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Recap: Course Overview

Filtering/Smoothing Localization >earch Motion Planning
Mapping SLAM TrajOpt Stability/Certification
MDPs and RL

Imitation Learning

Solving POMDPs




Lecture Outline

Unscented Kalman Filter

Discrete Bayesian Filters

Particle Filters



Recap: EKF

Linearize dynamics
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When does the EKF struggle?

With discontinuous dynamics, the linearization will not be valid
For very non-linear functions, the first order Taylor approximation is poor
The EKF can drift over time because of growing linearization errors

Jacobian may be very expensive to compute and invert



How can we achieve closer approximations?

= Extended Kalman filters first linearize then send through Gaussian, can be
quite poor when the dynamics/measurements are quite non-linear

Actual (sampling) Linearized (EKF)
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How can we achieve closer approximations?

= |dea: Rather than linearizing first and then propagate, propagate through
non-linear transform and re-estimate Gaussian

Sample points

Re-estimate post transform

s Ensure that first and second moments (mean and covariance) match as
closely as possible on re-estimation



Linearization via Unscented Transform

piy) piy) — Function gix)
— Gaussian of p{y) — Gaussian of p(y) += Sigma-points
4 || — EFK Gaussian 4 || — UKF Gaussian 4 © asigma points)
2 2 2
<
0 :P\
-2
_4 )
0 0204 06 08 0 02040508 0.5 1
& P
E K F U K F = Meanp
=4
=
0 = -
N Ne 4



UKF Sigma-Point Estimate (2)
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UKF Sigma-Point Estimate (3)
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How can we achieve closer approximations?

= |dea: Rather than linearizing first and then propagate, propagate through
non-linear transform and re-estimate Gaussian

Sample points

e /

Re-estimate post transform

= Question 1: What points should we send through non linearity?
= Question 2: How should we restimate the means and covariances?
= Question 3: Why can this be better than the EKF?



Sigma Points

= Question 1: What points should we send through non linearity?
= Choose minimal points (2N + 1 to send through non-linearity to match 1,2 moments of a Gaussian

Sigma points Weights
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= Whatis a matrix square root?

L=vY if LLT =%

= Why these points = they ensure that the moments match. Not a unique choice!



Unscented Transform

Question 2: How should we re-estimate the means and covariances?

Sigma points Weights
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Re-estimate post transform



Why do these make sense?
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Filtering with the Unscented Transform

Dynamics

Measurement

s Given the tool of the unscented transform, let us revisit the nonlinear filter

[ ) ]

Estimate B—el(att)

B—el(xt) = /p(:ct|zvt_1,ut_l)Bel(aft_l)da:’t_l
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\_

Estimate Bel(xy)

Bel(xy) = np(z¢|x)Bel(xy) =

p(z¢|z¢) Bel(x+)

~

N > o D(2t|ae = aj’)B—el ry = ')

J

- Directly use unscented
transform for dynamics

—> Estimate empirical covariance
matrix with unscented
transform and do Kalman filter



Unscented KF Dynamics Step

= Sample Sigma points given current belief, send them through non-linear dynamics
= Re-estimate the post-update belief using the unscented transform
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Unscented KF Measurement Step

= More tricky because now C/H is not known! How to compute Kalman gain?
Kii1 =X ct(Ccy C'+Ripq) !
t+1 t+1]0:t t+1]0:t t+1
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Unscented KF Measurement Step

= More tricky because now C/H is not known! How to compute Kalman gain?
Kii1 =X ct(Ccy Ct +Ripq) !
t+1 t+1]0:t t+1]0:t t+1

_— N

Cross covariance under forward transform Covariance under forward transform

Send sigma points through non-linear measurement model QEZ = h(xy)

2n 2n 2n
=Y why'  S=> wl@ -2)@ 2T T=> w (¥ — o) @ —2)"
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Kt—I—l — TS_1 Then use standard KF measurement update
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UKF Pseudocode

def Unscented_Kalman_filter(t¢]0:t, ¢ 0.4, Ut, 2641 ):
1.  Dynamics

.. Sample Sigma Points from N (1140.¢, X¢(0:¢)
2. Send them through g(:Ut, ut)

5. Compute Ht+1|0:t5 Et+1|0:t via UT
2. Measurement:

Reminder of the model

.. Sample Sigma Points from N (fi411/0:¢, Z¢11(0:¢)
2. Send them through h(xt)
. Compute T, S as cross covariance and covariance
s+ Compute K11 = TS 1

5. Use standard KF updates
3. Return mean,cov



How well does this do?

