Robotics

Spring 2023
Abhishek Gupta
TAs: Yi Li, Srivatsa GS

Recap: Course Overview

_ Localization Search Motion Planning
Mapping SLAM TrajOpt Stability/Certification
MDPs and RL

Imitation Learning

Solving POMDPs

Recap: Velocity Based Sampling

Generate noise free motion and then add noise to it

<Xe,¥e> X

Useful for particle filters

Given v, w first compute the radius of motion to get x, y
and then compute the heading change

T, =Xy —Trsinb
Ye = Yt + rcosb

& T, + 2 sin(0 + wAt)
Y = Yo — = cos(f + wAt)
¢’ 0+ wAt

% —2sinf + = sin(0 + wAt)
= y |+ | Zcost— 2 cos(f+ wAt)

1%
r = —

0 wAt

Add noise to the velocities

(5) = (&)+ ()
w w Eag|v|+oy|w|

Replace v, w by U, w

Recap: Odometry Based Model Sampling

. : H — (7 /
Goal: sample x.,; from x, with action v = (Z, z')

1. Reparametrize u from (Z, ') to (Orot1; Orot2; Otrans)

A

2. Add noise to (51"0‘517 5rot27 5trans) to get (5rot17 51‘0‘527 5trams)

A

3. CompUte next state Xit from (51"0‘517 51"0’527 5tra,ns)

A

Key idea: odometry gives you change in
angles, this is noisy and gives next state

Integrating Maps into Motion Models

From free space motion models to maps

Free space motion models do not account for obstacles in a known map

C\Q C\Q

p(@'|u, x,m) = p(a’|m)p(z’|z, u)

Zero-out positions that are not possible in the map

Motion Model with Map

° §yo ¢

p('|u, z) p(@'|u, x,m) ~ p(a'|m)p(z’|z, u)

Failure Case

@ p(zt | ut,ze—1) (b) p(zt | ut, zt—1,m)

+—: (%)

|
“ Obstacle

Free space

Don’t account for motion through walls = deal with by increasing frequency

Lecture Outline

Sensor Models

Parameter Estimation

Occupancy Mapping

Sensor Models for Bayesian Filtering

Bel(azt) — P(xt’UO:t—la Zo:t)
— 1 plzilay) / Plas|us1, 701) Bel(zr_1)dzrs

|

Let’s try and specify what this is

Sensors for Mobile Robots

Contact sensors: Bumpers, touch sensors

Internal sensors
= Accelerometers (spring-mounted masses)
= Gyroscopes (spinning mass, laser light)
= Compasses, inclinometers (earth magnetic field, gravity)
= Encoders, torque
Proximity sensors
= Sonar (time of flight)
= Radar (phase and frequency)
= Laserrange-finders (triangulation, tof, phase)
= Infrared (intensity)

Visual sensors: Cameras, depth cameras
Satellite-style sensors: GPS, MoCap

Proximity Sensors

The central task is to determine P(z|x), i.e. the probability of a measurement z
given that the robot is at position x.

Question: Where do the probabilities come from?

Approach: Let’ s try to explain a measurement.

Beam-based Sensor Model

Beam-based Sensor Model

s Scan z consists of K measurements.

Beam-based Sensor Model

s Scan z consists of K measurements.

Z=1Z,2ys Zg }

= Individual measurements are independent given the robot position
and a map.

P(z|x,m) = HP(Zk | x, m)

Beam-based Sensor Model

K

P(z|x,m)= HP(Zk | x, m)

k=1

Proximity Measurement

= Measurement can be caused by ...
= a known obstacle.
= cross-talk.
= anh unexpected obstacle (people, furniture, ...).

= missing all obstacles (total reflection, glass, ...).

= Noise is due to uncertainty ...
= in measuring distance to known obstacle.
= in position of known obstacles.
= inposition of additional obstacles.

= whether obstacle is missed.

