CSE-571
Robotics

Planning and Control:

Markov Decision Processes
Problem Classes

- Deterministic vs. stochastic actions
- Full vs. partial observability
Deterministic, fully observable
Stochastic, Fully Observable
Stochastic, Partially Observable
Markov Decision Process (MDP)
Markov Decision Process (MDP)

- **Given:**
 - States x
 - Actions u
 - Transition probabilities $p(x' | u, x)$
 - Reward / payoff function $r(x, u)$

- **Wanted:**
 - Policy $\pi(x)$ that maximizes the future expected reward
Rewards and Policies

• Policy (general case):
 \[\pi : z_{1:t-1}, u_{1:t-1} \rightarrow u_t \]

• Policy (fully observable case):
 \[\pi : x_t \rightarrow u_t \]

• Expected cumulative payoff:
 \[R_T = E \left[\sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} \right] \]

 • T=1: greedy policy
 • T>1: finite horizon case, typically no discount
 • T=\infty: infinite-horizon case, finite reward if discount < 1
Policies contd.

- Expected cumulative payoff of policy:

\[R_T^\pi (x_t) = E \left[\sum_{\tau=1}^{T} \gamma^\tau r_{t+\tau} \mid u_{t+\tau} = \pi (z_{1:t+\tau-1} u_{1:t+\tau-1}) \right] \]

- Optimal policy:

\[\pi^* = \arg\max_{\pi} R_T^\pi (x_t) \]

- 1-step optimal policy:

\[\pi_1 (x) = \arg\max_u r(x,u) \]

- Value function of 1-step optimal policy:

\[V_1 (x) = \gamma \max_u r(x,u) \]
2-step Policies

- Optimal policy:

$$\pi_2(x) = \arg\max_u \left[r(x,u) + \int V_1(x') p(x'\mid u,x) dx' \right]$$

- Value function:

$$V_2(x) = \gamma \max_u \left[r(x,u) + \int V_1(x') p(x'\mid u,x) dx' \right]$$
T-step Policies

• Optimal policy:

\[\pi_T(x) = \text{argmax}_u \left[r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right] \]

• Value function:

\[V_T(x) = \gamma \text{max}_u \left[r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right] \]
Infinite Horizon

- Optimal policy:

\[V_\infty(x) = \gamma \max_u \left[r(x,u) + \int V_\infty(x') p(x'|u,x) dx' \right] \]

- Bellman equation

- Fix point is optimal policy

- Necessary and sufficient condition
Value Iteration

- for all x do
 \[\hat{V}(x) \leftarrow r_{\min} \]
- endfor

- repeat until convergence
 - for all x do
 \[\hat{V}(x) \leftarrow \gamma \max_u \left[r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right] \]
 - endfor
- endrepeat

\[\pi(x) = \arg\max_u \left[r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right] \]
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS
$k = 3$

VALUES AFTER 3 ITERATIONS
$k=4$

VALUES AFTER 4 ITERATIONS
k=5

VALUES AFTER 5 ITERATIONS
$k=6$

VALUES AFTER 6 ITERATIONS

0.59 0.73 0.85 1.00

0.41 0.57 -1.00

0.21 0.31 0.43 0.19
$k=7$

VALUES AFTER 7 ITERATIONS
k=8

VALUES AFTER 8 ITERATIONS
$k=9$

VALUES AFTER 9 ITERATIONS
$k=10$

VALUES AFTER 10 ITERATIONS
k=11

VALUES AFTER 11 ITERATIONS
k=12

VALUES AFTER 12 ITERATIONS
$k=100$

VALUES AFTER 100 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td>▲</td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td>▲</td>
<td>0.48</td>
<td>▲</td>
</tr>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>0.28</td>
</tr>
</tbody>
</table>

The diagram shows the values after 100 iterations in a grid world display.
Value Function and Policy

- Each step takes $O(|A| \cdot |S| \cdot |S|)$ time.
- Number of iterations required is polynomial in $|S|$, $|A|$, $1/(1-\gamma)$.

![Graphs showing RMS error and Policy loss vs. Number of iterations]
Value Iteration for Motion Planning
(assumes knowledge of robot’s location)
Frontier-based Exploration

- Every unknown location is a target point.
POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the **state is not observable**, the agent has to **make its decisions based on the belief state** which is a posterior distribution over states.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the **number of linear constraints grows exponentially**.
- Full fledged POMDPs have only been applied to very small state spaces with small numbers of possible observations and actions.
- **Approximate solutions are becoming more and more capable.**
CSE 571
Inverse Optimal Control
(Inverse Reinforcement Learning)

Many slides by Drew Bagnell
Carnegie Mellon University
Autonomous Navigation

UPI
Somerset Woods
May, 2007
Optimal Control Solution

Cost Map

2-D Planner

Y
(Path to goal)
Mode 1: Training example
Mode 1: Training example
Mode 1: Learned behavior
Mode 1: Learned behavior
Mode 1: Learned cost map
Mode 2: Training example
Mode 2: Training example
Mode 2: Learned behavior
Mode 2: Learned behavior
Mode 2: Learned cost map
Cost = w' F

Feature vector

Weighting vector

Ratliff, Bagnell, Zinkevich 2005
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008
\(w = (\text{grass}, \text{High Cost}) \)
\((\text{grass}, \text{Low Cost}) \)

Learn \(F_1 \)

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008
$w = [\mathbf{1}, F_1, \mathbf{1}]$

- (High Cost)
- (Low Cost)

Learn F_2

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008
Learned Cost Function
Examples
Learned Cost Function
Examples
Learning Manipulation Preferences

- **Input:** Human demonstrations of preferred behavior (e.g., moving a cup of water upright without spilling)

- **Output:** Learned cost function that results in trajectories satisfying user preferences.
Demonstration(s)
Demonstration(s) Graph
Demonstration(s) → Graph
Demonstration(s) → Graph → Projection
Demonstration(s) → Graph → Projection → Learned cost

Output trajectories → Discrete sampled paths → Learned cost
Demonstration(s) → Graph → Projection

Discrete MaxEnt IOC

Output trajectories → Discrete sampled paths → Learned cost
Demonstration(s) → Graph → Projection

Local Trajectory Optimization

Output trajectories → Discrete sampled paths → Learned cost
Setup

• **Binary** state-dependent features (~95)
 • Histograms of distances to objects
 • Histograms of end-effector orientation
 • Object specific features (electronic vs non-electronic)
 • Approach direction w.r.t goal

• **Task**
 • Hold cup upright while not moving above electronics
Laptop task: Demonstration
(Not part of training set)
Laptop task: LTO + Smooth random path
Readings

• Max-Ent IRL (Ziebart, Bagnell):
 http://www.cs.cmu.edu/~bziebart/

• CIOC (Levine)

• Manipulation (Byravan/Fox):

• Imitation learning (Ermon):
 https://cs.stanford.edu/~ermon/

• Human/manipulation (Dragan):
 https://people.eecs.berkeley.edu/~anca/research.html