
CSE-571
Robotics

Planning and Control:

Markov Decision Processes



Problem Classes

•Deterministic vs. stochastic actions

• Full vs. partial observability



Deterministic, fully observable



Stochastic, Fully Observable



Stochastic, Partially Observable



Markov Decision Process (MDP)
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Markov Decision Process (MDP)

• Given:
• States x
• Actions u
• Transition probabilities p(x’|u,x)
• Reward / payoff function r(x,u)

• Wanted:
• Policy p(x) that maximizes the future 

expected reward



Rewards and Policies
• Policy (general case):

• Policy (fully observable case):

• Expected cumulative payoff:

• T=1: greedy policy
• T>1: finite horizon case, typically no discount
• T=infty: infinite-horizon case, finite reward if discount < 1
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Policies contd.
• Expected cumulative payoff of policy:

• Optimal policy:

• 1-step optimal policy:

• Value function of 1-step optimal policy:
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2-step Policies
• Optimal policy:

• Value function:

π 2 (x) = argmax
u

r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

V2 (x) = γ maxu r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



T-step Policies
• Optimal policy:

• Value function:

πT (x) = argmax
u

r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

VT (x) = γ maxu r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



Infinite Horizon

• Optimal policy:

• Bellman equation

• Fix point is optimal policy

• Necessary and sufficient condition

V∞(x) = γ maxu r(x,u)+ V∞(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



Value Iteration
• for all x do

• endfor

• repeat until convergence
• for all x do

• endfor
• endrepeat

V̂ (x)←γ max
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

min)(ˆ rxV ¬

π (x) = argmax
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



k=0

Noise = 0.2
Discount = 0.9
Living reward = 
0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 
0



k=2



k=3



k=4



k=5



k=6



k=7



k=8



k=9



k=10



k=11



k=12



k=100



Value Function and Policy
•Each step takes O(|A| |S| |S|) time.
•Number of iterations required is

polynomial in |S|, |A|, 1/(1-gamma)



Value Iteration for Motion 
Planning
(assumes knowledge of robot’s location)



Frontier-based Exploration
• Every unknown location is a target point.



POMDPs
• In POMDPs we apply the very same idea as in 

MDPs.

• Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

• For finite horizon problems, the resulting value 
functions are piecewise linear and convex. 

• In each iteration the number of linear 
constraints grows exponentially.

• Full fledged POMDPs have only been applied to 
very small state spaces with small numbers of 
possible observations and actions. 

• Approximate solutions are becoming more 
and more capable.



SA-1

CSE 571
Inverse Optimal Control

(Inverse Reinforcement Learning)

Many slides by Drew Bagnell
Carnegie Mellon University



Autonomous Navigation



Learning Y
(Path to goal)

X
(Sensor Data)

Y
(Output)

X
(Input)



Optimal Control Solution

Learning

Y
(Path to goal)

2-D
Planner

Cost Map



Mode 1: Training example



Mode 1: Training example



Mode 1: Learned behavior



Mode 1: Learned behavior



Mode 1: Learned cost map



Mode 2: Training example



Mode 2: Training example



Mode 2: Learned behavior



Mode 2: Learned behavior



Mode 2: Learned cost map



Ratliff, Bagnell, Zinkevich 2005
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

w' 
Weighting

vector

Cost =  
Feature vector

F 



w=[], F=[]

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

Learn F1

(        , High Cost)

(       ,  Low Cost)



w=[w1], F=[F1]

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

Learn F2

(      , High Cost)

(       ,  Low Cost)





Ratliff, Bradley, Chesnutt,
Bagnell 06

Zucker, 
Ratliff, Stolle, 

Chesnutt, 
Bagnell, 
Atkeson, 

Kuffner 09



Learned Cost Function 
Examples



Learned Cost Function 
Examples



Learning Manipulation Preferences
• Input: Human demonstrations of preferred 

behavior (e.g., moving a cup of water upright 
without spilling)

• Output: Learned cost function that results in 
trajectories satisfying user preferences
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Demonstration(s)
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Demonstration(s) Graph



56

Demonstration(s) Graph
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Demonstration(s) Graph Projection
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Demonstration(s) Graph Projection
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Demonstration(s) Graph Projection

Learned cost
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Demonstration(s) Graph Projection

Discrete sampled 
paths Learned cost
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost

Discrete 
MaxEnt IOC
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost

Local Trajectory 
Optimization



Setup

• Binary state-dependent features (~95)
• Histograms of distances to objects
• Histograms of end-effector orientation
• Object specific features (electronic vs non-

electronic)
• Approach direction w.r.t goal

• Task
• Hold cup upright while not moving above 

electronics
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Laptop task: Demonstration 
( Not part of training set)
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Laptop task: LTO + Smooth 
random path
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Readings
• Max-Ent IRL (Ziebart, Bagnell): 

http://www.cs.cmu.edu/~bziebart/
• CIOC (Levine) 

http://graphics.stanford.edu/projects/cioc/cioc.pdf
• Manipulation (Byravan/Fox): https://rse-

lab.cs.washington.edu/papers/graph-based-IOC-
ijcai-2015.pdf

• Imitation learning (Ermon): 
https://cs.stanford.edu/~ermon/

• Human/manipulation (Dragan): 
https://people.eecs.berkeley.edu/~anca/research.
html
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