Robotics

Spring 2023
Abhishek Gupta
TAs: Y1 Li, Srivatsa GS

Recap: Course Overview

_ Localization Search Motion PIannmg‘
Mapping SLAM TrajOpt Stability/CertificatiorJ
MDPs and RL

Imitation Learning

Solving POMDP:

Lecture Outline

Particle Filters

Motion Models

Sensor Models

Particle Filters: Motivation

So far, we discussed the

" Kalman filter: Gaussian, linearization problems, discrete Bayes
filters (eg histogram filters)

Histogram filters are great but they waste space and are non
adaptive

Particle filters are a way to efficiently represent
non-Gaussian distributions adaptively

Basic principle
" Set of state hypotheses (“particles”)
" Survival-of-the-fittest

Sample-based Localization (sonar)

4/14/23 Probabilistic Robotics

Let’s iIntroduce some tools

Density Approximation

Particle sets can be used to approximate densities

f(x) f(x)
= samples = samples
.20 20
3, O

= =
—~ ~
Z &
E g
< R
o o
= =
- Q.
X X

" The more particles fall into an interval, the higher the
probability of that interval

" How to draw samples form a function/distribution?

Importance Sampling Principle

" We can even use a different distribution g to generate
samples from f

" By introducing an importance weight w, we can account
for the “differences between g and f "

"w=f/
) J proposal(x)
" fis often called target(x)
t3 rge t samples

" g is often called
proposal

probability / weight

oot 100N |||H ‘ |

X

Resampling

Given: Set S of weighted samples.

Wanted : Random sample, where the probability of
drawing x; Is given by w;.

Typically done n times with replacement to generate new
sample set §".

Resampling: Efficient Techniques

* Roulette wheel

* Binary search, nlog n

* Stochastic universal sampling
* Systematic resampling
* Linear time complexity

* Easy to implement, low variance

Resampling: Efficient Techniques

Pseudocode for low-variance sampling

- Algorithm Low_variance_sampler(X;. W,):
28 ‘i’f = 0

3: r = rand(0: M)

4: c= u.',m

5: i =1

6: form = 1to M do

/- u=r+(m-—1)- M
8: while u > ¢

9: i=1+1

10: c=c+ u',["

11: endwhile

12: add z;" to X,

13: endfor

14: return X}

Table 4.4 Low variance resampling for the particle filter. This routine uses a single ran-
dom number to sample from the particle set X" with associated weights W, yet the probabil-
ity of a particle to be resampled is still proportional to its weight. Furthermore, the sampler
is efficient: Sampling M panticles requires O (M) time.

Let’s put these pieces together

Particle Filters

Discretize] (Initial Prior J

space J L p(z0)

Estimate Bel(x;)

Replace this with sampled particles

Estimate Bel(xy)

Particle Filters

Robot Motion

Bel(x:) = /P($t|ut—1, vi—1)Bel(ri—1)dri—q Push samples forward according to dynamics

| AN (NN NN NN U NN NN NN NN NN U DU DU N U DU U NN UNUUN U UUUUN DU NN U DU DU N U DU U OO DU DU OO U U U

p(s)
[U N MUY [NUSO IR (O e A o o | | e L L e e o A 1 [S

| NN N (NN (N N N (N (N (N N N (N (N Y (N (YN Y (O (Y Y Y (N (Y (YN Y N (N N O (NN N v |

)
| LI T e V1 [I VO N WOONUT | N USON0Y 0 1 O [1 (10 g o

Dynamics Update:

Bel(xy) = /P(xt|ut_1,:Et_l)Bel(xt_l)da:t_l

Sample forward using the dynamics model:

1. No gaussian requirement
2. No linearity requirement, just push forward distribution

P -_———
- -
- -
- -~
- ~
~ <
~

.
/” \\\
\ B < A
) ~
) ~
) \O
7
] S
S
g » -
\\ //’

T T T e e e e e e _ /——
T e e e e *Q
————— <
« > ~-_‘ ’4’ D]
_}'&\
- =
————— N
___________ \
\ s)
@ A I
- 4
- -
St T=~_____a-- i ’
,/
\\]
) -
~ ”
~
. -
| 5 _-- v
_

~
~ -
~ -
~ -
~ -
-~ -
- -
- -
- -

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

Bel(z,) = nP(z|x;)Bel(x;)

-———
”— ~

(Zt\l’t)

e (xt)

Bel(azt)

———————————————————

Looks a lot like importance sampling!

