

Robotics Spring 2023

Abhishek Gupta

TAs: Yi Li, Srivatsa GS

Recap: Course Overview

Filtering/Smoothing Localization

Mapping SLAM

Search Motion Planning

TrajOpt Stability/Certification

MDPs and RL

Imitation Learning Solving POMDPs

Lecture Outline

Probability Review

Bayesian Inference

Bayesian Filtering

Why state estimation?

- "State" is an extremely hard thing to define and measure
 - Usually unobservable (only "measurements" are observable)
- State can be a choice
 - More detailed state, less uncertainty
 - Less detailed state, more uncertainty

Pose/velocity of the object

Position and momentum of all particles

Why **probabilistic** state estimation?

Pose/velocity of the object

- When state is abstracted/incomplete, this manifests as noise/uncertainty
- Being probabilistic allows for:
 - Robustness to external noise
 - Exploration to get better/gather information
 - Dealing with inherently stochastic systems
 - Accounting for inaccurate hardware/software

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

Example of Probabilistic Robotic Systems: Mobile Robot

- State: position and heading
- Sensors:
 - Odometry (=sensing motion of actuators): e.g., wheel encoders
 - Laser range finder:
 - Measures time of flight of a laser beam between departure and return
 - Return is typically happening when hitting a surface that reflects the beam back to where it came from
- Dynamics: Noise from wheel slippage, unmodeled variation in floor

Example of Probabilistic Robotic Systems: Robot Arm

State: Joint encoders, object pose, object velocity

Sensors:

- Joint Encoders: Measure position and velocity at different joints
- Camera images: Informs the position and semantics of objects in the scene
- Depth images: Indicates the 3-D position and occupancy of object in the scene

Dynamics:

Noise from: unmodeled contact dynamics, non-rigid contact or unmodeled friction

Fundamental Axioms of Probability

$$0 \le \Pr(A) \le 1$$

$$\Pr(\Omega) = 1 \qquad \Pr(\phi) = 0$$

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

- Pr(A) denotes probability that the outcome
- \bullet w is an element of the set of possible outcomes A.
- A is often called an event. Same for B.
- lacksquare Ω is the set of all possible outcomes.
- φ is the empty set.

Useful Corollaries from Axioms

$$Pr(A \cup (\Omega \setminus A)) = Pr(A) + Pr(\Omega \setminus A) - Pr(A \cap (\Omega \setminus A))$$

$$Pr(\Omega) = Pr(A) + Pr(\Omega \setminus A) - Pr(\phi)$$

$$1 = Pr(A) + Pr(\Omega \setminus A) - 0$$

$$Pr(\Omega \setminus A) = 1 - Pr(A)$$

If A and B have no overlap then

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\{x_1, x_2, \dots, x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i , between [0, 1]
- P(-) is called probability mass function (sums to 1)

• E.g. $P(Room) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$

Examples of Discrete Random Variables

Binomial

Bernoulli

$$\left\{egin{array}{ll} q=1-p & ext{if } k=0 \ p & ext{if } k=1 \end{array}
ight.$$

Multinomial

$$rac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}$$

Poisson

Continuous Random Variables

- X denotes a random variable.
- X can take on a continuum of values in the support of the probability density function
- P(X=x), or P(x), is the probability density function
 - Density function positive but not upper bounded by 1
 - Integrates to 1

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x)dx$$

Examples of Continuous Random Variables

Multivariate Gaussian

Beta Distribution

Uniform Distribution

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then

$$P(x,y) = P(x) P(y)$$

• $P(x \mid y)$ is the probability of x given y

$$P(x \mid y) = P(x,y) / P(y)$$

$$P(x,y) = P(x \mid y) P(y)$$

If X and Y are independent then

$$P(x \mid y) = P(x)$$

Law of Total Probability, Marginals

Discrete case

Continuous case

$$\sum_{x} P(x) = 1$$

$$\int p(x) \, dx = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) \, dy$$

$$P(x) = \sum_{y} P(x | y)P(y)$$
 $p(x) = \int_{y} p(x | y)p(y) dy$

$$p(x) = \int p(x \mid y) p(y) \, dy$$

Events

•
$$P(+x, +y)$$
?

•
$$P(-y OR +x)$$
?

Independent?

P(X,Y)

Х	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

Marginal Distributions

P(X,Y)

X	Υ	Р
+χ	+y	0.2
+χ	-у	0.3
-X	+ y	0.4
-X	-у	0.1

P(X)

X	Р
+x	
-X	

P(Y)

Υ	Р
+ y	
-у	

Conditional Probabilities

X	Υ	Р
+χ	+ y	0.2
+χ	-у	0.3
-X	+ y	0.4
-X	-у	0.1

•
$$P(-y \mid +x)$$
?

