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Why state estimation?

= “State” is an extremely hard thing to define and measure

= Usually unobservable (only “measurements” are observable)

= State can be a choice
= More detailed state, less uncertainty

s Less detailed state, more uncertainty

Pose/velocity of the object Position and momentum of all particles



Why probabilistic state estimation?

@ Pose/velocity of the object

= When state is abstracted/incomplete, this manifests as noise/uncertainty

= Being probabilistic allows for:
= Robustness to external noise
= Exploration to get better/gather information
s Dealing with inherently stochastic systems

= Accounting for inaccurate hardware/software



Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

s Perception = state estimation

= Action = utility optimization



Example of Probabilistic Robotic Systems: Mobile Robot

= State: position and heading

= 5ensors:
= Odometry (=sensing motion of actuators): e.g., wheel encoders

= Laser range finder:

= Measures time of flight of a laser beam between departure and return

= Return is typically happening when hitting a surface that reflects the beam back to where
it came from

= Dynamics: Noise from wheel slippage, unmodeled variation in floor



Example of Probabilistic Robotic Systems: Robot Arm

- . | | cay
= State: Joint encoders, object pose, object velocity _§ x
= Sensors: AL o

= Joint Encoders: Measure position and velocity at different joints
= Cameraimages: Informs the position and semantics of objects in the scene

= Depthimages: Indicates the 3-D position and occupancy of object in the scene

= Dynamics:

= Noise from: unmodeled contact dynamics, non-rigid contact or unmodeled friction



Fundamental Axioms of Probability

0<Pr(4)<1
Pr(2)=1 Pr(¢)=0
Pr(AUB)=Pr(A)+Pr(B)-Pr(ANB)

Pr(A) denotes probability that the outcome

w is an element of the set of possible outcomes A.
A is often called an event. Same for B.

Q is the set of all possible outcomes.

@ is the empty set.



Useful Corollaries from Axioms

Pr(AU(Q\A)) = Pr(A)+Pr(Q\A)-Pr(AN(Q\A))

Pr(€2) = Pr(A)+Pr(2\ A) — Pr(¢)
1 = Pr(A)+Pr(2\A)-0
Pr(2\ A) = 1-Pr(A)

If A and B have no overlap then

Pr(AUB) = Pr(A) + Pr(B)



Discrete Random Variables

X denotes a random variable.

X can take on a countable number of values in {x;, X,
coer Xpte

P(X=x,), or P(x;), is the probability that the random
variable X takes on value x;, between [0, 1]

P(-) is called probability mass function (sums to 1)

Eg.  P(Room)=(0.7,0.2,0.08,0.02)



Examples of Discrete Random Variables

Binomial Multinomial
n =N Xr I
k _k . . et 1 e o o k
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Bernoulli Poisson
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Continuous Random Variables

s X denotes arandom variable.

= X can take on a continuum of values in the support of
the probability density function
s P(X=x), or P(x), is the probability density function
= Density function positive but not upper bounded by 1

= Integratesto 1 .
p(x)

PI‘(:U = (a’v b)) — / p(x)dx /_\




Examples of Continuous Random Variables

Multivariate Gaussian Beta Distribution

Ve a=p=05
/ \\\ a=5 =1
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Uniform Distribution

f(x)

1 1 - .
{ — forz € [a,}] b-a
0

otherwise




Joint and Conditional Probability

s P(X=xandY=y)=P(x,y)

s If Xand Y are independent then
P(x,y) = P(x) P(y)

= P(x|y)is the probability of x giveny
P(x |y) = P(x,y) / P(y)
P(x,y) =P(x|y)P(y)

s If Xand Y are independent then
P(x | y) = P(x)



Law of Total Probability, Marginals

Discrete case Continuous case
ZP(X)Il _[p(x)dle
P(x) = P(x,) p(x)= | p(x,y) dy

P(x)=3 P(x| P p(x)=[px|y)p(y)dy



Events

P(-y OR +x) ?

Independent?

+X

P(X,Y)

ty

0.2

+X

0.3

ty

0.4

0.1




Marginal Distributions

P(X)




Conditional Probabilities

s P(+x|+y)?

