

Robotics Spring 2023

Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Recap: Course Overview

Filtering/Smoothing Localization

Mapping SLAM

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Solving POMDPs

Lecture Outline

Particle Filters **Motion Models** Sensor Models

Particle Filters: Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems, discrete Bayes filters (eg histogram filters)
- Histogram filters are great but they waste space and are non adaptive
- Particle filters are a way to efficiently represent non-Gaussian distributions adaptively
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)

Let's introduce some tools

Density Approximation

Particle sets can be used to approximate densities

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is often called target
- g is often called proposal

Resampling

• **Given**: Set *S* of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling: Efficient Techniques

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling: Efficient Techniques

Pseudocode for low-variance sampling

```
Algorithm Low_variance_sampler(X_t, W_t):
               X_t = \emptyset
               r = \text{rand}(0; M^{-1})
               c = w_t^{[1]}
               i = 1
               for m = 1 to M do
                   u = r + (m-1) \cdot M^{-1}
                   while u > c
                        i = i + 1
                        c = c + w_t^{[i]}
10:
                   endwhile
11:
                   add x_t^{[i]} to \bar{\mathcal{X}}_t
12:
13:
               endfor
               return \bar{\mathcal{X}}_t
14:
```

Table 4.4 Low variance resampling for the particle filter. This routine uses a single random number to sample from the particle set \mathcal{X} with associated weights \mathcal{W} , yet the probability of a particle to be resampled is still proportional to its weight. Furthermore, the sampler is efficient: Sampling M particles requires O(M) time.

Let's put these pieces together

Particle Filters

Particle Filters

Robot Motion

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$
 Push samples forward according to dynamics

Dynamics Update:

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Sample forward using the dynamics model:

- 1. No gaussian requirement
- 2. No linearity requirement, just push forward distribution

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t}$$

Looks a lot like importance sampling!

Can compute a per sample importance weight

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Distribution can be represented as a set of weighted samples

Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t) \qquad w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Measurement Update

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)\overline{Bel}(x_t)dx_t}$$

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Reweight particles according to measurement likelihood

What happens across multiple steps?

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

- 1. May blow up and get numerically unstable over many steps
- 2. Evidence doesn't affect samples themselves, just weights

Measurement Update: Resampling

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t} w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$
Stochastic Uniform Sampling

Resample particles from weighted distribution with SUS

Overall Particle Filter algorithm

Dynamics/Prediction

Measurement/Correction

1. Weight samples by $p(z_t|x_t)$

2. Resample particles with Stochastic Universal Sampling

Particle Filter Algorithm

Particle Filter Algorithm

```
1. Algorithm particle_filter(S_{t-1}, u_{t-1}, z_t):
```

2.
$$S_t = \emptyset, \eta = 0$$

3. **For**
$$i = 1...n$$

4. Sample
$$\bar{x}_t^i$$
 from $p(\bar{x}_t|x_{t-1},u_{t-1})$ using x_{t-1}^i and u_{t-1} **Dynamics**

$$5. w_t^i = p(z_t | \bar{x}_t^i)$$

Compute importance weight

6.
$$\eta = \eta + w_t^i$$

Update normalization factor

7.
$$S_t = S_t \cup \{\langle \bar{x}_t^i, w_t^i \rangle\}$$
 Insert

8. For
$$i = 1 ... n$$

9.
$$w_t^i = w_t^i / \eta$$

Normalize weights

10. For
$$i = 1 \dots n$$

Generate new samples

Sample x_t^i from the discrete distribution given by \bar{x}_t^i, w_t^i

Using Ceiling Maps for Localization

Global Localization Using Vision

Localization for AIBO robots

When might the particle filter fail?

Why might this not work?