Lecture Outline

Probability Review

Bayesian Inference

Bayesian Filtering

Bayes Formula

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)} = \frac{\text{likelihood.prior}}{\text{evidence}}$$

Bayes Formula

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

$$P(y) = \sum_{x'} P(y \mid x')P(x')$$

$$P(y,x) = P(y|x)p(x)$$

$$\eta = \frac{1}{\sum_{x} P(y,x)}$$
Can replace with integral
$$P(x|y) = \eta P(y,x)$$

Example of Bayes Formula in Action

Symptom Cancer	Yes	No	Total
Yes	1	0	1
No	10	99989	99999
Total	11	99989	100000

Just because everyone with cancer has the symptom, doesn't mean everyone with the symptom has cancer

$$\begin{split} P(\text{Cancer}|\text{Symptoms}) &= \frac{P(\text{Symptoms}|\text{Cancer})P(\text{Cancer})}{P(\text{Symptoms}|\text{Cancer})P(\text{Cancer})} \\ &= \frac{P(\text{Symptoms}|\text{Cancer})P(\text{Cancer})}{P(\text{Symptoms}|\text{Cancer})P(\text{Cancer}) + P(\text{Symptoms}|\text{Non-Cancer})P(\text{Non-Cancer})} \\ &= \frac{1 \times 0.00001}{1 \times 0.00001 + (10/99999) \times 0.99999} = \frac{1}{11} \approx 9.1\% \end{split}$$

Why Bayes Formula?

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

$$P(y) = \sum_{x'} P(y \mid x')P(x')$$
 Diagnostic Causal

- Causal knowledge may be easier to obtain/estimate/represent
- Which direction is causal is not always clear though!
- Allows us to estimate "beliefs" based on "measurements"

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is *P(open | z)?*

Example

$$P(z \mid open) = 0.6$$
 $P(z \mid \neg open) = 0.3$
 $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

• z raises the probability that the door is open.

Conditioning

Bayes rule and background knowledge:

$$P(x|y,z) = \frac{P(y|x,z)P(x|z)}{P(y|z)}$$

$$P(x|y) \stackrel{?}{=} \int P(x|y,z)P(z)dz$$

$$|y\rangle = \int P(x|y,z)P(z)dz$$

$$\stackrel{?}{=} \int P(x|y,z)P(z|y)dz$$

$$\stackrel{?}{=} \int P(x|y,z)P(y|z)dz$$

Conditional Independence

$$P(x,y|z)=P(x|z)P(y|z)$$

Equivalent to
$$P(x|z) = P(x|z,y)$$

and
$$P(y|z)=P(y|z,x)$$

Second Simple Example of State Estimation

- Suppose our robot obtains another observation z_2 .
- What is **P(open** z_1, z_2)?

Recursive Bayesian Updating

$$P(x|z_1,\ldots,z_n) = \frac{P(z_n|x,z_1,\ldots,z_{n-1})P(x|z_1,\ldots,z_{n-1})}{P(z_n|z_1,\ldots,z_{n-1})}$$

Markov assumption: z_n is conditionally independent of $z_1,...,z_{n-1}$ given x_n .

$$p(z_n|x,z_1,\ldots,z_{n-1})=p(z_n|x)$$

$$P(x|z_1, ..., z_n) = \frac{P(z_n|x)P(x|z_1, ..., z_{n-1})}{P(z_n|z_1, ..., z_{n-1})}$$

$$= \eta P(z_n|x)P(x|z_1, ..., z_{n-1})$$

$$= \eta_{1:n} \prod_{i=1,...,n} P(z_i|x)P(x)$$

Example: Second Measurement

$$P(z_{2} | open) = 0.5 \qquad P(z_{2} | \neg open) = 0.6$$

$$P(open | z_{1}) = 2/3 \qquad P(\neg open | z_{1}) = 1/3$$

$$P(open | z_{2}, z_{1}) = \frac{P(z_{2} | open) P(open | z_{1})}{P(z_{2} | open) P(open | z_{1}) + P(z_{2} | \neg open) P(\neg open | z_{1})}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$

 \mathbf{z}_2 lowers the probability that the door is open.

Effects of Incorrect Independencies

$$P(x|z_1,\ldots,z_n) = \eta_{1:n} \prod_{i=1,\ldots,n} P(z_i|x)P(x)$$

- If redundant sensors, z₁...z_n are treated as independent, leads to double counting
 - overconfident predictions

Why is it challenging to be Bayesian?