P(X,Y)
+X -y 0.3 O P(-X ‘ +y) ?
X +y 0.4
X -y 0.1

s Ply|4+x)?
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Bayes Formula

P(x,y) = P(x|y)P(y) = P(y|z)P(x

Plzly) = P(y|z)P(x likelihood.prior
Py B evidence




Bayes Formula

P(r|y) =

P(y) =3 Ply | 2)P()

U

P(y,z) = P(y|r)p(x)
|

7’] p—
P
Zw’ (y, ) Can replace with integral
~ -

P(zly) = nP(y,z)




Example of Bayes Formula in Action

Symptom
Cancer Yes No Total
Yes 1 0 1 Just because everyone with cancer has the
No 10 | 99989 | 99999 symptom, doesn’t mean everyone with the
symptom has cancer
Total 11 | 99989 | 100000

P(Symptoms|Cancer) P(Cancer)

P(Cancer|Symptoms) = P(Symptoms)

P(Symptoms|Cancer) P(Cancer)
P(Symptoms|Cancer) P(Cancer) + P(Symptoms|Non-Cancer)P(Non-Cancer)

1 x 0.00001 1

1 x 0.00001 4 (10/99999) x 0.99999 11




Why Bayes Formula?

Pl y) — Pl DP@
P(y) =
Diagnostic Causal

Causal knowledge may be easier to obtain/estimate/represent
Which direction is causal is not always clear though!

Allows us to estimate “beliefs” based on “measurements”



Simple Example of State Estimation

= Suppose a robot obtains measurement z

= Whatis P(open|z)?

.




Example

P(zlopen)=0.6 P(zl—open)=0.3
P(open) = P(—open)=0.5

P(z | open)P(open)
P(z|open) p(open)+ P(z | —open) p(—open)
0.6-0.5 2

P(open| z) = =—=0.67
(Open | 2) = 0 5403.05 3

P(open|z) =

* Zraises the probability that the door is open.



Conditioning

= Bayes rule and background knowledge:

ylz, z)P(r|2)
P(y|z)

Paly) = [ Plaly.2)P(2)dz

> [ Plaly.2)PCely)a:

> [ Plaly. 2 P(i)a:

P(aly, ) = 2.




Conditional Independence

P(x,y|z)=P(x|2)P(y| z)

Equivalent to P(x|z)=P(x|z,y)

and P(y‘z):P(y\z,x)



Second Simple Example of State Estimation

= Suppose our robot obtains another observation z,.

= Whatis P(open |z, z,)?

.




Recursive Bayesian Updating

P(zplx, 21y ooy 2n1) P21,y Zn21)

P(znlz1y oy 2n-1)

P(x|z1,...,2n) =

Markov assumption: z, is conditionally

. . p(zn’xazla”'azn—l) :p(zn‘x)
independent of z,,...,2,,_, given x.

P(zp|lx)P(x|21, ... 2n—1)
P(znlz1, -y Zn-1)

P(x|z1,...,2,) =

= nP(zn|x)P(x|21,. .., 2n—1)

= [ Plalo)P)



Example: Second Measurement

P(z, lopen)=0.5 P(z, | —open)=0.6
P(openlz,)=2/3  P(—openlz)=1/3

P(z, | open) P(open| z,)

P(open | ZzaZ1) =
P(z, |open) P(open|z,)+ P(z, | —open) P(—open | z,)

12
23  _5_
= — 31_8_0.625
_.__|__._
23 53

= Z, lowers the probability that the door is open.



Effects of Incorrect Independencies

P(x|z1,. .. 2n) = M H P(z;|x)P(x)

7:1 _____ 7.

= If redundant sensors, z,...z, are
treated as independent, leads to
double counting

p(x|d)

- overconfident predictions

1 1 1 1 1 1 )
5 10 15 20 25 30 35 40 45 5(
Number of integrations



Why is it challenging to be Bayesian?



Why is it challenging to be Bayesian?

Pla ) = SV

P(y)=> P(y|a')P(z')

(p@) _ / p(yla')p(a')da’
D

ifficult to compute analytically because of integral



How can we address this?