- Finitely many samples → introduces bias
- Variance of resampling operation → drops diversity
- Divergence of proposal and target distributions
 degenerate importance weights
- Particle deprivation → belief collapse

Lecture Outline

Particle Filters

Motion Models

Sensor Models

Kalman Filtering

$$x_{t+1} = Ax_t + Bu_t + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$z_{t+1} = Cx_{t+1} + \delta_t$$

$$\delta_t \sim \mathcal{N}(0, R)$$

Dynamics/Prediction (given some u)

Measurement/Correction (given some z)

Estimate
$$Bel(x_t)$$

$$p(x_{t+1}|z_{0:t+1}, u_{0:t})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

How do we instantiate this?

Linear Gaussian

$$x_{t+1} = Ax_t + Bu_t + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$z_{t+1} = Cx_{t+1} + \delta_t$$

$$\delta_t \sim \mathcal{N}(0, R)$$

Non-linear

$$x_{t+1} = g(x_t, u_t) + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$z_t = h(x_t) + \delta_t$$

$$\delta_t \sim \mathcal{N}(0, R)$$

Types of Motion Models

Let's focus exclusively on mobile robot navigation

State of the system:

Global position

Actions:

Rotational and translational velocity

Translation
$$\begin{bmatrix} \nu \\ \omega \end{bmatrix}$$
 + more

Measurements

Sonar/ultrasound/LIDAR

More on this later

Velocity Based Model

Velocity Based Model

State of the system:

Global position $\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$

Actions:

Rotational and translational velocity

Translation
$$\begin{bmatrix}
u \end{bmatrix}$$

Noise independently sampled per dimension

Velocity Based Sampling

Generate noise free motion and then add noise to it

Useful for particle filters

Given ν , ω first compute the radius of motion to get x, y and then compute the heading change

$$x_c = x_t - r\sin\theta y_c = y_t + r\cos\theta$$

$$r = \frac{\nu}{\omega}$$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x_c + \frac{v}{\omega} \sin(\theta + \omega \Delta t) \\ y_c - \frac{v}{\omega} \cos(\theta + \omega \Delta t) \\ \theta + \omega \Delta t \end{pmatrix}$$
$$= \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega} \sin \theta + \frac{v}{\omega} \sin(\theta + \omega \Delta t) \\ \frac{v}{\omega} \cos \theta - \frac{v}{\omega} \cos(\theta + \omega \Delta t) \\ \omega \Delta t \end{pmatrix}$$

Add noise to the velocities

$$\begin{pmatrix} \hat{v} \\ \hat{\omega} \end{pmatrix} = \begin{pmatrix} v \\ \omega \end{pmatrix} + \begin{pmatrix} \varepsilon_{\alpha_1|v|+\alpha_2|\omega|} \\ \varepsilon_{\alpha_3|v|+\alpha_4|\omega|} \end{pmatrix}$$

Replace v, ω by \hat{v}, \hat{w}

Velocity Based Likelihood

$$\left(\begin{array}{c} \hat{v} \\ \hat{\omega} \end{array} \right) = \left(\begin{array}{c} v \\ \omega \end{array} \right) + \left(\begin{array}{c} \varepsilon_{\alpha_1|v| + \alpha_2|\omega|} \\ \varepsilon_{\alpha_3|v| + \alpha_4|\omega|} \end{array} \right)$$

Likelihood model depends on the choice of ε

Compute center of circle

Compute arc movement

Compute expected velocities

Calculate probs by score differences

```
1:
                 Algorithm motion_model_velocity(x_t, u_t, x_{t-1}):
                      \mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}
3: x^* = \frac{x + x'}{2} + \mu(y - y')
                    y^* = \frac{y + y'}{2} + \mu(x' - x)
                       r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}
                       \Delta\theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)
                       \hat{v} = \frac{\Delta \theta}{\Delta t} \; r^*
                       \hat{\omega} = \frac{\Delta \theta}{\Delta t}
                       \hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}
9:
                        return \mathbf{prob}(v-\hat{v},\alpha_1|v|+\alpha_2|\omega|) \cdot \mathbf{prob}(\omega-\hat{\omega},\alpha_3|v|+\alpha_4|\omega|)
10:
                                      \cdot \operatorname{\mathbf{prob}}(\hat{\gamma}, \alpha_5|v| + \alpha_6|\omega|)
```

Examples (velocity based)

Why might velocity not be enough?