Beam-based Proximity Model

4/18/23

Measurement noise Unexpected obstacles

¥

0 Zexp Z max 0 Zexp Zmax
1(2=Zexp)
1 —5F _ iz
Phit(le,m):n > e 2 o0 Rmexp(z|x9m)_77ﬂ“e
O
CSE-571 -

Robotics

Beam-based Proximity Model

Random measurement Max range
. l .
0 Zexp Zmax 0 Zexp Zmax
1 1
})mnd(z|x9m):77— PmaX(Z|‘x9m):77
z Zsmall

max

4/18/23 CSE-571 -

Robotics

20

Mixture Density

P(z|x,m)=

4/18/23

. })unexp(z | ‘x’ m)

(})hit(Z|xam))

P (z|x,m)

_ })rand(Z | X, m) /

How can we determine the model parameters?

— More on this next

CSE-571 - Robotics

Summary Beam-based Model

= Assumes independence between beams.

= Overconfident!

= Models physical causes for measurements.

= Mixture of densities for these causes.

= Implementation
= Learn parameters based on real data.

= Different models can be learned for different angles at which the sensor beam hits the
obstacle.

= Determine expected distances by ray-tracing.

= Expected distances can be pre-processed.

Landmark-based Sensor Model

When are raw measurement based models not enough?

= Scales unfavorably with dimensionality of the measurement

Feature Extraction Classification

l | I

AlexNet Model

Classifier

Input image Classified image with

227x227 Class label

'S
g | Output
1 -
% ayer g
|
g
1 Last FC layer
or number of

= Common strategy in machine learning - extract low
dimensional features

Landmarks

= Active beacons (e.g. radio, GPS)
= Passive (e.g. visual, retro-reflective)

= Sensor provides
= distance, or
= bearing, or
= distance and bearing.

= Signhature

25

Distance and Bearing

range

bearing

A

26

Pr

obabilistic Model

Compute expected
range/bearing

Compute likelihood

1.

Algorithm landmark_detection_model(z,x,m):
z= <i,d,a>,x = <x,y,9>

o d = (m ()= x)* +(m, ()~)’

o = atan2(m (i) — y,m (i)— x)— 6

Paet = prOb(C’I; —dagd)'pl‘Ob(OAl —a,ga)

Return zy, Puet + Z Bitorm (z]x,m)

HW 1EKF Correction Step Pseudocode: Landmark Style

—
.

3.

4.

def EKF_correction(#t+1io:t, Seiajos, ue, 241)

Linearize measurement:

_[oe 9o 00
H=|5% 5 %

Correction:

Ky = Et—|—1|0:tHT(HZt—|—1HT + R)~

3[,;(

g 1]0:t41 = Met1]0:t + K1 (241
Yig1j0it41 = ([— Key1 H) Y1001

Return He+1jo:t+1 , Zt+1|0:t+1

/
/
4

Mt+1|0:t)]

State - (x,y, 0)
Measurement — ¢

(assumes d is perfectly known)

atan2(ly —x) — 9]+ 0

N (0, 05)
S
R

“Summary of Parametric Motion and Sensor Models

= Explicitly modeling uncertainty in motion and sensing is key to robustness.

= In many cases, good models can be found by the following approach:
1. Determine parametric model of noise free motion or measurement.
2. Analyze sources of noise.
;. Add adequate noise to parameters (eventually mix in densities for noise).
. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically comparing” the
actual with the expected measurement.

= Itis extremely important to be aware of the underlying assumptions!

Lecture Outline

Sensor Models

Parameter Estimation

Occupancy Mapping

But where do the actual noise values and A, B come from?

= Case 1: Fully observed training

= We have an oracle technique to observe x, z, u (motion capture) at
training time.

= Maximize likelihood
= Case 2: Partially observed training

= We can only observe z, u

= Expectation-Maximization

W Case 1: Observed z, x, u — Maximize Likelihood .