P(z¢|x})

> Pzl

Can compute a per sample importance weight w; =

Distribution can be represented as a set of weighted samples

Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence
_ Pz}
>_; Pzt]wt)

II

Bel(z,) = nP(z|xy)Bel(z,) Wi

S
S LLNURTRSOY T NN TR T 11 1T

4 P(ols)

p(s)

Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [P(z)w) Bel(xy)day

© xp(z|x) O

O
o ‘ > e
o ° > O

Reweight particles according to measurement likelihood

What happens across multiple steps?

-

—_ -
- -~
-
-

~

, ~O
8 N T e
é O _________________________ ©
A O cmmmmmmmmmm T
__________ o 3
o O
X AN
= o p(z|z) o
5 © > e
>
N e

AN

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

O g
O o

O)) o

v v

1. May blow up and get numerically unstable over many steps
2. Evidence doesn't affect samples themselves, just weights

Measurement Update: Resampling

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = P(zi|ey) Bel(@) ™~ 2. P(z|x})
Y [P(z|wy) Bel(xy)day

O . | S
Stochastic Uniform Sampling

o
OQ o0

Resample particles from weighted distribution with SUS

23

Overall Particle Filter algorithm

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

_

Estimate B—el(gjt)

Sample particles from p(x¢|Ts—1, ur—1)

v

/

o

Estimate Bel(x;)

1. Weight samples by p(z¢|x;)

2. Resample particles with Stochastic Universal Sampling

J
\

J

Particle Filter Algorithm

Bel (x) = n p(z,|x) j px, [%, ,) Bel (x.,) dx, ,

L draw x',_, from Bel(X,_,)

— draw x/, from p(x,| x',_,u,_;)

— Importance factor for x',:

; target distribution

proposal distribution
n p(z, | x) p(x, | x,u,,) Bel (x,_,)
p(x, | x,_,u,) Bel (x,,)
< p(z,|x,)

Particle Filter Algorithm

1. Algorithm particle_filter(S;_,, u;_1, z;):

2. S=0,n=0

3. For j=1...n

4. Sample &} from p(%;|x¢_q, Us—1) using xt_;andu,_; Dynamics
5. W,f = p(ztlfé Compute importance weight
6. n=n-+ W,f Update normalization factor
7. S, =S, U {< &L, w} >} Insert

8. Fori=1..n

9. wt =wi/n Normalize weights

10.For i=1..n Generate new samples

11. Sample x! from the discrete distribution given by X}, w}

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Using Ceiling Maps for Localization

[Dellaert et al. 99]

Global Localization Using Vision

| ocalization for AIBO robots

O . @

When might the particle filter fail?

Why might this not work?

Finitely many samples = introduces bias

Variance of resampling operation - drops
diversity

Divergence of proposal and target distributions
- degenerate iImportance weights

Particle deprivation - belief collapse

Read Dieter Fox's papers!

Lecture Outline

Particle Filters

Motion Models

Sensor Models

Kalman Filtering

Ti+1 = Az + Bup + € Initial Prior
et ~ N(0,Q) (o)
241 = Cxpq1 + 04
5,5 ~ N(O, R) <
4 Estimate Bel(x;) A
Dynamics/Prediction
(given some u) p(fﬁt+1 ‘Zozt, Uozt+1) ~ N(A,Uﬂo:t + Buy, AZtm:tAT + Qt)
_ J
v
4)

Estimate Bel(xy)
Measurement/Correction

p(ﬂ?t+1 |ZO:t—|—17 Uo:t)

(given some z)
= N(pes1j0:t + Kip1 (i1 — Ciggay0:), { — Ki41C) Xi4110:)

_

How do we Instantiate this?