Open loop velocity measurement might be quite noisy in varying environments

→ What if we had more information??

Odometry Based Model

What is odometry?

- Instead of just measuring likelihoods with velocity, we can actually use more information
- Integrating wheel encoders (degrees rotated) with known wheel radius can give us estimates of position (still noisy)
 - Pros: More accurate than velocity
 - Cons: Only available after motion

Odometry Based Model: Reparameterization

- Robot moves from $\left\langle \overline{x}, \overline{y}, \overline{\theta} \right\rangle$ to $\left\langle \overline{x}', \overline{y}', \overline{\theta}' \right\rangle$ this is input action u
- Reparametrize odometry information reparameterized $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$

•

$$\begin{split} \delta_{trans} &= \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2} \\ \delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1} \\ \delta_{rot1} &= \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\ & \underbrace{\langle \bar{x}, \bar{y}, \bar{\theta}' \rangle} \delta_{rot1} \end{split}$$

Odometry Based Model: Sampling

Goal: sample x_{t+1} from x_t with action $u=(\bar{x},\bar{x'})$

- 1. Reparametrize u from $(\bar{x}, \bar{x'})$ to $(\delta_{\text{rot}1}, \delta_{\text{rot}2}, \delta_{\text{trans}})$
- 2. Add noise to $(\delta_{\text{rot}1}, \delta_{\text{rot}2}, \delta_{\text{trans}})$ to get $(\hat{\delta}_{\text{rot}1}, \hat{\delta}_{\text{rot}2}, \hat{\delta}_{\text{trans}})$
- 3. Compute next state x_{t+1} from $(\hat{\delta}_{rot1}, \hat{\delta}_{rot2}, \hat{\delta}_{trans})$

Key idea: odometry gives you change in angles, this is noisy and gives next state

Odometry Based Model: Sampling

Reparameterization

Noise addition

Computing moved state

```
Algorithm sample_motion_model_odometry(u_t, x_{t-1}):
1:
                            \delta_{\mathrm{rot}1} = \mathrm{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}
                           \delta_{\text{trans}} = \sqrt{(\bar{x} - \bar{x}')^2 + (\bar{y} - \bar{y}')^s}
3:
                            \delta_{\rm rot2} = \bar{\theta}' - \bar{\theta} - \delta_{\rm rot1}
4:
5:
                            \delta_{\text{rot}1} = \delta_{\text{rot}1} - \mathbf{sample}(\alpha_1 \delta_{\text{rot}1} + \alpha_2 \delta_{\text{trans}})
                            \hat{\delta}_{\text{trans}} = \delta_{\text{trans}} - \mathbf{sample}(\alpha_3 \ \delta_{\text{trans}} + \alpha_4(\delta_{\text{rot}1} + \delta_{\text{rot}2}))
6:
                            \hat{\delta}_{\mathrm{rot2}} = \delta_{\mathrm{rot2}} - \mathbf{sample}(\alpha_1 \delta_{\mathrm{rot2}} + \alpha_2 \delta_{\mathrm{trans}})
7:
                            x' = x + \hat{\delta}_{\text{trans}} \cos(\theta + \hat{\delta}_{\text{rot}1})
8:
                            y' = y + \hat{\delta}_{\text{trans}} \sin(\theta + \hat{\delta}_{\text{rot}1})
9:
                            \theta' = \theta + \hat{\delta}_{\text{rot}1} + \hat{\delta}_{\text{rot}2}
10:
11:
                            return x_t = (x', y', \theta')^T
```

