
CSE 571 - Robotics

Homework 1 - EKF and Particle Filter for Localization

Due Sunday May 2nd @ 11:59pm

The key goal of this homework is to get an understanding of the properties of Kalman filters and Particle
filters for state estimation. There are two parts to the homework - a written assignment and a programming
assignment. There are two written questions which help you derive some useful quantities for the EKF
implementation. In the programming assignment, you will implement an Extended Kalman Filter (EKF), a
Particle Filter (PF) for landmark based localization, and a learned observation model from camera images.
You will also analyze their performance under various conditions. The zip file containing the starter code for
this homework can be found at https://github.com/liyi14/cse571_hw1.

Useful reading material: Lecture notes, Chapters 3,4,5,7 & 8 of Probabilistic Robotics, Thrun, Burgard and
Fox (pdf shared with class).

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late. If you have used up your 6 late days this
quarter, there will be a penalty of 20% of the maximum grade per day.

1 Writing assignments

Figure 1: Odometry-based motion model

1.1 Motion Model Jacobian [5 points]

Figure 1 describes a simple motion model. The state of the robot is its 2D position and orientation: s = [x, y, θ],
where x and y are it’s location on the 2D ground plane, and θ is the angular direction the robot is facing. The
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control to the robot is u = [δrot1, δtrans, δrot2]. This means that the robot controls itself at each time step by
first rotating by δrot1, then driving forward some distance δtrans, then rotating again by δrot2.

Given the current state st = [xt, yt, θt] and controls u = [δrot1, δtrans, δrot2], we can use this motion model to
describe an estimate for the next state st+1 = [xt+1, yt+1, θt+1] using the following equations:

xt+1 = xt + δtrans ∗ cos(θt + δrot1)

yt+1 = yt + δtrans ∗ sin(θt + δrot1)

θt+1 = θt + δrot1 + δrot2

We refer to these functions as the motion model g such that g(u, st) = st+1. Derive the Jacobians of g with

respect to the state G =
∂g

∂st
and control V =

∂g

∂u
:
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1.2 Observation Model Jacobian [5 points]

Assume there is a landmark l at position (lx, ly).

Suppose the robot receives measurement of the landmark in terms of the bearing angle ϕ relative to the
direction it is currently facing.The estimation for ϕ in terms of the landmark’s position (lx, ly) and the robot’s
state (xt, yt, θt) follows

ϕ = tan−1 ly − yt
lx − xt

− θt

Derive Jacobian of the measurement with respect to the robot state:

H =

[
∂ϕ

∂xt

∂ϕ

∂yt

∂ϕ

∂θt

]

2 Programming assignments

Environment Requirement

We strongly encourage you to use a Linux machine for coding assignments. For training Neural Networks, we
have provided colab notebook. Please see detailed instructions below.

(a) Linux / Mac

Virtual environment is strongly recommended! To set up a virtual environment, first install conda from
https://www.anaconda.com/, then run:

2

https://www.anaconda.com/


conda create -n cse571 python=3.9

conda activate cse571

pip install numpy

pip install pybullet

pip install matplotlib

pip install torch

(b) Windows

If you have a windows machine and would like to use Ubuntu, please go to: https://www.vmware.com/

products/workstation-player.html and download VMware Workstation Player for Windows. You will
also need to download both the .vmdk and the .ovf files. However, VM is not mandatory.

To set up the VM on your Windows machine, click the .exe file and follow installation steps. Once the VMware
player is installed, open VMWare Workstation 17 Player, and choose ”Open a Virtual Machine” and select
”ros-noetic-22wi.ovf” and import. You should be good to go! Once you set up your VM, log in ”robotics”
with the password: ”robotics”.

Inside your VM machine, open a terminal, and please follow (a) Linux/Mac to set up the virtual environment
on your VM machine.

(c) CoLab

CoLab is a free Jupyter notebook environment that runs entirely in the cloud hosted by Google. Please go to
https://colab.research.google.com and click ”Upload”. Select your ”.ipynb” jupyter notebook and you
are all set!

Problem Overview

In the programming component of this assignment, you will implement an Extended Kalman Filter (EKF)
and Particle Filter (PF) for localizing a robot based on landmarks. Then you will also implement a learned
observation model which estimates landmark bearing angles from images. In our environment, the robot is
driving in a path that would cause it to follow a rectangle. However, because it’s motion is noisy, it’s true
path will deviate substantially from the intended path. The goal is to use the EKF and PF to find out where
the robot actually is, given information about how the robot is moving and the landmark observations.

We will use the odometry-based motion model you derived in question 1.2. We assume that there are landmarks
present in the robot’s environment. The robot receives the bearings (angles) to the landmarks and the ID of
the landmarks as observations: (bearing, landmark ID).

We assume a noise model for the odometry motion model with parameters α as shown below([1] Table 5.6),
and a separate noise model for the bearing observations with parameter β (see [1], Section 6.6). Note that for
the current problem set, data association has already been assumed to be correct. Therefore, there is no need
to worry about the data association problem while attempting the questions. However, it is important to keep
in mind that in real-world scenarios, data association can be a significant challenge in multi-object tracking
and should be carefully considered in developing any tracking algorithm.

