

Robotics Spring 2023

Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Recap: Course Overview

Filtering/Smoothing Localization

Mapping SLAM

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Solving POMDPs

Lecture Outline

Unscented Kalman Filter

Discrete Bayesian Filters

Particle Filters

Recap: EKF

Initial Prior

 $p(x_0)$

Linearize dynamics

$$x_{t+1} = g(x_t, u_t) + \epsilon_t \approx g(\mu_t, u_t) + \frac{\partial g(x_t, u_t)}{\partial x_t} \Big|_{x_t = \mu_t} (x_t - \mu_t) + \epsilon_t$$

Dynamics/Prediction (given some u)

Estimate $\overline{Bel}(x_t)$

$$p(x_{t+1}|z_{0:t}, u_{0:t}) \sim \mathcal{N}(g(\mu_t, u_t), G\Sigma_{t|0:t}G^T + Q_t)$$

Linearize measurement

$$z_t = h(x_t) + \delta_t \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{x_t = \bar{\mu}_t} (x_t - \bar{\mu}_t) + \delta_t$$

Measurement/Correction (given some z)

Estimate $Bel(x_t)$

$$p(x_{t+1}|z_{0:t+1}, u_{0:t}) = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - h(\bar{\mu}_t), (I - K_{t+1}H)\Sigma_{t+1|0:t}))$$

When does the EKF struggle?

- With discontinuous dynamics, the linearization will not be valid
- For very non-linear functions, the first order Taylor approximation is poor
- The EKF can drift over time because of growing linearization errors
- Jacobian may be very expensive to compute and invert

 Extended Kalman filters first linearize then send through Gaussian, can be quite poor when the dynamics/measurements are quite non-linear

 Extended Kalman filters first linearize then send through Gaussian, can be quite poor when the dynamics/measurements are quite non-linear

 Idea: Rather than linearizing first and then propagate, propagate through non-linear transform and re-estimate Gaussian

 Ensure that first and second moments (mean and covariance) match as closely as possible on re-estimation

Linearization via Unscented Transform

UKF Sigma-Point Estimate (2)

UKF Sigma-Point Estimate (3)

 Idea: Rather than linearizing first and then propagate, propagate through non-linear transform and re-estimate Gaussian

- Question 1: What points should we send through non linearity?
- Question 2: How should we restimate the means and covariances?
- Question 3: Why can this be better than the EKF?

Sigma Points

- Question 1: What points should we send through non linearity?
 - Choose minimal points (2N + 1 to send through non-linearity to match 1,2 moments of a Gaussian

Sigma points

$$\chi^0=\mu$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)$$

Weights

$$w_m^0 = \frac{\lambda}{n+\lambda} \qquad w_c^0 = \frac{\lambda}{n+\lambda}$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i} \qquad w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)} \qquad \text{for } i = 1,...,2n$$

What is a matrix square root?

$$L=\sqrt{\Sigma}$$
 if $LL^T=\Sigma$

Why these points \rightarrow they ensure that the moments match. Not a unique choice!

Unscented Transform

Question 2: How should we re-estimate the means and covariances?

Sigma points

$$\chi^{0} = \mu$$

$$w_{m}^{0} = \frac{\lambda}{n+\lambda}$$

$$w_{c}^{0} = \frac{\lambda}{n+\lambda}$$

$$w_{c}^{0} = \frac{\lambda}{n+\lambda}$$

$$w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)}$$
for $i = 1,...,2n$

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu) (\psi^i - \mu)^T$$

Why do these make sense?

Sigma points

$$\chi^0 = \mu$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$$

Weights

$$w_m^0 = \frac{\lambda}{n+\lambda} \qquad w_c^0 = \frac{\lambda}{n+\lambda}$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$$
 $w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)}$ for $i = 1,...,2n$

for
$$i = 1,...,2n$$

Filtering with the Unscented Transform

Given the tool of the unscented transform, let us revisit the nonlinear filter

→ Directly use unscented transform for dynamics

→ Estimate empirical covariance matrix with unscented transform and do Kalman filter

Unscented KF Dynamics Step

- Sample Sigma points given current belief, send them through non-linear dynamics
- Re-estimate the post-update belief using the unscented transform

$$\chi^{0} = \mu_{t|0:t} \qquad w_{m}^{0} = \frac{\lambda}{n+\lambda} \qquad w_{c}^{0} = \frac{\lambda}{n+\lambda}$$

$$\chi^{i} = \mu_{t|0:t} \pm (\sqrt{(n+\lambda)\Sigma_{t|0:t}})_{i} \qquad w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)} \qquad \text{for } i = 1,...,2n$$

Pass sigma points through nonlinear function $\psi^i = g(\chi^i, u_t)$

$$\mu_{t+1|0:t} = \sum_{i=0}^{2n} w_m^i \psi^i$$

$$\Sigma_{t+1|0:t} = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu_{t+1|0:t}) (\psi^i - \mu_{t+1|0:t})^T + Q$$

Unscented KF Measurement Step

More tricky because now C/H is not known! How to compute Kalman gain?