Odometry Based Model: Likelihood

Goal: find likelihood x_{t+1} from x_t with action = $(\bar{x}, \bar{x'})$

Key idea: Find $(\delta_{\text{rot}1}, \delta_{\text{rot}2}, \delta_{\text{trans}})$ from (x_t, x_{t+1}) and $(\bar{x}, \bar{x'})$, compare under noise model

Often called an inverse motion model

Odometry Based Model: Likelihood

Reparameterized odometry

Reparameterized actual motion

Computed probabilities

Joint likelihood

1: Algorithm motion_model_odometry(
$$x_t, u_t, x_{t-1}$$
):

2:
$$\delta_{\text{rot}1} = \text{atan}2(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

3:
$$\delta_{\text{trans}} = \sqrt{(\bar{x} - \bar{x}')^2 + (\bar{y} - \bar{y}')^s}$$

4:
$$\delta_{\text{rot}2} = \bar{\theta}' - \bar{\theta} - \delta_{\text{rot}1}$$

5:
$$\hat{\delta}_{\text{rot}1} = \text{atan2}(y' - y, x' - x) - \theta$$

6:
$$\hat{\delta}_{\text{trans}} = \sqrt{(x - x')^2 + (y - y')^2}$$

7:
$$\hat{\delta}_{\mathrm{rot}2} = heta' - heta - \hat{\delta}_{\mathrm{rot}1}$$

8:
$$p_1 = \mathbf{prob}(\delta_{\text{rot}1} - \hat{\delta}_{\text{rot}1}, \alpha_1 \hat{\delta}_{\text{rot}1} + \alpha_2 \hat{\delta}_{\text{trans}})$$

9:
$$p_2 = \mathbf{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \, \hat{\delta}_{\text{trans}} + \alpha_4 (\hat{\delta}_{\text{rot}1} + \hat{\delta}_{\text{rot}2}))$$

10:
$$p_3 = \mathbf{prob}(\delta_{\text{rot}2} - \hat{\delta}_{\text{rot}2}, \alpha_1 \hat{\delta}_{\text{rot}2} + \alpha_2 \hat{\delta}_{\text{trans}})$$

11: return $p_1 \cdot p_2 \cdot p_3$

Examples (odometry based)

Sample-based Motion

HW 1EKF Prediction Step Pseudocode: Odometry Style

- 1. def EKF_prediction($\mu_{t|0:t}, \Sigma_{t|0:t}, u_t, z_{t+1}$)
- 2. Linearize dynamics:

Set noise to 0 during the gradient computation

$$G = egin{pmatrix} rac{\partial x_{t+1}}{\partial x_t} & rac{\partial x_{t+1}}{\partial y_t} & rac{\partial x_{t+1}}{\partial heta_t} \ rac{\partial y_{t+1}}{\partial x_t} & rac{\partial y_{t+1}}{\partial y_t} & rac{\partial y_{t+1}}{\partial heta_t} \ rac{\partial y_{t+1}}{\partial x_t} & rac{\partial y_{t+1}}{\partial y_t} & rac{\partial y_{t+1}}{\partial heta_t} \ rac{\partial \theta_{t+1}}{\partial heta_t} & rac{\partial \theta_{t+1}}{\partial heta_t} & rac{\partial \theta_{t+1}}{\partial heta_t} & rac{\partial \theta_{t+1}}{\partial heta_t} \ rac{\partial \theta_{t+1}}{\partial heta_{rot1}} & rac{\partial \theta_{t+1}}{\partial heta_{rot1}} & rac{\partial y_{t+1}}{\partial heta_{trans}} & rac{\partial y_{t+1}}{\partial heta_{rot2}} \ rac{\partial \theta_{t+1}}{\partial heta_{rot1}} & rac{\partial \theta_{t+1}}{\partial heta_{trans}} & rac{\partial \theta_{t+1}}{\partial heta_{rot2}} \end{pmatrix}$$