At each timestep, the robot starts from the current state and moves according to the control input plus noise.
The robot then receives a noisy landmark observation from the world. You will use this information to localize
the robot over the whole time sequence with an EKF and PF.

The result will be evaluated on the metric of mean position error, mean mahalanobis error and ANEES(Average
Normalized Estimation Error Squared). In short words, the lower, the better.
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Figure 2: Table 5.6 from [1]. The sample function samples a single random value with mean 0 and variance
equal to the function argument.

Figure 3: The test environment in pybullet. The blue line traces out the robot’s true position, which is a
result of noisy actions. The green line traces the robot’s position assuming that actions weren’t noisy. The
black line indicates the bearing angle to the current landmark.

Code Overview

The starter code is written in Python and depends on matplotlib, numpy, pybullet and torch. This section
gives a brief overview of each file.

• localization.py – This is your main entry point for running experiments.

• train_localization_model.ipynb – A jupyter notebook that will train your observation model once
you have implemented it.

General overview of the code:

• soccer_field.py – This implements the dynamics and observation functions, as well as the noise
models for both. It also contains the interface to display the robot in pybullet. Add your Jacobian
implementations here!
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• utils.py – This contains a useful function for normalizing an angle between [−π, π].

• policies.py – This contains a simple policy, which you can safely ignore.

• ekf.py – Add your extended Kalman filter implementation here!

• pf.py – Add your particle filter implementation here!

• observation_model.py – Add your observation model implementation here!

• racecar.urdf – The robot description of the racecar.

• meshes/ – Meshes used by the racecar.

• make_data.py – A script which generates a dataset to use for training your learned observation model.

• requirements.txt – A list of pip packages necessary to run the assignment code.

Command-Line Interface To visualize the robot in the soccer field environment, run

$ python localization.py --plot none

The blue line traces out the robot’s position, which is a result of noisy actions. The green line traces the
robot’s position assuming that actions weren’t noisy. The black line indicates the bearing angle to the current
landmark. After you implement a filter, the filter’s estimate of the robot’s position will be drawn in red.

To check the implementation of ekf and pf, run

$ python localization.py --plot ekf

$ python localization.py --plot pf

To see other command-line flags available to you, run

$ python localization.py -h

Data Format

• state: [x, y, θ]

• control: [δrot1, δtrans, δrot2]

• observation: [θbearing]

Hints

• Make sure to call utils.minimized_angle any time an angle or angle difference could exceed [−π, π].

• Make sure to use the low-variance systematic sampler from lecture. It gives you a smoother particle
distribution and also requires only a single random number per resampling step.

• Switch pybullet from GUI to DIRECT (headless) for a significant speedup. This can be done by omitting
the --plot flag when running localization.py
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2.1 EKF Implementation [30 points]

Implement the extended Kalman filter algorithm in ekf.py. You will need to fill in ExtendedKalmanFilter.update
and the Field methods G, V, and H. Your results from a successful EKF implementation should be comparable
to the following results.

$ python localization.py ekf --seed 1

...

Mean position error: 5.739611207601078

Mean Mahalanobis error: 2.30624520345156

ANEES: 0.7615363907050033

Note that these numbers are included for reference and you are not expected to exactly replicate these numbers.
Depending on your implementation, you may get different results than this.

(a) Plot the real robot path and the filter path under the default (provided) parameters. For this you can use
a screen capture of the pybullet environment.

(b) Plot the position error and ANEES as the noise factors for both the data and the filter range over r = [1/64,
1/16, 1/4, 4, 16, 64]. You should run 10 trials per value of r with different random seeds and plot the mean
(optionally standard deviation). One run might look something like:

$ python localization.py ekf --data-factor 4 --filter-factor 4

Note that the value for --data-factor should be the same as --filter-factor. Discuss anything
interesting you observe.

(c) Plot the position error and ANEES (average normalized estimation error squared) as the filter noise factors
α, ϕ vary over r (as above) while the data noise factor is kept as default. You should run 10 trials per value
of r and plot the mean (optionally standard deviation). Note that you should not pass the --data-factor
argument here. How does the results compare with what you get using the default parameters? Discuss
anything interesting you observe.

(d) Discuss any challenges you faced and describe your debugging process.

Hints Function noise from motion and observe from soccer field.py may be useful.

2.2 PF Implementation [30 points]

Implement the particle filter algorithm in pf.py. You will need to fill in ParticleFilter.update and
ParticleFilter.resample.

python localization.py pf --seed 1

...

Mean position error: 7.4464918380817995

Mean Mahalanobis error: 7.018081273538514

ANEES: 2.339360424512838

Note that these numbers are included for reference and you are not expected to exactly replicate these numbers.
Depending on your implementation, you may get different results than this.
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(a) Plot the real robot path and the filter path under the default parameters.

(b) Plot the position error and ANEES as both the data and the filter noise factors range over r = [1/64,
1/16, 1/4, 4, 16, 64]. You should run 10 trials per value of r and plot the mean (optionally standard
deviation). Discuss anything interesting you observe.