Actual (sampling) Linearized (EKF) uT
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When/why is the UKF better than the EKF?

s EKF:
= First linearize then propagate
= Misses higher order terms

s UKEF:
= First propagate then linearize
= Approximates the higher order terms as well

Approximately the same if sigma points are close to linearization point



Estimation Sequence
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Estimation Sequence
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UKF Iin Action

Previous

Project 1/2: EKF and UKF

SELECT




UKF Summary

Highly efficient: Same complexity as EKF, with
a constant factor slower in typical practical
applications

Better linearization than EKF: Accurate in first
two terms of Taylor expansion (EKF only first
term)

Derivative-free: No Jacobians needed
Still not optimal!
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Particle Filters
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When do EKF/UKF fail?

® Non-linear functions

® Non-Gaussian functions

How can we represent this better?
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“Multimodality in Probability Distributions

Target Distribution

Gaussian Approximation Categorical Approximation

-

71 P

111N

Can we leverage categorical distributions for filtering/localization?
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ldea 1: Discrete Bayes Filter

Remember the idea behind Bayesian filters
We made these Gaussian

Bel(:z:t) — P(xt‘u():t—la Zozt)
=0 p(ze|xe) | Plrg|ug_1, 1) Bel(xy_1)drs 1

Why did we jump through all those hoops? = dealing with the integrals
What if the state were discrete?

Easily multimodal and tractable

All integrals are sums! Multimodality is not an issue
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ldea 2: Histogram Filter

But the world is continuous, how can we apply this machinery?

Just discretize!

Assumption - value is piecewise constant within a bin — use the mean

Tt = |xk,t|_1/ Tt dTy
Xk, t

?

P(zt | Xk,t) ~ P(zt | i“k,t)

p(ka,t | U, ff?v:,t—l)

Q

P(Xk,t | Ut, Xz‘,t—l)

|xk,t|

Approximation errors drops with finer discretization

The number of states might blow up = more on this later



~Why is this a reasonable assumption to make?
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Assuming the value doesn’t change significantly within a bin

P(Zt | xk,t) ~ P(Zt i’k,t)
P(Xkt | U, Xit—1) = i P(ZTrt | Uty Tit—1)
|Xk,t

Using the mean is reasonable if the variance is bounded
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Grid-based Localization
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Overall histogram filter algorithm

Dynamics/Prediction

Measurement/Correction

[ Discretize ] ( Initial Prior J

space J L p(g;o)

4 Estimate  Bel(z,)
Bel a;t Zp Zlft|33t 1y Ut— 1)361(%& 1)
L _
¥
-

Estimate Bel(x;)
(Zt |th)B€l( t)

Bel(ilﬁt) Z p(Zt|33t)Bel(x )
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Challenges with Static Discretization

" Scales poorly with dimension:

" Exponential bins in largely empty space

" Not adaptive as the posterior changes

" Unclear how to perform discretization




Lecture Outline

Unscented Kalman Filter

Discrete Bayesian Filters

Particle Filters
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Particle Filters: Motivation

So far, we discussed the

" Kalman filter: Gaussian, linearization problems, discrete Bayes filters
(eg histogram filters)

Histogram filters are great but they waste space and are non adaptive

Particle filters are a way to efficiently represent
non-Gaussian distributions adaptively

Basic principle
" Set of state hypotheses (“particles”)
" Survival-of-the-fittest
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Sample-based Localization (sonar

4/12/23 Probabilistic Robotics
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Let’s introduce some tools
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Density Approximation

Particle sets can be used to approximate densities

f(x) f(x)
= samples = samples
.20 20

3, O

= =
—~ ~

Z &
E g
< R

o o

= =

- Q.

X X

" The more particles fall into an interval, the higher the
probability of that interval

" How to draw samples form a function/distribution?



Importance Sampling Principle

" We can even use a different distribution g to generate
samples from f

" By introducing an importance weight w, we can account for
the “differences between g and f”

" w=f/g
. proposal(x)
" fis often called target(x)
target samples

" gis often called
proposal

probability / weight

oot 100N |||H ‘ |

X




Resampling

Given: Set S of weighted samples.

Wanted : Random sample, where the probability of drawing x;
is given by w;.

Typically done n times with replacement to generate new
sample set §”.