$$K_{t+1} = \sum_{t+1|0:t} C^T (C \sum_{t+1|0:t} C^T + R_{t+1})^{-1}$$

Cross covariance under forward transform

Covariance under forward transform

Remember from earlier

Diagonal Covariance

$$\begin{split} \Sigma_{t+1|0:t} &= \mathbb{E}\left[(X_{t+1|0:t} - \mu_{t+1|0:t})(X_{t+1|0:t} - \mu_{t+1|0:t})^T \right] \\ &= \mathbb{E}\left[(AX_{t|0:t} + Bu_t + \epsilon_t - A\mu_{t|0:t} - Bu_t)(AX_{t|0:t} + Bu_t + \epsilon_t - A\mu_{t|0:t} - Bu_t)^T \right] \\ &= A\mathbb{E}\left[(X_{t|0:t} - \mu_{t|0:t})(X_{t|0:t} - \mu_{t|0:t})^T \right] A^T + Q_t \\ &= A\Sigma_{t|0:t} A^T + Q_t \end{split}$$

Cross Covariance

$$\Sigma_{t,t+1|0:t} = \mathbb{E}\left[(X_{t|0:t} - \mu_{t|0:t})(X_{t+1|0:t} - \mu_{t+1|0:t})^T \right]$$

$$\Sigma_{t,t+1|0:t} = \Sigma_{t|0:t} A^T$$

Unscented KF Measurement Step

More tricky because now C/H is not known! How to compute Kalman gain?

$$K_{t+1} = \sum_{t+1|0:t} C^T (C \sum_{t+1|0:t} C^T + R_{t+1})^{-1}$$

Cross covariance under forward transform

Covariance under forward transform

Send sigma points through non-linear measurement model $\,\psi^i=h(x_t)\,$

$$\bar{z} = \sum_{i=0}^{2n} w_m^i \bar{\psi}^i \qquad S = \sum_{i=0}^{2n} w_c^i (\bar{\psi}^i - \bar{z}) (\bar{\psi}^i - \bar{z})^T \quad T = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu_{t+1|0:t}) (\bar{\psi}^i - \bar{z})^T$$

$$K_{t+1} = TS^{-1}$$
 Then use standard KF measurement update Cross covariance Covariance

UKF Pseudocode

def Unscented_Kalman_filter($\mu_{t|0:t}$, $\Sigma_{t|0:t}$, u_{t} , z_{t+1}):

- 1. Dynamics
 - Sample Sigma Points from $\mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$
 - Send them through $g(x_t,u_t)$
 - Compute $\mu_{t+1|0:t}, \Sigma_{t+1|0:t}$ via UT
- 2. Measurement:
 - Sample Sigma Points from $\mathcal{N}(\mu_{t+1|0:t}, \Sigma_{t+1|0:t})$
 - Send them through $h(x_t)$
 - 3. Compute T, S as cross covariance and covariance
 - 4. Compute $K_{t+1} = TS^{-1}$
 - 5. Use standard KF updates
- 3. Return mean, cov ,

$$x_{t+1} = g(x_t, u_t) + \epsilon_t$$

$$z_t = h(x_t) + \delta_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$\delta_t \sim \mathcal{N}(0, R)$$

Reminder of the model

How well does this do?

When/why is the UKF better than the EKF?

- EKF:
 - First linearize then propagate
 - Misses higher order terms

- UKF:
 - First propagate then linearize
 - Approximates the higher order terms as well

Approximately the same if sigma points are close to linearization point

Estimation Sequence

Estimation Sequence

Prediction Quality

UKF in Action

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term)
- Derivative-free: No Jacobians needed
- Still not optimal!

Lecture Outline

Extended Kalman Filter

Discrete Bayesian Filters

Particle Filters

When do EKF/UKF fail?

- Non-linear functions
- Non-Gaussian functions

Multimodality in Probability Distributions

Can we leverage categorical distributions for filtering/localization?

Idea 1: Discrete Bayes Filter

Remember the idea behind Bayesian filters

$$Bel(x_t) = P(x_t|u_{0:t-1},z_{0:t})$$
 We made these Gaussian
$$= \eta \ p(z_t|x_t) \int P(x_t|u_{t-1},x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Why did we jump through all those hoops? → dealing with the integrals

What if the state were discrete?

All integrals are sums! Multimodality is not an issue

Idea 2: Histogram Filter

But the world is continuous, how can we apply this machinery?

Just discretize!

