to expand: s; @ 3 @/

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

2
h= | @ 2
CLOSED = {s,.,555;} @\

OPEN = {548 gou1f

next state to expand: s, @ 3 @/

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

g=0 2,
h:3 @ 2
CLOSED = {54,555 1,84} @\

OPEN = {535 goulf :

next state to expand.: S goal @

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;

for every successor s ~ of s such that s " not in CLOSED

if g(s’) > g(s) +c(s.s)

g(s’) =g(s) +cfs.s’);

insert s~ into OPEN;

CLOSED = {s.,..,55,,5,S goaz}

OPEN = {s;}
done

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —»@
we can now compute a least-cost path

A* Search

s Computes optimal g-values for relevant states

ComputePath function
while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED
if g(s’) > g(s) +c(s,s”)
g(s’) =g(s) +c(s;s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —»@
we can now compute a least-cost path

A* Search

Is guaranteed to return an optimal path (in fact, for
every expanded state) — optimal in terms of the
solution

Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of

. g=1 g=73
the computations | _, b

A* Search

Is guaranteed to return an optimal path (in fact, for [
every expanded state) — optimal in terms of the
solution

_

~

helps with robot
deviating off its path
if we search with A*
backwards (from goal to

start))

Performs provably minimal number of state expansions

required to guarantee optimality — optimal in terms of

. g=1 g=73
the computations | _, b

0 (G,
h:3 2 h:()
» ’

1
OEO
g=>5

g=2
h=2 h=1

Connecting A Search back to Motion Planning

/ planning map \

9%@

. search the graph
for a least-cost p@/
g=1 g=73

N
-0 &= _
Step 2: @i;ff/ l | 05 Step 3:

Search the graph Execute on the robot
SRS

g=72 g=>5

_ h=2 h=I N

discretize

Step 1:
form the graph

\
;

Effect of the Heuristic Function

A* Search: expands states in the order of f= g+h values

Effect of the Heuristic Function

A* Search: expands states in the order of f= g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

Effect of the Heuristic Function

s Weighted A* Search: expands states in the order of f=
g+eh values, € > T = bias towards states that are closer

to goal
solution 1s always e-suboptimal:
ost(solution) < g-cost(optimal solution
' Sgoal

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f=g+&h

values, € > 1T = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A¥)

Effect of the Heuristic Function

- planning in 8D (<x,y> for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
. cost of edges based on kinematic stability of the robot and quality of footholds

& s

- >

planning with R* (randomized version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

Is A* always optimal for all heuristics?

Admissible 2 underestimate

h(s) < h*(s)

Consistent - monotone

h(s) < c(s, s’) + h(s")

A* search returns optimal paths
on graphs only when the heuristic
is admissible and consistent

Common Heuristics in Robotics

Art more than a science — commonly used heuristics are Euclidean/Manhattan distance or distance
through coarse/convexified obstacles

NTELLIGENT SEARCH
STRATEGES FOR COMPUTER
PROSLEM SOLVING

G

Visualization of Search

Uniform cost search A* search Weighted A* search

Motion Planning via Search

Lecture Outline

Casting motion planning as a search problem

Motion Planning via A* search

Incremental Search for Replanning

Incremental version of A* (LPA¥*)

= Robot needs to re-plan whenever

= new information arrives (partially-known environments or/and
dynamic environments)

= robot deviates off its path

ATRYV navigating
mitially-unknown environment planning map and path
‘:i G P o

Incremental version of A* (LPA*/D*/D¥* Lite)

= Robot needs to re-plan whenever
= new information arrives (partially-known environments or/and

dynamic environments) incremental planning (re-planning):
= robot deviates off its pa reuse of previous planning efforts