(c) Plot the position error and ANEES as the filter noise factors α, ϕ vary over r (as above) while the data
noise factor is kept as default. You should run 10 trials per value of r and plot the mean (optionally
standard deviation). How does the results compare with what you get using the default parameters?
Discuss anything interesting you observe.

(d) Plot the mean position error and ANEES as α, ϕ range over r (as in (c)) and the number of particles
varies over [20, 50, 500]. You should run 10 trials per value of r and plot the mean (optionally standard
deviation). You should include three plots, one per each particle quantity. Discuss anything interesting
you observe.

(e) Discuss any challenges you faced and describe your debugging process.

Hints Function sample noisy action, observe and likelihood from soccer field.py may be useful.

2.3 Learned Observation Model [30 points]

In this section you will learn a model which takes panoramic images of the scene around the racecar, and
predicts the bearing angles to each landmark. The racecar has four evenly spaced cameras that have been
stitched together into a single panoramic image that is 32 pixels tall and 128 pixels wide that look like Figure
4:

Figure 4: An illustration on the observation input of the car

(a) Generate Datasets: The first step in any learning problem is to aquire your dataset. We have provided
the script make_data.py to generate data for you. This will randomly place the car in the scene, capture
a panoramic image, and record the ground-truth bearing angle to each landmark. You can generate the
train and test dataset using the following code:

$ python make_data.py --split train --seed 1234 --size 10000

$ python make_data.py --split test --seed 12345 --size 1000

This will generate the folders hw1_train_dataset and hw1_test_dataset containing rgb_XXXXXX.png

and label_XXXXXX.npy. The rgb images in each should look like 4. Zip these folders as hw1_train_dataset.zip
and hw1_test_dataset.zip.
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(b) Implement Neural Network: Next you will build a neural network to predict landmark heading
directions from visual observations. To do this, it will be easiest to work in the provided colab note-
book. Go to colab and upload train_observation_model.ipynb. Then click the folder icon next to
the notebook shown in Figure 5 to open the file browser of your colab runtime. From here, upload
observation_model.py, hw1_train_dataset.zip and hw1_test_dataset.zip.

Figure 5: Click the file upload icon to upload your files.

We have already implemented a basic neural network in observation_model.py but you are encour-
aged to change it and check the various results. Your network should take a single output_channels

argument that allows you to change how many values the network predicts (we will use this to change
the prediction format in the next section). The forward function should take a batch of images in as a
[batch_size x 3 x 32 x 128] tensor and output a batch_size x output_channels tensor. Note that
this assignment should not require a complicated model. Feel free to use external sources for network
ideas, but please mention which ones you used in your writeup.

WARNING: Make sure you download your observation_model.py from colab frequently, and include
it in your writeup when you are finished! If your runtime disconnects, you may lose the changes you made
to this file!

(c) Train Models: In this section you will train two different versions of your model, one that predicts the
bearing angles ϕ directly, and the other which predicts cos(ϕ) and sin(ϕ) instead.

(i) At the top of the notebook, a variable supervision_mode is defined. Set this to "phi" and run all
the cells in the training notebook. This will train your network to predict the bearing angles of each
landmark directly (6 channels, one for each landmark). After each epoch of training, the script will
generate a set of debugging images that look like Figure 6. The first row of lines under the image
shows the ground truth heading of the landmarks, while the second row shows the network’s current
predictions.

Figure 6: Debug images produced by the evaluation.

Report the error mean and std of your model.
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(ii) Change supervision_mode to "xy". This will train your network to predict cos(ϕ) and sin(ϕ) instead
of the bearing angles directly (12 channels, two for each landmark). Report the mean and std of
your model.

(iii) Did one of these work better than the other? Why do you think one might be superior?

For reference, you should be able to get a model with less than 0.07 mean error for at least one of the
supervision modes. Figure 7 shows the loss curve for a fairly simple convolutional neural network (using
"xy" as supervision_mode) that achieves less than 0.05 mean error after 20 epochs:

Error Mean: 0.041499

Error Std: 0.066491

Figure 7: Loss curve for a simple convolutional network.

(d) System Integration: The training runs above should generate a checkpoint.pt file, which stores the
weights of your network. Download your observation_model.py and the checkpoint.pt that corre-
sponds to the best supervision_mode back to the assignment directory. Run the following, replacing
MODE with the best supervision_mode you found. Be sure you are NOT using ekf and --plot.

python localization.py pf --use-learned-observation-model checkpoint.pt --supervision-mode MODE

Report the position error output in the writeup across five different random seeds.

(e) Discuss any challenges you faced and describe your debugging process.

(f) Extra Credit: Analysis [10 points]: Train your network again, with (1) an increased training dataset
of 50000 examples (2) make the network deeper and/or wider (3) adjust training parameters such as
learning rate (4) more epochs. What modifications are most helpful? Summarize your observation in the
writeup.

3 Submission

We will be using the Canvas for submission of the assignments. Please submit the written assignment answers
as a PDF. For the code, submit a zip file of the entire working directory.
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