Linear Gaussian

Ti11 = Axy + Buy + €
€ ™~ N(O, Q)

241 = Cxyyq + 04

6 ~ N (0, R)

Non-linear

Tip1 = g(Te, ur) + €
€t N(O, Q)

Zt — h(ﬂ?t) -+ 575

5: ~ N'(0, R)

How do we instantiate concretely? Motion models and sensor models!

Types of Motion Models

Let's focus exclusively on mobile robot navigation

Global position

State of the system: Actions:
«) Rotational and translational velocity
y Translation | I/
0 + more
g Rotation | W/
Measurements

Sonar/ultrasound/LIDAR

More on this later

Velocity Based Model

Velocity Based Model

State of the system: Actions:
(«) Rotational and translational velocity
Global position y Translation | 1/ Noise independently sampled per
0 , dimension
~ Rotation |W/

W
® @ s
= ‘
4 - Motor Motor v
A
| y l O 2r\
:,.,1\: ‘#L : ‘
Free Turning wheel
®

Velocity Based Sampling

Generate noise free motion and then add noise to it

<Xe,¥e> X

Useful for particle filters

Given v, w first compute the radius of motion to get x, y
and then compute the heading change

T, =Xy —Trsinb v

Ye = Yt + rcosb

& T, + 2 sin(0 + wAt)
Y = Yo — = cos(f + wAt)
¢’ 0+ wAt

% —2sinf + = sin(0 + wAt)
= y |+ | Zcost— 2 cos(f+ wAt)
0 wAt

T =

Add noise to the velocities

(5) = (&)+ ()
w w Eag|v|+oy|w|

Replace v, w by U, w

Velocity Based Likelihood

O

(%
w

Eai|v|+az|w|

Eas|v|+ou|wl

Likelihood model depends on the choice of ¢

Compute center of

circle
y < e <X,y>
T
Compute arc
90-0 0 movement
XY™

Compute expected
velocities

Calculate probs by score
differences

il -

oo

10:

Algorithm motion_model velocity(z;, u;, z4—1):

1 (x—2')cosO+ (y—y')sind

2 (y—1vy')cosf — (z —x')sinb

, z+z
Tt =—5—+uly—y)
|/

r* = /(z—2*)2 + (y — y*)?
Al = atan2(y’ — y*,z’ — z*) — atan2(y — y*, z — z¥)

. Al
’U:ET
. A9
s

return prob(v — 0, a1 |v| + as|w|) - prob(w — @, az|v| + a4|w|)
- prob(¥, as|v| + as|w|)

Examples (velocity based)

Why might velocity not be enough?

Open loop velocity measurement
might be quite noisy in varying
environments

- What if we had more
information??

Odometry Based Model

What is odometry?

= Instead of just measuring likelihoods with

velocity, we can actually use more
information

= Integrating wheel encoders (degrees
rotated) with known wheel radius can give
us estimates of position (still noisy)

= Pros: More accurate than velocity

= Cons: Only available after motion

Odometry Based Model: Reparameterization

* Robot moves from <x,y,9‘> to <_')’ 6?> - this is input action u

* Reparametrize odometry information reparameterized u = <5,,0ﬂ,5 o >

rot2° > trans

Sy = (F=F) + (7=
S . =0'-0-5

rot?2 rotl
o

rotl

= atan2(y'-y,x'-X)— 0

Odometry Based Model: Sampling

Goal: sample x,,1 from x, with action © = (Z, z’)

1. Reparametrize u from (Z,) to (6rot1;s drot2, Otrans)

A

2. Add noise t0(5rot17 5rot27 5trans) to get (5r0t17 51‘0‘527 5trans)

3. Compute next state x, from(5rot1, Orot2, 5trans)

Key idea: odometry gives you change in
angles, this is noisy and gives next state

Odometry Based Model: Sampling

1: Algorithm sample_motion_model_odometry(u;, x;_1):
2: Orot1 = atan2(y’ — 4,z —z) — 0
Reparameterization 3: Strans = /(T — 2')% + (§ — 7')°

5r0t2 — 0_/ - 0_ - 5rot1

. . Srotl = 5r0t1 o Sample(a15r0t1 + a25trans)
Noise addition Otrans = Otrans — sample(as trans + @4(0rot1 + Orot2))

