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Spring 2023
Abhishek Gupta
TAs: Yi Li, Srivatsa GS



Course Logistics

Where: MEB 242
When: 11:30-1 Tu/Thu

Who:
= Abhishek Gupta (Instructor)
= YiLi(TA)
= Srivatsa GS (TA)

Office hours:
= Abhishek: Gates 215, Friday 4-5pm
= Yi: Gates 152, Thursday 3-4pm

= Srivatsa: Gates 152, Monday 3-4pm



Course Logistics - Grading

Grading:
= 50% of grade is on Final Project
= 15% of grade is on HW1
= 15% of grade is on HW2
= 15% of grade is on HW3
= 5% participation

Communications through EdStem/e-mail
Every week: 2 lectures by Abhishek

Final projects will be presented in a poster session.
=« Intermediate project proposals and milestone check ins.

Please participate, otherwise it will be boring for all of us!



Course Logistics - Project

= Final project (50% of grade):
= Project proposal (1 page)
= Milestone report (3-4 pages)
« Final report (6-8 pages)

= Project can be investigating any question related to robotics:
= New algorithm
= Performant/stable implementation
« Empirical investigation
= New robotic application

= Can be done in groups of 1-2 students.



Course Logistics - Homeworks

= 3 homeworks covering 3 class modules:
« Estimation: EKF/UKF/Particle filtering for localization

= Control and Planning: RRT/RRT*/A*/D* for motion planning

= End to end learning: Behavior cloning, Dagger, policy gradient,
actor critic

= Homeworks are all in Python, using pybullet or pytorch



Course Logistics - Integrity

Late policy

You are allowed to use 6 late days throughout the quarter. After this, assignments turned in late will
incur a penalty of 20%, for each day. Please plan ahead.

Academic Honesty Policy

While we encourage students to discuss homeworks, each student must write up their own
solution. It's fine to use a source for generic algorithms (with attribution), but it is not allowed to copy
solutions to the problems. Additionally, students may not post their code online. If we determine that
a student posted their code online, they will get an automatic 50% reduction on the entire assignment
(math + code) and if they copy code for the problems from another student or from online, they will get
an automatic 0% for the entire assignment (and possibly reported to the college).

Please don’t cheat, make my life easier



Who am |?

= New assistant professor in CSE
= Grew up in Oregon/India, last 10 years in Berkeley

= Undergrad Berkeley, Ph.D. Berkeley, Postdoc MIT.

= Interests: RL/robotics/optimization and
control/robustness and generalization

= Outside of work: Tennis/soccer/sketching/dog
enthusiast




Who is Yi?

TA:YiLi

- PhD student in RSElab

- Office hour: Thursday 3-4 pm
- Location: Gates 152

- Email: yili18@cs.washington.edu

- Research Experience:

Unseen Object Instance Segmentation and Tracking
Object 6D Pose Estimation

Instance Segmentation

Object Detection


mailto:yili18@cs.washington.edu

Who is Srivatsa?

s 2nd Year Masters Student in ME

= Working on Visual Odometry and
SLAM on the RACER project.

s Previously worked on 6Dof Grasp
generation and packing in UW-
Amazon manipulation research and
at Voaige Inc.

s Office hours: Gates 152, Monday
3-4pm




What is a robot?

s First definitions:

= Karel Capek = robots were biological beings performing
unpleasant labor.

Herbert Televox(1927) Unimate (1961)



The first wave of robots

Engelberger
(Unimate ++)

Honda P series




The second wave of robots

DARPA Grand Challenge PR1 Robot




Robots Today

Everyday Robotics - Google Atlas — Boston Dynamics



Robotics Spans Applications and Industries

= Applicable in a variety of industries and spaces:

= Industry:
» Industrial manufacturing
= Warehouse navigation

= Outdoor navigation/locomotion:
Legged locomotion

Outdoor navigation

Last mile delivery

Self driving cars

= Home and office manipulation
= Mobile manipulation
« Dexterous manipulation



Industrial Robotics



Industrial Robotics Today
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Industrial Pick and Place
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Robots in Warehouses




Navigation



CMU NavLab




DARPA Urban Challenge 2007
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Self-Driving Cars




Outdoor Off-Road Autonomy
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Locomotion



Boston Dynamics BigDog (2008







Boston Dynamics Spot




Humanoid Parkour




Drone Delivery




Indoor Manipulation



Dexterous Manipulation




Mobile Manipulation




HaptX Dataglove
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B Do gou want me to solve that Rubik's Cube?
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How should we start to formalize the robotics problem?

= Agent: Rational entity equipped with
sensors and actuators

= Environment: accepts actuation commands

and steps forward according to some
dynamics




Graphical Model of Robotics

State: Minimum sufficient statistic encapsulating the world, sufficient for
prediction

Measurement/Observation: Current sensor readings, potentially partially
observed

Action: Actuators that agent can use to affect the state

time step t-1 time step t



Graphical Model of Robotics

State: sufficient statistic encapsulating the world, sufficient for prediction
(this is a choice)

= Measurement/Observation: Current sensor readings, potentially partially
observed (this is a choice)

s Action: Actuators that agent can use to affect the state (this is a choice)

Motor 1 Motor 2 Motor 3

7




Sense-Plan-Act Framework

Robotics has three primary subpieces:
1. Sensing = from measurements
2. Planning - from models

3. Acting =2 in the world
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Sensing: Why is it nontrivial?

= Sensors have overwhelming amounts of information

= Partially observed

= Noisy and prone to drift



Sensing: Why is it nontrivial?
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Probabilistic Robotics

A robot that carries a notion of its own uncertainty and that acts
accordingly is superior to one that does not.