3. Prediction:

$$\mu_{t+1|0:t} = g(\mu_{t|0:t}, u_t)$$

$$\Sigma_{t+1|0:t} = G\Sigma_{t|0:t}G^T + VMV^T$$

1. Return $\mu_{t+1|0:t}$ $\Sigma_{t+1|0:t}$

State – (x, y, θ) Action – δ_{rot1} , δ_{trans} , δ_{rot2}

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_1 | \delta_{rot1}| + \alpha_2 | \delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_3 | \delta_{trans}| + \alpha_4 | \delta_{rot1} + \delta_{rot2}|} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_1 | \delta_{rot2}| + \alpha_2 | \delta_{trans}|} \end{split}$$

$$\begin{bmatrix} \epsilon_{\delta_{rot1}} \\ \epsilon_{\delta_{trans}} \\ \epsilon_{\delta_{rot2}} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} Q_{\delta_{rot1}} & 0 & 0 \\ 0 & Q_{\delta_{trans}} & 0 \\ 0 & 0 & Q_{\delta_{rot2}} \end{bmatrix})$$

$$\mathbf{M}$$

$$x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$$

$$y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$$

$$\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$$

Integrating Maps into Motion Models

From free space motion models to maps

Free space motion models do not account for obstacles in a **known** map

$$P(x | u, x', m) \approx P(x | m) P(x | u, x')$$

Zero-out positions that are not possible in the map

Motion Model with Map

$$P(x \mid u, x', m) \approx P(x \mid m) P(x \mid u, x')$$

Failure Case

Don't account for motion through walls → deal with by increasing frequency

Lecture Outline

Sensor Models for Bayesian Filtering

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

$$= \eta \ p(z_t|x_t) \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Let's try and specify what this is

Sensors for Mobile Robots

- Contact sensors: Bumpers, touch sensors
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
 - Encoders, torque
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras, depth cameras
- Satellite-style sensors: GPS, MoCap

Proximity Sensors

- The central task is to determine P(z|x), i.e. the probability of a measurement z given that the robot is at position x.
- Question: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

• Individual measurements are independent given the robot position and a map. K

$$P(z \mid x, m) = \prod_{k=1}^{\infty} P(z_k \mid x, m)$$

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

Beam-based Proximity Model

Measurement noise

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(z-z_{\exp})^2}{\sigma^2}}$$

Unexpected obstacles

$$P_{\text{unexp}}(z \mid x, m) = \eta \lambda e^{-\lambda z}$$

Beam-based Proximity Model

Random measurement

$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

Max range

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

Mixture Density

How can we determine the model parameters?

→ More on this next lecture

Summary Beam-based Model

- Assumes independence between beams.
 - Overconfident!
- Models physical causes for measurements.
 - Mixture of densities for these causes.
- Implementation
 - Learn parameters based on real data.
 - Different models can be learned for different angles at which the sensor beam hits the obstacle.
 - Determine expected distances by ray-tracing.
 - Expected distances can be pre-processed.

Landmark-based Sensor Model

When are raw measurement based models not enough?

Scales unfavorably with dimensionality of the

Common strategy in machine learning - extract low dimensional features

Landmarks

- Active beacons (e.g. radio, GPS)
- Passive (e.g. visual, retro-reflective)
- Sensor provides
 - distance, or
 - bearing, or
 - distance and bearing.
 - signature

Distance and Bearing

Probabilistic Model

Compute expected range/bearing

Compute likelihood

1. Algorithm landmark_detection_model(z,x,m): $z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$

2.
$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

3.
$$\hat{\alpha} = \operatorname{atan2}(m_{v}(i) - y, m_{x}(i) - x) - \theta$$

4.
$$p_{\text{det}} = \text{prob}(\hat{d} - d, \varepsilon_d) \cdot \text{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$$