Why is it challenging to be Bayesian?

$$P(x\mid y) = \frac{P(y\mid x)P(x)}{P(y)}$$

$$P(y) = \sum_{x'} P(y\mid x')P(x')$$

$$P(y) = \int p(y|x')p(x')dx'$$
 Difficult to compute analytically because of integral

How can we address this?

Partition function

$$p(y) = \int p(y|x')p(x')dx'$$

Markov Chain Monte Carlo

Conjugate Priors

Variational Inference

Discretization

Markov-Chain Monte Carlo

Construct a Markov chain with equilibrium distribution equal to joint

Inference via sampling

Markov-Chain Monte Carlo: Metropolis Hastings

A simple MCMC algorithm: Assume access to an unnormalized p(x, y)

- 1. Start at some x, given a y
- 2. Propose a new x' according to some symmetric q(x'|x)
- 3. Compute acceptance ratio

$$\alpha = \frac{p(x', y)}{p(x, y)}$$

4. Accept x' with likelihood α

Hard to converge in high dimensions

Variational Inference

Gaussian approximation

$$\min_{q} D_{\mathrm{KL}}(q(x|y)||p(x|y))$$

Actually optimize a lower bound

Variational Inference: Evidence Lower bound

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

Instead of explicitly computing posterior, approximate with a tractable family

$$q(x|y) \longleftrightarrow p(x|y)$$

$$\min_{q} D_{\mathrm{KL}}(q(x|y)||p(x|y))$$

$$\geq \mathbb{E}(p(y|x)p(x)) + \mathcal{H}(q(y|x))$$

Tractable optimization → inference becomes optimization

Conjugate Priors

Normal posterior:

Normal prior * Normal likelihood → Normal posterior

$$rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2} \qquad rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2} \qquad rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

$$rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Standard normal distribution

Discretization

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$
$$P(y) = \sum_{x'} P(y \mid x')P(x')$$

Grows exponentially with dimension!

Lecture Outline

Probability Review

Bayesian Inference

Bayesian Filtering

Let's estimate "state" of our robot

- What affects uncertainty:
 - Robot actions (increase uncertainty typically)
 - Sensor measurements (decrease uncertainty typically)

How do actions increase uncertainty?

- Actions transition the state of the system forward $x \rightarrow x'$
 - But they may (and usually) do so with errors/noise!
- Robot wheels have slippage/noise, joints have stochasticity, environment introduces noise

How do sensors reduce uncertainty?

- Measurements usually convey more information about the state of the world
- Sensor readings can range from images to laser scans to tactile sensing, each of which has a different effect on uncertainty

Filtering

- Filtering is the process of making sense ("filtering") of sensor measurements and actions to estimate the system state
- Many different types of filters:
 - Matched filters (known signal)
 - Wiener filters (signal from noise)
 - Bayesian filters (bayesian state estimation)
 - Kalman
 - EKF / UKF
 - • • •

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_t = \{z_0, u_0, z_1, u_1, \dots, z_t\}$$

- Sensor model P(z|x).
- Action model P(x'|u,x)
- Prior probability of the initial system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

Example Situation for Filtering

"Where is my robot?"

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observation u = action x = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

We want to recursively express $Bel(x_t)$ in terms of three entities

$$p(z_t|x_t)$$

Measurement

$$p(x_t|x_{t-1},u_{t-1})$$

 $Bel(x_{t-1})$

Dynamics

Previous Belief

Bayes Filters: Intuition

z = observationu = actionx = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

We want to recursively express $Bel(x_t)$ in terms of three entities

Integrate in effect of action

$$Bel(x_{t-1})$$
 + $p(x_t|x_{t-1},u_{t-1})$ \longrightarrow $\overline{Bel}(x_t)$

Previous Belief

Dynamics

With integration

Bayes Filters: Intuition

z = observationu = actionx = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

We want to recursively express $Bel(x_t)$ in terms of three entities

Integrate in Measurement

$$\overline{Bel}(x_t)$$
 +

$$p(z_t|x_t)$$

 $\rightarrow Bel(x_t)$

Previous Belief

Measurement

With normalization

z = observationu = actionx = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