= Maintaining uncertainty allows for
= Information gathering

= Robustness to imperfect sensing and actuation

= Interpretability

= Exploration



Planning: Why is it nontrivial?

= Searching/Optimization through a complex non-convex space

= Combination of discrete/continuous optimization

Overview



Rational Agents and Utility Maximization

= How do we even formulate planning?
= Utility maximization: trajectory optimization

= Search: shortest path finding

= Viewing planning through the lens of rationality allows us to use tools
from optimization




Acting: Why is it nontrivial?

= Robot systems in the real world are subject to significant
perturbations/noise = need to be stable in the face of these perturbations




Low-level control and Stabilization

= Unstable/suboptimal systems can be catastrophic




Robotics: Integrated System Research

Focus on addressing all problems at once
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What makes robotics hard?

Unique interplay of expectations and assumptions
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Expectations

Significantly larger set of tasks being
performed

Failure can be catastrophic and
unsafe

Precision required may be much
arger than other decision making
oroblems

Multi-step decision making problems



Assumptions

Limited data due to the real world
No perfect simulator

Chicken and egg problem on
deployment

Evaluation is difficult



Why now?

Hardware is getting cheaper and more accessible




Why now?

Algorithms/models have started maturing/stabilizing

Discovery of Complex Behaviors
through Contact-Invariant Optimization

Submitted to SIGGRAPH 2012
Submission ID: 0480




Why now?

Data/compute is now available at a scale not possible before
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Why now?

Adjacent fields are showing remarkable progress

Mobile Manipulation

PaLM-E: An Embodied imodal

Model Task and Motion Planning
Given

.. <img> Q: How to grasp blue block?

ViT

First grasp yellow
block and place it on
‘ the table, then grasp

the blue block.

Tabletop Manipulation

Control A: First, grasp yellow block and ... !

Language Only Tasks | SIS

<img>

Push the green
star to the bottom left.
Step 2. Push the green
circle to the green star.

b jumping over a

Atlantic. 6696.
8c at a dog show.

Embodied language. Models learn to understand.
The world around them.



Why now?

Fast growing investment into automation/robotics

B
60

14

11 2 10
2 = 2 3 %3 ; 3 528 5 —
2015 2019 2020 2023 2030 Base 2030 Upside
= Mobile professional services robots u Stationary professional services robots
m Automated guided vehicle End-effectors

m Conventional industrial robots and cobots



Is robotics useful to study beyond applications?
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Arguably intelligence needs embodiment
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Table 1 Responses on the visual cliff

Active Kkittens

Passive kittens

= visually-guided paw placement:

= avoidance of a visual cliff

J_.

! b1l

= blink to an approaching object:

= visual pursuit of a moving object:

= pupillary reflex to light:

= tactual placing response

shallow deep shallow deep
12 0 6 6
12 0 4 8
12 0 7 5
12 0 6 6
12 0 7 5
12 0 7 5
12 0 5 7
12 0 8 -4
12 0 6 6
12 0 8 4

Q= - e T e =

Robotics may be a way to study fundamental intelligence




Zooming out — why this matters for the study of intelligence?

Hypothesis: Intelligence with and without embodiment looks drastically different
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Separation Principle

Under certain assumptions, the optimal state estimation +
optimal deterministic control yields an optimal system

r = Ax + Bu
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Control as if you had perfect state
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Not always true!
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Estimate as if you didn’t care about control



Why do we care?
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Filtering/Smoothing Localization Mapping SLAM




Why do we care?

Module 2: Planning/Control

Search

-

— Kz
—Kx

SIS
1l

Motion Planning

Trajectory Optimization

Stability/Certification




When does this not hold?

.
u=—Kzx
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Imperfect and arbitrarily non-linear systems

/

MDPs and Reinforcement Learning

NN

Imitation Learning Solving POMDPs




How does a typical robotics pipeline look?
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- Deep reinforcement learning pipeline for robotics

4 )
High-level
N ~ planning - ~N
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Not quite so simple, agent environment interface must be chosen!



Why might we not want to do this?
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Course Outline

Filtering/Smoothing Localization >earch Motion Planning
Mapping SLAM TrajOpt Stability/Certification
MDPs and RL

Imitation Learning | [Solving POMDPs




Goal of this course

= Understand what makes robotics so challenging

= Cover fundamental techniques and provide historical
context on methods in robotics estimation and

planning

= Provide exposure to state of the art and modern
techniques in robotics and control



What broader tools will we learn?

Estimation: Control:
Bayesian Inference Discrete search
Maximum likelihood inference Convex optimization

Dynamic Programming

End to end:

Statistical inference

Useful beyond robotics across decision making problems
Deep neural networks Y 9P

Reinforcement Learning



What we will not cover?

Kinematics or Dynamics Modeling

M(q)q + C(q,4)q = 74(q) + Bu,



What we will not cover?
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What we will not cover?

Task and Motion Planning

Humanoid Manipulation Planning using
Backward-Forward Search

by

Michael X. Grey and Caelan R. Garrett
advised by
C. Karen Liu, Aaron D. Ames, and
Andrea L. Thomaz

Goal: all objects are on different-color regions
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