5. Return
$$z_{\text{det}} p_{\text{det}} + z_{\text{fp}} P_{\text{uniform}}(z \mid x, m)$$

HW 1EKF Correction Step Pseudocode: Landmark Style

- 1. def EKF_correction(t+1|0:t, $\Sigma_{t+1|0:t}$, u_t , z_{t+1}
- 2. Linearize measurement:

$$H = \begin{bmatrix} \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial \theta} \end{bmatrix}$$

3. Correction:

$$K_{t+1} = \sum_{t+1|0:t} H^{T} (H \sum_{t+1} H^{T} + R) \underbrace{ \begin{pmatrix} 1 \\ \mu_{t+1|0:t+1} \end{pmatrix}^{-1} + K_{t+1|0:t}}_{h(\mu_{t+1}|0:t)}$$

$$\sum_{t+1|0:t+1} = (I - K_{t+1}H) \sum_{t+1|0:t}$$

4. Return $\mu_{t+1|0:t+1}$, $\Sigma_{t+1|0:t+1}$

State – (x, y, θ) Measurement – ϕ (assumes d is perfectly known)

Summary of Parametric Motion and Sensor Models

- Explicitly modeling uncertainty in motion and sensing is key to robustness.
- In many cases, good models can be found by the following approach:
 - Determine parametric model of noise free motion or measurement.
 - 2. Analyze sources of noise.
 - 3. Add adequate noise to parameters (eventually mix in densities for noise).
 - 4. Learn (and verify) parameters by fitting model to data.
 - 5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.
- It is extremely important to be aware of the underlying assumptions!

Lecture Outline

But where do the actual noise values and A, B come from?

- Case 1: Fully observed training
 - We have an oracle technique to observe x, z, u (motion capture) at training time.
 - Maximize likelihood
- Case 2: Partially observed training
 - We can only observe z, u
 - Expectation-Maximization

Case 1: Observed z, x, u – Maximize Likelihood

 Maximize log likelihood of the data (z, x, u) under the motion and sensor models

Linear Gaussian

$$x_{t+1} = Ax_t + Bu_t + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$z_{t+1} = Cx_{t+1} + \delta_t$$

$$\delta_t \sim \mathcal{N}(0, R)$$

Non-linear

$$x_{t+1} = g(x_t, u_t) + \epsilon_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$z_t = h(x_t) + \delta_t$$

$$\delta_t \sim \mathcal{N}(0, R)$$

$$\max_{C,R} \mathbb{E}_{(z,x)} \left[\hat{p}(z|x) \right]$$
$$\hat{p}(.|x) = \mathcal{N}(Cx,R)$$

Solve with LS or SGD

$$\max_{\theta} \mathbb{E}_{(x,u,x')} \left[\hat{p}(x'|x,u) \right]$$

$$\hat{p}(.|x,u) = \mathcal{N}(g_{\theta}(x,u), Q_{\theta})$$

$$\max_{\phi} \mathbb{E}_{(z,x)} \left[\hat{p}(z|x) \right]$$

$$\hat{p}(.|x) = \mathcal{N}(h_{\phi}(x), R_{\phi})$$

 $\max_{A,B,Q} \mathbb{E}_{(x,u,x')} \left[\hat{p}(x'|x,u) \right]$

 $\hat{p}(.|x,u) = \mathcal{N}(Ax + Bu, Q)$

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Approximation Results

4/14/23

Why is estimating parameters generally not so easy?

X is actually not observed typically, only z, u

Latent variable inference problem

Parameter Estimation in Latent Variable Models

Hard problem to solve exactly

$$\max \log p(z)$$

$$= \log \int p(z|x)p(x)dx$$

Intractable problem

Solve via iterative optimization – Expectation Maximization algorithm (EM) → Much more general than filtering/localization

EM Algorithm for Latent Variable Parameter Estimation

EM Algorithms in Action for Estimating Motion/Sensor Models

Lecture Outline

Motion Models

Sensor Models

Localization with Motion/Sensor Models

Estimating Model Parameters