Partition function p(y) = /p(y\x’)p(x’)da:"

Markov Chain Monte Carlo Conjugate Priors

Variational Inference Discretization



Markov-Chain Monte Carlo

Construct a Markov chain
with equilibrium distribution
equal to joint
-> Inference via sampling

0o
O
./Zl Accept 61 = Z4
Zy Accept 62 = Z,
@

% Z3 Reject 05 = 0,

o-@
'[24 Accept 94 = Zg4
Zs o Reject 95 - 94
26\. Accept O = Zg

il




Markov-Chain Monte Carlo: Metropolis Hastings

to 60
: o ~
25|mple MCMCtaIgorlthm. o y ‘Kzl hecert 0, = 2,
ssume access to an unnormalized p(x, y) . 72 P p——
. t N Z3 Reject O, = O
1. Startatsomex, givenay > oe S
p . ty {24 Accept O, = 2,
2. Propose a new x" according to some o ,
) , s Zs o Reject O = 0,
symmetric q(x'|x) —o—0
. te Ze N Accept B¢ = Zg
3. Compute acceptance ratio O
/ > >
p(z',y) : :

p(z,y)

4. Accept x’ with likelihood «a

Hard to converge in high dimensions



Variational Inference

Instead of explicitly computing posterior,
approximate with a tractable family
X
Q q(x|y) —— p(z|y)

/

Gaussian approximation min Dki, (q(:c ‘ y) ’ ’p(.CC ’ y)) Actually optimize a lower bound
q




Variational Inference: Evidence Lower bound

Pla ) = SV

Instead of explicitly computing posterior,
@ approximate with a tractable family

q(xly) —— p(z|y)

<EE> min Dxr(q(@[y)llp(z]y))

> E(p(y|z)p(x)) + H(q(y|))

Tractable optimization = inference becomes optimization



Conjugate Priors
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Discretization

Pla ) = SV

P(y)=> P(y|a')P(z')
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Let’s estimate “state” of our robot

= What affects uncertainty:
= Robot actions (increase uncertainty typically)

= Sensor measurements (decrease uncertainty typically)

.




How do actions increase uncertainty?

= Actions transition the state of the system forward x =2 X’

= But they may (and usually) do so with errors/noise!

= Robot wheels have slippage/noise, joints have stochasticity,
environment introduces noise




How do sensors reduce uncertainty?

= Measurements usually convey more information about the state of
the world

= Sensor readings can range from images to laser scans to tactile
sensing, each of which has a different effect on uncertainty




Filtering

= Filtering is the process of making sense (“filtering”) of sensor
measurements and actions to estimate the system state

= Many different types of filters:
= Matched filters (known signal)

=  Wiener filters (signal from noise)

= Bayesian filters (bayesian state estimation)

= Kalman
= EKF/UKF



Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:
dt — {Z(),UQ, 1y ULy - .. ,Zt}
= Sensor model P(z|x).
= Action model P(x’| u, x)

= Prior probability of the initial system state P(x).
= Wanted:

= Estimate of the state X of a dynamical system.

= The posterior of the state is also called Belief:

BGZ(CBt) = P(xtlu():t—la ZO:t)



Example Situation for Filtering

“Where is my robot?”

= Sensor model: never more than 1
mistake

=  Know the heading (North, East,
South or West)

= Motion model: may not execute
Prob 0 n action with small prob.




Markov Assumption

p(CCt |Z0:t—17 UQ:t—1, $0:t—1) — P(Cfft ‘mt—la Ut—l)
p(Zt\iEozt, UQ:t—1, Zo:t—l) — p(Zt|$t)

Underlying Assumptions

= Static world
= Independent noise

= Perfect model, no approximation errors



Bayes Filters [¢zsen

state

Bel(xy) = P(x¢|uo:t—1, 20:¢)
We want to recursively express Bel(x,) in terms of three entities

p(zt|xt)

Measurement

p(Te|Te—1,Us—1) Bel(x;_1)

Dynamics Previous Belief



observation
action
state

Bayes Filters: Intuition

X © N
il

Bel(xy) = P(x¢|uo:t—1, 20:¢)

We want to recursively express Bel(x,) in terms of three entities

Integrate in effect of action
Bel(xs—1) v plxg|re—1,u-1) —  Bel(xy)
Previous Belief Dynamics

With integration



observation
action
state

Bayes Filters: Intuition

X © N
il

Bel(ry) = P(x¢|uo:t—1, 20:¢)
We want to recursively express Bel(x,) in terms of three entities

Integrate in Measurement
Bel(x) + p(z¢|xe) —  Bel(xy)

Previous Belief Measurement

With normalization



observation

Bayes Filters &z

X = state

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

Bayes — 1 p(Zt’%:, UQ:t—1 Zo:t—l)P(th\Uo:t—b Zo:t—l)

Remember: Bayes Rule P(y,z) = P(y|x)p(x)