Assumption – value is piecewise constant within a bin – use the mean

$$\hat{x}_{k,t} = |\mathbf{x}_{k,t}|^{-1} \int_{\mathbf{x}_{k,t}} x_t \, dx_t$$

$$p(z_t \mid \mathbf{x}_{k,t}) \approx p(z_t \mid \hat{x}_{k,t})$$

$$p(\mathbf{x}_{k,t} \mid u_t, \mathbf{x}_{i,t-1}) \approx \frac{\eta}{|\mathbf{x}_{k,t}|} p(\hat{x}_{k,t} \mid u_t, \hat{x}_{i,t-1})$$

Approximation errors drops with finer discretization

The number of states might blow up -> more on this later

Why is this a reasonable assumption to make?

$$Bel(x_t = \langle x, y, \theta \rangle)$$

Assuming the value doesn't change significantly within a bin

$$p(z_t \mid \mathbf{x}_{k,t}) \approx p(z_t \mid \hat{x}_{k,t})$$

$$p(\mathbf{x}_{k,t} \mid u_t, \mathbf{x}_{i,t-1}) \approx \frac{\eta}{|\mathbf{x}_{k,t}|} p(\hat{x}_{k,t} \mid u_t, \hat{x}_{i,t-1})$$

Using the mean is reasonable if the variance is bounded

Grid-based Localization

Overall histogram filter algorithm

Dynamics/Prediction

Measurement/Correction

Challenges with Static Discretization

- Scales poorly with dimension:
 - Exponential bins in largely empty space
- Not adaptive as the posterior changes
- Unclear how to perform discretization

Lecture Outline

Unscented Kalman Filter

Discrete Bayesian Filters

Particle Filters

Particle Filters: Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems, discrete Bayes filters (eg histogram filters)
- Histogram filters are great but they waste space and are non adaptive
- Particle filters are a way to efficiently represent non-Gaussian distributions adaptively
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)

Let's introduce some tools

Density Approximation

Particle sets can be used to approximate densities

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between \boldsymbol{g} and \boldsymbol{f} "
- $\mathbf{w} = \mathbf{f}/\mathbf{g}$
- f is often called target
- g is often called proposal

Resampling

• **Given**: Set **S** of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling: Efficient Techniques

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling: Efficient Techniques

Pseudocode for low-variance sampling

```
Algorithm Low_variance_sampler(X_t, W_t):
               X_t = \emptyset
               r = \text{rand}(0; M^{-1})
               c = w_{t}^{[1]}
               i = 1
               for m = 1 to M do
                    u = r + (m-1) \cdot M^{-1}
                    while u > c
                        i = i + 1
                        c = c + w_t^{[i]}
10:
                    endwhile
11:
                    add x_t^{[i]} to \bar{\mathcal{X}}_t
12:
13:
               endfor
               return \bar{\mathcal{X}}_t
14:
```

Table 4.4 Low variance resampling for the particle filter. This routine uses a single random number to sample from the particle set \mathcal{X} with associated weights \mathcal{W} , yet the probability of a particle to be resampled is still proportional to its weight. Furthermore, the sampler is efficient: Sampling M particles requires O(M) time.

Let's put these pieces together

Particle Filters

Particle Filters

Robot Motion

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$
 Push samples forward according to dynamics

Dynamics Update:

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Sample forward using the dynamics model:

- 1. No gaussian requirement
- 2. No linearity requirement, just push forward distribution

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t}$$

Looks a lot like importance sampling!

Can compute a per sample importance weight

$$w_i = \frac{P(z_t|x_t^i)}{\sum_i P(z_t|x_t^j)}$$

Distribution can be represented as a set of weighted samples

Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$
 $w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$

Measurement Update

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)\overline{Bel}(x_t)dx_t}$$

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Reweight particles according to measurement likelihood

What happens across multiple steps?

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

- 1. May blow up and get numerically unstable over many steps
- 2. Evidence doesn't affect samples themselves, just weights

Measurement Update: Resampling

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t} w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$
Stochastic Uniform Sampling

Resample particles from weighted distribution with SUS

Overall Particle Filter algorithm

Dynamics/Prediction

Measurement/Correction

1. Weight samples by $p(z_t|x_t)$

2. Resample particles with Stochastic Universal Sampling

Particle Filter Algorithm

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. For i = 1...n

Generate new samples

Compute importance weight

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$
- 7. $\eta = \eta + w_t^i$ Update normalization factor
- 8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$
- 9. **For** i = 1...n
- $10. w_t^i = w_t^i / \eta$

Insert

Normalize weights

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

P(z|x):

Elsewhere

Measurement z:

P(z|x):

Global Localization Using Vision

Recovery from Failure

Localization for AIBO robots

Particle Filter Projection

Density Extraction

When might the particle filter fail?

Why might this not work?

- Finitely many samples → introduces bias
- Variance of resampling operation → drops diversity
- Particle deprivation → belief collapse

Finite Numbers of Samples

Importance weights are very high variance for small numbers of particles

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$
 $w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$

Imagine if there was 1 particle

- → Evidence not taken into account at all
- → Low samples cause bias

Variance of Resampling Operation

Imagine the robot didn't move at all, just evidence and resampling

→ Collapses to a single particle with probability 1

Solution: resample less often or use lower variance sampling like SUS

Divergence of Proposal and Target

Sharp measurement models result in almost all 0 weights

Add fake noise into the measurement model

How can we do better? \rightarrow be adaptive!

Adapt the number of particles generated during resampling according to likelihood

KLD-Sampling: Adaptive Particle Filters

Dieter Fox
Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195
Email: fox@cs.washington.edu

Lecture Outline

Unscented Kalman Filter

Discrete Bayesian Filters

Particle Filters

Recap: Course Overview

Filtering/Smoothing Localization

Mapping SLAM

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Solving POMDPs