Resampling: Efficient Techniques

 Roulette wheel « Stochastic universal sampling
e Binary search, nlog n « Systematic resampling
* Linear time complexity

* Easy to implement, low variance



Resampling: Efficient Techniques

Pseudocode for low-variance sampling

- Algorithm Low_variance_sampler(X;. W,):
28 ‘i’f = 0

3: r = rand(0: M)

4: c= u.',m

5: i =1

6: form = 1to M do

/- u=r+(m-—1)- M
8: while u > ¢

9: i=1+1

10: c=c+ u',["

11: endwhile

12: add z;" to X,

13: endfor

14: return X}

Table 4.4 Low variance resampling for the particle filter. This routine uses a single ran-
dom number to sample from the particle set X" with associated weights W, yet the probabil-
ity of a particle to be resampled is still proportional to its weight. Furthermore, the sampler
is efficient: Sampling M panticles requires O (M) time.
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Let’s put these pieces together



Particle Filters

Discretize ] ( Initial Prior J

space J L p(z0)

Estimate  Bel(x;)

Replace this with sampled particles

Estimate Bel(xy)




Particle Filters




Robot Motion

Bel(xy) = / P(xi|lug—1,z1—1)Bel(xi—1)dzi—1 Push samples forward according to dynamics
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Dynamics Update:

Bel(xy) = /P(xt|ut_1,:Et_l)Bel(xt_l)da:t_l

Sample forward using the dynamics model:

1. No gaussian requirement
2. No linearity requirement, just push forward distribution
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‘Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

Bel(z,) = nP(z|x;)Bel(x;)

- — =
z-- ~

(Zt\l’t)

€ (l’t)

Bel(:ct)

___________________

Looks a lot like importance sampling!

P(z¢|x})

> Pzl

Can compute a per sample importance weight w; =

Distribution can be represented as a set of weighted samples



Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

Bel(xy) = nP(z¢|xy)Bel(xy) Wi = j
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Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [ P(z)w) Bel(xy)day

© xp(z|x) O

O
o ‘ > e
o ° > O

Reweight particles according to measurement likelihood



What happens across multiple steps?

-
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Importance weights get multiplied at each step



Why might this be bad?

Importance weights get multiplied at each step

o0 G
O o

O ) ) o

- O (s
v v

@

O

1. May blow up and get numerically unstable over many steps
2. Evidence doesn’t affect samples themselves, just weights



Measurement Update: Resampling

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = Pzila)Bel(zy) ™~ 2 P(z]a7)
Y [ P(z|wy) Bel(xy)day

O 2
Stochastic Uniform Sampling

e
OQ o0

Resample particles from weighted distribution with SUS
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Overall Particle Filter algorithm

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(flfo)

\_

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

/

o

Estimate Bel(xy)

1. Weight samples by p(z¢|x)

2. Resample particles with Stochastic Universal Sampling

J
\

J




Particle Filter Algorithm

Bel (x) = n p(z,|x) j px, [ %, ,) Bel (x.,) dx, ,

L draw x',_, from Bel(X,_,)

— draw x/, from p(x,| x',_,u,_;)

— Importance factor for x',:

; target distribution

proposal distribution
_n p(z, | x) p(x, | x_,u,,) Bel (x,_,)
p(x, | x,_,u, ) Bel (x,,)
< p(z,|x,)




Particle Filter Algorithm

1. Algorithm particle_filter( S, u;.; z):
2. St = @, ]7 = O

3 For i=1...n Generate new samples

4 Sample index j(i) from the discrete distribution given by w, ;
B) Sample ! from p(x, | x, ,u, ) using x/¢ and yu,

6. W; = p(z, | X:) Compute importance weight
7. n=n+w Update normalization factor
8 S, =8, Ui<x,w >} Insert

9. For i=1...n

10. w =w/n Normalize weights




60




61




62




63




64




65




66




67




68




69




70




71




72




73




74




75




76




77




Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization
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Under a Light

Measurement z:

P(zlx):
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Next to a Light

Measurement z:

P(z|x):

llllllll




Elsewhere

Measurement z: P(z|x):




Global Localization Using Vision




Recovery from Failure
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| ocalization for AIBO robots
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Particle Filter Projection
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Density Extraction
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When might the particle filter fail?

Why might this not work?
= Finitely many samples = introduces bias
= Variance of resampling operation = drops diversity

= Divergence of proposal and target distributions -
degenerate importance weights

= Particle deprivation = belief collapse



Finite Numbers of Samples

Importance weights are very high variance for small numbers of particles

_ Plalad)
>, Plarla])

Bel(z;) = nP(z|x¢)Bel(x;) W;

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S e e S Imagine ifthere was 1 particle

w - — Evidence not taken into
account at all

= Low samples cause bias




Variance of Resampling Operation

Imagine the robot didn't move at all, just evidence and resampling

—> Collapses to a single particle with probability 1

O g
O o

O ‘ ) o

e -
v v

Solution: resample less often or use lower variance sampling like SUS



Divergence of Proposal and Target

Sharp measurement models result in almost all 0 weights

xp(z|r) O]

Add fake noise into the measurement model




How can we do better? = be adaptive!

Adapt the number of particles generated during resampling according to likelihood

KLD-Sampling: Adaptive Particle Filters

Dieter Fox
Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195
Email: fox@cs.washington.edu
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