= Maximize log likelihood of the data (z, x, u) under the motion
and sensor models

Linear Gaussian f{r,lBa,}é E(m,u,:p’) []3(33/ ‘[Ij, U)]
Tt41 = Ax; + Buy + € p(.|r,u) = N(Az + Bu, Q)
e ~N(0,Q) - max[E H(z|x
Zt4+1 = Cl't_|_1 —+ 575 C,R (Z,x) [p(‘)]

5, ~ N(0, R) p(-]z) = N(Cz, R)
Non-linear Solve with LS or SGD /
max E, 4 . [P(2' |2, u)]
— ; _|_ 0 R y Ly
Zti N(go(jcég)m) ! : p(-|z, u)A: N (go (2, u), Qo)
2 = h(x:) + 6 maxE q) p(z]2)]
6t ~N(0,R .
SatuULY BIz) = N (hg(2), Ry)

32

Raw Sensor Data

Measured distances for expected distance of 300 cm.

+

-

K i

fmmu
4mu+m-

f&ﬂ mm—“

¢¢ﬂm
mwmu #
e

+

m?,zmm
t

mm+“+ 4+ f

gt g
i

4&.*#

!

m;na]

-

Hu+numu RN o

w+++ f . "¢m

-
Kool

«is+

FigtlHe

&1wm“' -l
uwo *tat |

R

g

ok

:

+

"

W“ f.+f.

m+hq4ou ++ o+ru»

sffare ¢
3 aegeis
e

f&

+$
o.'.f
H -

f+o¢f4ﬁu+

m%,mw et

mm anu o

g

Sonar

Laser

33

Approximation Results

4/18/23

w

300cm

; Laser
HTFWHTFFFH{M

Sonar

CSE-571 - Robotics

Why is estimating parameters generally not so easy?

Lt—1 Lt Lt4+1 X is actually not observed typically, only z, u

@ @ @ Latent variable inference problem

Parameter Estimation in Latent Variable Models

Hard problem to solve exactly

@ max log p(z)
@ ~log [plelo)p(a)da

/

Intractable problem

Solve via iterative optimization — Expectation Maximization algorithm (EM)
—> Much more general than filtering/localization

EM Algorithm for Latent Variable Parameter Estimation

@ @ @ maxlog (2

Approximate with a 2 step process:
Lt—1 Lt Lt41
1. E-step: Fill in missing data x(i) according to
what is most likely given the current model

Z+_1 Zt Zi41 2: M-step: Run ML for completed data, which
gives new model \

Pretend we know the X Do the best possible given inferred latents

_EM Algorithms in Action for Estimating Motion/Sensor Models

l [T T T 1
e 0
2
g o]
time-step (k)
-2

0 20 40 60 80 100
time-step (k)

Recap: Course Overview

[Fitering/smoothing | [Localization] | | 2t} Lenen 2o
Mapping SLAM TrajOpt Stability/Certification
MDPs and RL

Imitation Learning

Solving POMDPs

Lecture Outline

Sensor Models

Parameter Estimation

Occupancy Mapping

What is mapping?

In all the localization examples thus far, the map
m was assumed to be known

- Not trivial in most environments

Types of Maps

Grid maps or scans

Spatial 2-D or 3-D map:
—> Each grip cell has occupancy 0/1
and a signature

LAk R % b
x| X o o il B 7 s B B X
’ N '. .;— x~\' L[]
o b o e T O PR B o List of landmarks and
X 1.1 X

x X xﬁ S x x x‘\ x . o, o

bl [l L U] o bl e their positions

s N e o
xxxxxx’(ixx xx;;\’:&.ﬁ

" > ‘)(x x s X e xXX s 4

Problems in Mapping

m Sensor interpretation

= How do we extract relevant information from raw sensor data?

= How do we represent and integrate this information over time?

s Robot locations have to be known

= How can we estimate them during mapping?

Occupancy Grid Maps

Introduced by Moravec and Elfes in 1985
Represent environment by a grid.

Estimate the probability that a location is occupied by an obstacle.
Key assumptions

= Occupancy of individual cells is independent
Bel(m,)=P(m, |u,z, ...,u, ,,z,)
=HBel(mt["y])
xﬂy

= Robot positions are known!