SrotZ — 5rot2 — Sample(a15r0t2 + a25trans)

=x+ Strans COS(O + Srotl)
Computing moved state 9: Y = Y + trans sin(f + 3rot1)

10: 0" = 0 + dror1 + Orot2

11: retumz; = (z',y’,0")T

Odometry Based Model: Likelihood

Goal: find likelihood x,,; from x, with actian= (z, z’)

Key idea: Find(drot1, drot2, Otrans) from (X, ,X,¢) and (&, 2’) , compare under noise model

Often called an inverse motion model

| \ | /
‘ b b

Odometry Based Model: Likelihood

1: Algorithm motion_model odometry(z;, u:, £:—1):

) brot1 = atan2(y’ — 4,z —) — 0
Reparameterized odometry 3: Otrans = /(T —T')2 + (§ — ¥')*

4: 5rot2 — 9_, - 9_ - 5rot1

: drot1 = atan2(y’ —y, 2’ —x) — 0
Reparameterized actual motion | .. Serans = /(@ —)2 + (y — ¢)2

8rot2 =6 —60— Srotl

b1 = prOb((Srotl . Srotla algrotl =+ a28trans)

Computed pI’ObabllltleS 9: D2 = prOb(étrans - Stransa a3 Strans I a4(81‘0t1 + 81”0132))
10: D3 = prOb(5r0t2 — Orot2; ¥10rot2 + C¥25trans)
Joint likelihood 11: return py - po - P3

Examples (odometry based)

Sample-based Motion

10 meters

HW 1EKF Prediction Step Pseudocode: Odometry Style

def EKF_prediction(#t(o:t, S0, ut, 2041):

Linearize dynamics:

(8-'1775—{—1 8fL’t+1 3517t+1 \
8.’L't 8yt 89t
G = 8yt+1 3yt+1 3yt+1
8$t 8yt aet
39t+1 89t+1 891&—}-1
\ 8$t 89t)
Prediction:

Set noise to 0 during the gradient computation

Oriy1 OTip1 OTi \
6(srotl 8(Strans a67‘ot2
V = OYt41 Oyt 41 Oyt 41
857‘ot1 8(stnm,s 657‘ot2
a01&—}—1 a01&—}—1 agt-{—l)
857‘ot1 8(strans a57‘ot2

Ht4+1]0:t = Q(Mt|o:t7 Ut)
2ip41)0:t = GEHO;tGT + VMV

Return Hi4+1)0:t Miy1j0:

|

Action - 6rot1r6trans:5rot2

>

=0. ., +&

rOtl I’Otl 061 |5 t1|+0{2 |5 |

=0

trans

e

trans trans T4 10,01 F0 002

S

=0

rot2 + gal 0,

rot2 |+a2 |5trans |

e(srotl O Q(Srotl O O
Eétr‘ans ~ N(O) O Qétr‘ans O)
667’0752 O O O Q5r0t2

M

rot?2

T =a+ Stra.ns COS(H + Srotl)
y/ =Y+ Strans Sin(e oo Srotl)
¢ =6+ Srotl + 8rot2

Integrating Maps into Motion Models

From free space motion models to maps

Free space motion models do not account for obstacles in a known map

C\Q C\Q

P(x|u,x'\m)~ P(x|m) P(x|u,x")

Zero-out positions that are not possible in the map

Motion Model with Map

° §yo ¢

P(x|u,x") P(x|u,x',m)= P(x|m) P(x|u,x")

Failure Case

@ p(zt | ut,ze—1) (b) p(zt | ut, zt—1,m)

+—: (%)

|
- Obstacle

Free space

Don't account for motion through walls = deal with by increasing frequency

Lecture Outline

Particle Filters

Motion Models

Sensor Models

Sensor Models for Bayesian Filtering

Bel(azt) — P(xt’UO:t—la Zo:t)
— 1 plzilay) / Plas|us1, 701) Bel(zr_1)dzrs

|

Let's try and specify what this is

Sensors for Mobile Robots

Contact sensors: Bumpers, touch sensors

Internal sensors
= Accelerometers (spring-mounted masses)
= Gyroscopes (spinning mass, laser light)
= Compasses, inclinometers (earth magnetic field, gravity)
= Encoders, torque
Proximity sensors
= Sonar (time of flight)
= Radar (phase and frequency)
= Laser range-finders (triangulation, tof, phase)
= Infrared (intensity)

Visual sensors: Cameras, depth cameras
Satellite-style sensors: GPS, MoCap

Proximity Sensors

The central task is to determine P(z|x), i.e. the probability of a measurement z
given that the robot is at position x.