1
T, Ply, @)

P(x|ly) =nP(y,x)




Z = observation

Bayes Filters @ e

X = state

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

Bayes — 1 p(zt Lt, UQ:t—1, ZO:t—l)P(xt‘uO:t—la ZO:t—l)

Markov = 1) p(2¢|T¢) P(2¢|uo:t—1, 20:¢—1)

Remember: Markov Property

P(It |Z():t—17 Up:t—1, CUO:t—l) — p(xt |37t—17 Ut—l)
P(Zt\ﬂfozt, U:t—1 Zozt—l) — p(Zt|il3t)



observation

Bayes Filters &z

state

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

Bayes — 1) p(Zt Lty UQ:t—15 ZO:t—l)P(xt‘UO:t—la Zo:t—l)
Markov = 1) p(2¢|T¢) P(2¢|uo:t—1, 20:¢—1)
Total prob.

=1 p(2¢|7¢) /P(fvt\uozt—h 20:t—1, Tt —1) P(T—1|00:0—1, 20:4—1)dTs 1
Remember: Marginalization

p(r) = / p(z,y)dy

p(z,y) = p(z|y)p(y)



Bayes Filters [¢zsen

state

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

Bayes — 1) p(Zt Lty UQ:t—15 ZO:t—l)P(xt‘UO:t—la Zo:t—l)
Markov = 1) p(2¢|T¢) P(2¢|uo:t—1, 20:¢—1)
Total prob.

=11 p(zt|$t) /P(fvt\uozt—h 20:t—15 37t—1)P(33t—1|U0:t—1, Zo:t—l)dflft—1

Markov = np(zt|xt)/P($t!ut1,$t1)P(CUt1\Uo:t1,Zozt1)dl‘t1

= np(zt’ﬂ?t)/P(ft”dt—laxt—1)36l($t—1)d$t—1



Understanding Bayes Filters =™

state

Bel(:z:t) — P(xt‘uO:t—la Zozt)
— ) (i) / Py, 70 1) Bel(zy1)dzs 1

|

Step 1: Dynamics Update

Incorporate the effect of motion on uncertainty (typically increases)



observation
action
state

Understanding Bayes Filters &

c
il

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

— 1 plzi)ae) / Py 1,74 1) Bel(z 1)z

Step 2: Measurement Update

Incorporate the effect of new measurements on uncertainty (typically decreases)



observation
action
state

Understanding Bayes Filters &

c
il

BGZ(CIJt) — P(xt‘u():t—la ZO:t)

— 1 plzi)ae) / Py 1,74 1) Bel(z 1)z

All Bayes filter iterate between performing the dynamics (prediction) step
and the measurement (correction) step



Bayes Filter Algorithm

Bel(x,) =1 P(z,|x,) [ P(x, |u,,x,,) Bel(x,,) dx,,

Algorithm Bayes_filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
n=n+ Bel'(x)
For all x do
Bel'(x) =n~'Bel'(x)
Else if d is an action data item u then
For all x do
Bel'(x)= [ P(xu,x") Bel(x") dx'

Return Bel’(x)

I

g

=
= O

=
Nt



Example Run for Localization

Prob

0

t=0

HI

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Example Run for Localization

Prob

0

1

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Example Run for Localization

Prob

0

2

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Example Run for Localization

Prob

0

3

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Example Run for Localization

Prob

0

t

4

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Example Run for Localization

Prob

0

S

Sensor model: never more than 1
mistake

Know the heading (North, East,
South or West)

Motion model: may not execute
action with small prob.



Representations for Bayesian Robot Localization

S
=

Robotics

b

Al

- )




Bayes Filters are Familiar!

Bel(xt) =1 P(Zt | xt) J‘P(.Xt | utaxt—l) Bel('xt—l) dxt—l

Kalman filters

Particle filters

Hidden Markov models
Dynamic Bayesian networks

Partially Observable Markov Decision Processes
(POMDPs)



Why is this difficult?

Bel(xt) =1 P(Zt | xt) J‘P(.Xt | utaxt—l) Bel('xt—l) dxt—l

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case,
leaving the MCMC/VI cases as an exercise
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Summary

= Bayes rule allows us to compute probabilities
that are hard to assess otherwise.

= Under the Markov assumption, recursive
Bayesian updating can be used to efficiently
combine evidence.

= Bayesfilters are a probabilistic tool for
estimating the state of dynamic systemes.