Bayes
$$= \eta \ p(z_t|x_t, u_{0:t-1}, z_{0:t-1})P(x_t|u_{0:t-1}, z_{0:t-1})$$

Remember: Bayes Rule

$$P(y,x) = P(y|x)p(x)$$

$$\eta = \frac{1}{\sum_{x} P(y,x)}$$

$$P(x|y) = \eta P(y,x)$$

z = observationu = actionx = state

$$\begin{split} Bel(x_t) &= P(x_t|u_{0:t-1}, z_{0:t}) \\ \text{Bayes} &= \eta \; p(z_t|x_t, u_{0:t-1}, z_{0:t-1}) P(x_t|u_{0:t-1}, z_{0:t-1}) \\ \text{Markov} &= \eta \; p(z_t|x_t) P(x_t|u_{0:t-1}, z_{0:t-1}) \end{split}$$

Remember: Markov Property

$$p(x_t|z_{0:t-1}, u_{0:t-1}, x_{0:t-1}) = p(x_t|x_{t-1}, u_{t-1})$$

$$p(z_t|x_{0:t}, u_{0:t-1}, z_{0:t-1}) = p(z_t|x_t)$$

z = observation u = action x = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

Bayes
$$= \eta \ p(z_t|x_t, u_{0:t-1}, z_{0:t-1})P(x_t|u_{0:t-1}, z_{0:t-1})$$

Markov =
$$\eta \ p(z_t|x_t)P(x_t|u_{0:t-1}, z_{0:t-1})$$

Total prob.

$$= \eta \ p(z_t|x_t) \int P(x_t|u_{0:t-1}, z_{0:t-1}, x_{t-1}) P(x_{t-1}|u_{0:t-1}, z_{0:t-1}) dx_{t-1}$$

Remember: Marginalization

$$p(x) = \int p(x,y)dy$$
$$p(x,y) = p(x|y)p(y)$$

z = observation u = action x = state

$$\begin{split} Bel(x_t) &= P(x_t|u_{0:t-1}, z_{0:t}) \\ \text{Bayes} &= \eta \; p(z_t|x_t, u_{0:t-1}, z_{0:t-1}) P(x_t|u_{0:t-1}, z_{0:t-1}) \\ \text{Markov} &= \eta \; p(z_t|x_t) P(x_t|u_{0:t-1}, z_{0:t-1}) \end{split}$$

Total prob.

$$= \eta \; p(z_t|x_t) \int P(x_t|u_{0:t-1},z_{0:t-1},x_{t-1}) P(x_{t-1}|u_{0:t-1},z_{0:t-1}) dx_{t-1}$$

$$= \eta \; p(z_t|x_t) \int P(x_t|u_{t-1},x_{t-1}) P(x_{t-1}|u_{0:t-1},z_{0:t-1}) dx_{t-1}$$

$$= \eta \; p(z_t|x_t) \int P(x_t|u_{t-1},x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Understanding Bayes Filters

z = observationu = actionx = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

$$= \eta \ p(z_t|x_t) \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Step 1: Dynamics Update

Incorporate the effect of motion on uncertainty (typically increases)

Understanding Bayes Filters

z = observation
u = action
x = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

$$= \eta \ p(z_t|x_t) \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Step 2: Measurement Update

Incorporate the effect of new measurements on uncertainty (typically decreases)

Understanding Bayes Filters

z = observation
u = action
x = state

$$Bel(x_t) = P(x_t|u_{0:t-1}, z_{0:t})$$

$$= \eta p(z_t|x_t) \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

All Bayes filter iterate between performing the dynamics (prediction) step and the measurement (correction) step

Bayes Filter Algorithm

```
Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
```

```
Algorithm Bayes_filter( Bel(x),d ):
     n=0
     If d is a perceptual data item z then
        For all x do
5. Bel'(x) = P(z \mid x)Bel(x)
           \eta = \eta + Bel'(x)
7. For all x do
            Bel'(x) = \eta^{-1}Bel'(x)
8.
     Else if d is an action data item u then
10.
        For all x do
           Bel'(x) = \int P(x \mid u, x') Bel(x') dx'
11.
     Return Bel'(x)
```


- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

t=2

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

t=5

- Sensor model: never more than 1 mistake
- Know the heading (North, East, South or West)
- Motion model: may not execute action with small prob.

Representations for Bayesian Robot Localization

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Particle filters ('99)

- sample-based representation
- global localization, recovery

Kalman filters (late-80s)

- Gaussians, unimodal
- approximately linear models
- position tracking

Robotics

Multi-hypothesis ('00)

- multiple Kalman filters
- global localization, recovery

Bayes Filters are Familiar!

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Why is this difficult?

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case, leaving the MCMC/VI cases as an exercise

Lecture Outline

Probability Review

Bayesian Inference

Bayesian Filtering

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.