Question: Where do the probabilities come from?

Approach: Let’ s try to explain a measurement.

Beam-based Sensor Model

Beam-based Sensor Model

s Scan z consists of K measurements.

Z=1Z,2ys Zg }

Beam-based Sensor Model

s Scan z consists of K measurements.

Z=1Z,2ys Zg }

= Individual measurements are independent given the robot
position and a map. X

P(z|x,m)= HP(Zk | x, m)

k=1

Beam-based Sensor Model

K

P(z|x,m)= HP(Zk | x, m)

k=1

Proximity Measurement

= Measurement can be caused by ...
= a known obstacle.
= cross-talk.
= an unexpected obstacle (people, furniture, ...).

= missing all obstacles (total reflection, glass, ...).

= Noise is due to uncertainty ...
= In measuring distance to known obstacle.
= in position of known obstacles.
= in position of additional obstacles.

= whether obstacle is missed.

82

Beam-based Proximity Model

4/14/23

Measurement noise Unexpected obstacles

¥

0 Zexp Z max 0 Zexp Zmax
1(2=Zexp)
1 —5F _ iz
Phit(le,m):n > e 2 o0 Rmexp(z|x9m)_77ﬂ“e
O
CSE-571 -

Robotics

83

Beam-based Proximity Model

Random measurement Max range
. l .
0 Zexp Zmax 0 Zexp Zmax
1 1
})mnd(z|x9m):77— PmaX(Z|‘x9m):77
z Zsmall

max

4/14/23 CSE-571 -

Robotics

84

Mixture Density

P(z|x,m)=

4/14/23

. })unexp(z | ‘x’ m)

(})hit(Z|xam))

P (z|x,m)

_ })rand(Z | X, m) /

How can we determine the model parameters?

—= More on this next lecture

CSE-571 - Robotics

Summary Beam-based Model

= Assumes independence between beams.

= Overconfident!

= Models physical causes for measurements.

= Mixture of densities for these causes.

= Implementation
= Learn parameters based on real data.

= Different models can be learned for different angles at which the sensor beam hits the
obstacle.

= Determine expected distances by ray-tracing.

= Expected distances can be pre-processed.

Landmark-based Sensor Model

When are raw measurement based models not enough?

= Scales unfavorably with dimensionality of the

I I I ea S Feature Extraction Classification
AlexNet Model Classifier
Input image Classified image with

Class label

'S
g | Output
1 -
% ayer g
|
g
1 Last FC layer
or number of

227x227

= Common strategy in machine learning - extract low
dimensional features

Landmarks

= Active beacons (e.g. radio, GPS)
= Passive (e.g. visual, retro-reflective)

= Sensor provides
= distance, or
= bearing, or
= distance and bearing.

= signature

89

Distance and Bearing

range

bearing

A

90

Probabilistic Model

Compute expected
range/bearing

Compute likelihood

1.

Algorithm landmark_detection_model(z,x,m):
z= <i,d,a>,x = <x,y,9>

o d = (m ()= x)* +(m, ()~)’

o = atan2(m (i) — y,m (i)— x)— 6

Paet = prOb(C’I; —dagd)'pl‘Ob(OAl —a,ga)

Return zy, Puet + 2 Biorm (z]x,m)

HW 1EKF Correction Step Pseudocode: Landmark Style

—

def EKF_correction{e+iios, Suiijor, ue, 241): State — (X, y, 0)
> Linearize measurement:; Measurement —

_[oe 9o 00
H=|5% 5 %

(assumes d is perfectly known)

|o-¢=jatan2(l, —y,l, —x) — 9]+ 0
3. Correction: T G~ N(0,03)
" R

Ky = Et—|—1|0:tHT(HZt—|—1HT + R)—~—
Ht41]0:44+1 = Het+1]0:t T Kit1(ze41 _[h(,ut+1|0:t)]
Y1041 = (L — K1 H) X4 1)0:4

4. Return He+ijo:4+1 , 244110641

Summary of Parametric Motion and Sensor Models

= Explicitly modeling uncertainty in motion and sensing is key to
robustness.