planning in dynamic environments

Tartanracing, CMU

goal INitially

ious searches

cost of least-cost paths to s

Reuse state values from prev

Motivation for Incremental Version of A*

wn
|9
e
)
fenfenjen|enjen|en| =t |vn| \Of | 00| AUU O|wrf=t| enfen|en|en]enfenen| <t v | \Of 0| 00f
Al eefea]en|<r || o] ~[oo (%] O | <t|en| | e || e en| <t v t~[oo
S
| ||| e <+ || \O| | o u \O| = |en]| A —| —|—|] en| <t || \O| |0
— t =
3
= [||| o] t~[oo o O vt |en| | —i WMIAQ?A..DG./OO
—i| == || en| = || O B[00 O O =t |en]| | = —i|— || en| =+ || \O|~|c0
A A A en) <t || \Of T~ o0 e O v =t |en] | el ||| en| =t v Ot~ [oo
| en|en]en|on|en| <[] O] 0~ oo < O\ <t|en| en]en] enfenfen]en| <t O ~[co
| -
<t|=t|=ft|=H| ||| O oo e O vl =t | =t | <t| st < == < = || o | oo
e
s a1 Vsl U2l Us) el Vsl K= L [=] Lla
©
o
()]
(V)
e
(%))
o !
—)
o|ole Xt ©
| | et —
v,
= b ._&
el e O
e]
e en) en) g L
[T n (%]
<t| <t <t| <+ ||| == e ©
— |] — —| — |t | | =] — — e
@)
)
wn

Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially

]Gl oluliolols[7T6l6l6]6[6]6l6l6]6]6
1411311211110/ 9|87 16 |5]|5|5[5]5|5]5([51]5
A3 10[o[8[765 [a]ala[alalala]4
14113112 (1111019 |18 1765413131313 1[3([31]3
14113112 (11}10{ 9|8 7165143 [2]1212]2([2]3
14113]12 9181716151413]21]1 1 11213
14|13] 12 9 71615141312 1tsgoql1]21]3
S14 131214771 1 {213
|-14 -13 I*s J6 514132 | 5[> [>[2[3
14113]12 S14131313]3131=2""-
141131121110 716151414 4= . . %
41312 1] 716151515 These costs are optimal g-values if search is
14113112 . 71666\
F‘ 717 7 [7 [T done backwards
18 IS iam 16115+ 81818 [8 |8 [8 [8Tor

cost of least-cost paths to s, after the door turns out to be closed

1413 [12]11]10
14113112111 1/]10
14113112 111]10
14[13[12]11]10

141131121110
13 '

13

8
8
8
8
8
8

=] s} No} Ns] No] No] No]

5

[o2e] EN] (@)Y (4] L04) (4] L) L) () () () L) L]) (@)Y

[ee] RN (o) (4] EE EE EE BE BE S BE PR EE (94 (@)

O[O [N [+ |2 [E B9 19 |19 | W [= [n [O

[o/e] BN (@) (9] SN (FF] | NO] P Py P | RO [US] BN () (@)Y
1]

[o%s] BN] (@)Y (W] =N (9] | RS] [To (Pl Ty [RS) LUS] N (Y (@)Y

[o7e] BN (@) (W] BEN) (W] [S0] [9] (RS (§] (RS (US] RN (1] (@)Y

(#le]) EN] (@) L0/] NiNY (V5] (UF] (FF] (U] (FF] L] (FF) NN) o))

(%] BN (=) (7] BN (F¥] [F¥] [3¥] (F¥) 3] (3¥]) [3%] IS (D] (o
[oe] BN (@) (O] BEN (U] | B8] oy SR Tl | RO LUR] BEN (9] (@)

Motivation for Incremental Version of A*

s Reuse state values from previous searches
cost of least-cost paths to s, initially

14113 [12[11]10
1411311211110
14113112 (11]10
14113112 [11]10
14113112111 1(10
12
12

[o2e] (w2e] [e7s] [o7e] (] (7]

Ll (0] [95] BEN () (@)Y

(NS} (6] [(F8] NSN3/} ‘@)
(U%] (V] (9% FiN (W] (o))

— 9| || |
L (0] [9%] FEN (2] ()Y

\NNUJ-&'J\O\

\IUJUJUJJE-'JIO\

[@)] (o)) @) [e)] (o) @) (o)}
L4l (L) Wy L4 L] W) (@)

\>J>-I>-J>4>~’JIO\

U NN (NN NN

These costs are optimal g-values if search is
done backwards

14 [13 (12 [11]10
4 [13 12 [11]10

12 '
12

5 mtD}r
[——

How to reuse these g-values from one search to
another? — incremental A*

cost of least-cost paths to s, after

1413 [12]11]10
14113112111 1/]10
14 |13 [12
14[13[12]11]10

141131121110
13 '

13

8
8
8
8
8
8

=] s} No} Ns] No] No] No]

5

li

[oe] BN (@) (O] BEN (U] | B8] oy SR Tl | RO LUR] BEN (9] (@)