Updating Occupancy Grid Maps

= |dea: Update each individual cell using a binary Bayes filter.
Bel(m®)=1 p(z,|m®)), ., p(m™ lm%"u,) Bel(m

= Additional assumption: Map is static

Bel(m ") =n p(z, | m*")Bel(m*’

t

= What is a binary Bayes?

= Random variable are binary, map is static

= Tricks for numerical stability/efficiency

Binary Bayes Filter

Bel(:z:t) = P(QUt‘uO:t—la Z:O:t)

— 1 plzila) / Paylus 1,74 1) Bel(ws1)dzs 1

|
|
Remember the :
Bayes Filter |
|
|

Let us just treat the variable x as binary! = occupied or not

Allows us to define a very simple, stable algorithm -2 filtering on m, not x

Express as Log-Odds Recursion on Log-Odds
mMg|21:t, L1:t il 2, i
plmil2vs, @1.) st 1og Pl pm)
4 L= p(milze,a) 1 —p(mg)

p(mi‘zlztaxlzt)
p(ﬁmi|zlzt7 xl:t)

Binary Bayes Filter: Log Odds

Simple, numerically stable, efficient way to represent likelihoods

Odds: Log Odds = makes products of odds additive.
Directly represent things in log space
p(z) plz) | p(x)
— og
p(-z) 1—p(x) 1 —p(z)

Easy conversion between log-odds and probs:

- 1
1+ exp(l(z))

p(z) =1

Binary Bayes Filter: Recursive Update

Original Filtering problem: p(m;|z1., 71.¢)

p(Zt\mz', L1:t, Zl:t—l)p(mi|zlzt—17 £C1:t)

p(mi|21:t,i€1:t) = Bayes Rule
p(Zt|Z1:t—1,€C1:t)

p(mi|zl:t7371:t) _ p(zt’mm$t)p(mi|21:t—17561:t—1) Markov Property
p(Zt!ZLt—lwlzt)

p(mz‘|21:t,961;t) _ p(mi|zt7xt>p<zt|xt)p(milzlzt—laxl:t—l) Bayes Rule
P(mi|$t)p(zt\21:t—1,5U1:t)

m;lze, T zi|lx M;|21:4—1, L1-¢—
p(mz‘|21:t,$1:t) _ p(z| t t)p(t| t)p(z| Lit—1y L1:t 1) Independence

P(mz‘)]?(zt \21:75—1, 3?1:75)

p(_'mz' |Zt, xt)p(zt |37t)p(_‘mi |Zl:t—17 $1:t—1)
p(_'mi>p(zt |21:t—1, £U1;t)

p(—mg|21.4, T1:t) = Same operations for negation

p(mg|z1:e, T1:4) _ p(mg|ze, o) p(mi|21:0—1, T1:0—1)P(—My) Odds
p(ﬂmi|21:t,$1:t) p<_‘mz"zt7xt)p(_‘mi‘zl:t—laxl:t—l)p(mi)

Binary Bayes Filter: Recursive Update

Original Filtering problem: p(m;|z1., 71.¢)

P(mi\zuaiﬁu) _ p(mi|zt7$t>p(mi‘zl:t—1aml:t—l)p(_'mi)
p(_‘mi‘zl:taxlzt> p(_'milztaxt)p(_'milzlzt—laxl:t—l)p(mz‘>

log p(mg|z1.e, T1:t) — log p(mg|ze, x4) + log p(m;|z1:—1, T1:4—1) +log p(—m;)
p(—m|21:4, T1:) p(—mg |z, o) p(—m|21:—1, T1:e—1) p(m;)
p(mi|ze, o) p(—m;)
l+; = log + l—14 + log Simple recursive update!
p(—mi|ze, x¢) p(mi)
Inverse measurement model Previous log odds Prior

Can recover map likelihood per cell from here
—> Likelihood of an entire map is the product of individual grid likelihoods

p(m‘zl:ta xl:t) — Hp(mi|zlzt7 ml:t)