= In many cases, good models can be found by the following approach:

1.

2.

Determine parametric model of noise free motion or measurement.
Analyze sources of noise.

Add adequate noise to parameters (eventually mix in densities for noise).
Learn (and verify) parameters by fitting model to data.

Likelihood of measurement is given by “probabilistically comparing” the
actual with the expected measurement.

= [tis extremely important to be aware of the underlying assumptions!

Lecture Outline

Particle Filters

Motion Models

Sensor Models

\ But where do the actual noise values and A, B come from? .

= Case 1: Fully observed training

= We have an oracle technique to observe x, z, u (motion capture) at
training time.

= Maximize likelihood
s Case 2: Partially observed training

= We can only observe z, u

s Expectation-Maximization

Case 1: Observed z, x, u — Maximize Likelihood

= Maximize log likelihood of the data (z, x, u) under the
motion and sensor models

Linear Gaussian jnBa}é E(m,u,x’) []3(33‘/ ‘ZE, u)]
Tt41 = Ax; + Buy + € p(.|r,u) = N(Az + Bu, Q)
€t ™ N(07 Q) R A
2e11 = Cxpaq + 0y %%E(zax) [p(Z‘x)]
5; ~ N(0, R) p(-|x) = N(Cz, R)
Non-linear Solve with LS or SGD /
max E, 4 . [P(2' |2, u)]
— ; _|_ 0 R s Uy
Zti N(go(jcég)m) ! p(-|z,u) = N(go(z,u), Qo)
2 = h(x:) + 6 ' maxE q) p(z]2)]
6y ~ N(0, R X
N0 pl12) = N(h(z). Ro)

96

Raw Sensor Data

Measured distances for expected distance of 300 cm.

+

-

K i

fmmu
4mu+m-

f&ﬂ mm—“

¢¢ﬂm
mwmu #
e

+

m?,zmm
t

mm+“+ 4+ f

gt g
i

4&.*#

!

m;na]

-

Hu+numu RN o

w+++ f . "¢m

-
Kool

«is+

FigtlHe

&1wm“' -l
uwo *tat |

R

g

ok

:

+

"

W“ f.+f.

m+hq4ou ++ o+ru»

sffare ¢
3 aegeis
e

f&

+$
o.'.f
H -

f+o¢f4ﬁu+

m%,mw et

mm anu o

g

Sonar

Laser

97

Approximation Results

4/14/23

w

300cm

; Laser
HTFWHTFFFH{M

Sonar

CSE-571 - Robotics

~Why Is estimating parameters generally not so easy?

Lt—1 Lt Lt+1 X is actually not observed typically, only z, u

@ @ @ Latent variable inference problem

- Parameter Estimation in Latent Variable Models .

Hard problem to solve exactly

@ max log p(z)
@ ~log [plelo)p(a)da

/

Intractable problem

Solve via iterative optimization — Expectation Maximization algorithm (EM)
- Much more general than filtering/localization

EM Algorithm for Latent Variable Parameter Estimation

@ @ @ maxlog (2

Approximate with a 2 step process:
Lt—1 Lt Lt41

1. E-step: Fill in missing data x(i) according to
what is most likely given the current model

21 2t 211 2: M-step: Run ML for completed data, which
gives new model \

Pretend we know the X Do the best possible given inferred latents

EM Algorithms in Action for Estimating Motion/Sensor Models

l [T T T 1
- 0
time-step (k) -
)

0 20 40 60 80 100
time-step (k)

Lecture Outline

Motion Models

|

Sensor Models

|

Localization with Motion/Sensor Models

Estimating Model Parameters