[o2e] EN] (@)Y (4] L04) (4] L) L) () () () L) L]) (@)Y

[ee] RN (o) (4] EE EE EE BE BE S BE PR EE (94 (@)

O[O [N [+ |2 [E B9 19 |19 | W [= [n [O

[oe] BN (@) (O] RN (U] | B8] oo (ol Tl | O LUR] NEN (9] (@)
[oe] RN (@)Y (4] EEH (V] [S8] [N1 (RS (S8 (RS (V8] PR) (o))
(o] ON] (o)) (W] FiN| (V5] (F¥] (F¥] (V%] (FF] [F%] F5] IS @] (o)

[o7e] EN] (@)} (W] BEN (V) (US] LFN] (PN} FV] (W] LFS] NEN (W)] (@)Y
O[O\ [N || [t = = |t || &= [0

~ Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially

140131211 {10f9 8|7 [|6]6]6]6]61]6]16]61]61]6
4113)12)11{10f{9 |87 |6 |S5|[5]|5]|5]5]5]5[515
1411311211 [{10] 9 |1 8|7 |16|514|4[4]4]4]4]141]4
1411312111110 9 | 8 [7 [6 5[4 1313 [313[3([31]3
141131211 {10987 |6 |5[4]3]2]2]12]2[21]3
14113112 9181716514312 1 1 1 {213
14] 13 [12 9 716541312 Ldsgoal 1 1213
514312 1 11213
14113 (12 9 Ty 65543 A——a——=—
14113112]11(101] 9
14113 [12]11]10] 10
L T ould # of changed g-values be

ehanebsbdl i very different for forward A*?

cost of least-cost paths to s, a sed

1413121111049 18 [7 161616161 6])616]|61[616
1413121111049 |8 7|6 |5 ([5]|5([5]5]5|5]515
141131211109 [8|7 |16 |514[4]|4]14]|]4]14]41]4
141131211109 8|76 |54 |3 [3J3[3]3]31]3
14131211109 | 8|7 |6 |5[4]3|2]212]|2]2]3
13 ' 9 | &GS 3t 1 | 1| 2 |3
13 9 7 1 6151413 211 Sqom 1 [21]3
S|141312 11111213

S|14)1312)1212([2]21]3

514131313 13]13]31]3

S1414141414)141414

S|1S5[S5|5]5|5)1551]5

6 | 6]1]6]6|]6]6]6]|61]6

71 7171717171777

8 1818181818888

~ Motivation for Incremental Version of A* .

s Reuse state values from previous searches
cost of least-cost paths to s, initially

1411311211109 |87 |6l6l6l6]l6[6]l6[16[61]6
4113112711 l10l9]1 8171615151515 1515151515
141131211 [10f 9[8[7|65 [414a4]l4a4[a4]4a[a][4a]4
4l13]12]11{10f{9f8[7 654131313133 ([3]3
1411311211 l10l9]8f716f51a4l3f2]1212]21213
1411312 o18[71l6l5 143121111213
14]13]12 9 716151413211k, 11213
S1a4]13 12 a1 1 1213
14]13]12 9 7,6, 5 =
14113121110 9
14]13]12]11[10] 10 1 d b d f b
NN ny work needs to be done 11 robo
o)

13

18 [s iz t6-d5--44 | 14

deviates off its path?

cost of least-cost paths to s, a

1413121111049 18 [7 161616161 6])616]|61[616
1413121111049 |8 7|6 |5 ([5]|5([5]5]5|5]515
141131211109 [8|7 |16 |514[4]|4]14]|]4]14]41]4
141131211109 8|76 |54 |3 [3J3[3]3]31]3
14131211109 | 8|7 |6 |5[4]3|2]212]|2]2]3
13 ' 9 | &GS 3t 1 | 1| 2 |3
13 9 7 1 6151413 211 Sqom 1 [21]3
S|141312 11111213

S|14)1312)1212([2]21]3

514131313 13]13]31]3

S1414141414)141414

S|1S5[S5|5]5|5)1551]5

6 | 6]1]6]6|]6]6]6]|61]6

71 7171717171777

8 1818181818888

Incremental Version of A*

= Reuse state values from previous searches

initial search by backwards A*

initial search by D* Lite

second search by backwards A*

second search by D* Lite

SSSSS

i &