1

Inverse Sensor Model for Occupancy Grid Maps

= Predict map likelihood from z, x - p(m;|z¢, T¢)

Algorithm inverse_range_sensor_model(:, z;, 2¢):
Let xz;, y; be the center-of-mass of m;
r=+/(zi — 2)2 + (i — y)?
¢ = atan2(y; —y,z; —x) — 0
k = argmin, [¢ — 0; sens|
if 7 > min(zmax, 25 + @/2) or |¢ — Ok sens| > (/2 then
return [

if 28 < Zpax and |7 — Zpax| < /2
return [

ifr < zf
return lfree

endif

99 H\ [OF VNl B g

p—t e \O
=t

Combined Occupancy Mapping Algorithm

p(mz) [Discretize grid, initialize prior, Iog—oddsJ
4)
p(mi |Zt7 ajt) Move positions, take measurement z
- J
4)
lt,i = log plmslz, 2t) plom)

+ i1, + log Update log odds for each grid cell

p(_'mi \Zt, SUt) p(mz)

- J

Occupancy Grids: From scans to maps

/ W
1

Much less random noise, more traversable!

Incremental Updating of Occupancy Grids (Example)

Tech Museum, San Jose

occupanc'y grid map

CAD map

Multi-sensor Fusion

Occupancy maps produced by every sensor may be different

y

(

Robots in 3D Environments

Outdoor navigation

Humanoid robots Flying robots

3D Map Requirements

Full 3D Model

= Volumetric representation
= Free-space

= Unknown areas (e.g. for exploration)

Can be updated

= Probabilistic model (sensor noise, changes in the environment)

= Update of previously recorded maps

Flexible

= Map is dynamically expanded

= Multi-resolution map queries

Compact

= Memory efficient

= Map files for storage and exchange

Map Representations: Pointclouds

m Pro:
= No discretization of data

= Mapped area not limited

s Cons:
= Unbounded memory usage

= No direct representation of free or unknown space

Map Representations: 3D voxel grids

m Pros:
= Probabilistic update

= Constant access time

s Cons:

= Memory requirement
= Extent of map has to be known
= Complete map is allocated in memory

Map Representations: Octrees

s Tree-based data structure

s Recursive subdivision of

space into octants

= Volumes allocated
as needed

s Multi-resolution

OctoMap

g A Probabilistic, Flexible, and Compact 3D Map
a Representation for Robotic Systems
=1

K.M. Wurm, A. Hornung,
. :'* Auton_omous
AIS Sverterme M. Bennewitz, C. Stachniss, W. Burgard

@ ., Humanoid
g Robots Lab

" umversiyorrreburg. JNIVErSity of Freiburg, Germany

http://octomap.sf.net

Map Representations: Octrees

m Pro:
= Full 3D model
= Probabilistic

= Flexible, multi-resolution

= Memory efficient

m Cons:

= Implementation can be tricky
(memory, update, map files, ...)

= Open source implementation as C++ library available at http://octomap.sf.net

Probabilistic Map Update

OctoMap:
An Efficient Probabilistic 3D Mapping Framework Based on Octrees

Armin Hornung - Kai M. Wurm - Maren Bennewitz -
Cyrill Stachniss - Wolfram Burgard

= Perform standard log-odds update on 3-D map

= Clamping updates

= Multi-resolution queries on non-leaf nodes

Examples

s Cluttered office environment

Map resolution: 2 cm

Examples: Office Building

= Freiburg, building 079

=

Examples: Large Outdoor Areas

= Freiburg computer science campus
(292 x 167 x 28 m>, 20 cm resolution)

Examples: Tabletop

‘o‘!

Adding Color

Probabilistic 3D mapping using
OctoMap and RGBDSLAM

Kai M. Wurm, Felix Endres
Autonomous Intelligent Systems Lab
University of Freiburg, Germany

Lecture Outline

Sensor Models

Parameter Estimation

Occupancy Mapping

