Task and Motion Planning (TAMP)

Caelan Garrett

NVIDIA Research

CSE 571: Robotics

05/24/2022

(Probable) Roadmap

1. Review Background

- 1. Task Planning
- 2. Motion Planning

2. Hybrid Planning

- 1. Prediscretized & Numeric Planning
- 2. Multi-Modal Motion Planning
- 3. Integrated TAMP

3. PDDLStream

- 4. TAMP under Uncertainty
 - 1. Partially Observable
 - 2. Unknown Objects

[Fig from Erion Plaku]

Planning for Autonomous Robots

- Robot must select both high-level actions & low-level controls
- Application areas: semi-structured and human environments

Household

Food service

Warehouse fulfilment

Construction

Serve Water and "Cooked" Block

Localize Spam in Bottom Drawer

Assemble Large Timber Structure

[Huang, Leung, Garrett, Gramazio, Kohler, & Mueller 2021]

Pouring, Scooping, and Stirring to Prepare "Coffee"

Problem Class

- Discrete-time
 - Plans are finite sequences of controls
- Deterministic (for now)
 - Actions always produce the intended effect
 - Solutions are plans (instead of policies)
- Observable (for now)
 - Access to the full world state
- Hybrid
 - States & controls composed of mixed discretecontinuous variables

Task Planning

Task (Classical, Symbolic) Planning

- Discrete problems with many variables
 - Often enormous, but finite, state-spaces
- Problems typically described using an action language
 - Propositional Logic (STRIPS) [Fikes 1971][Aeronautiques 1998]
 - Planning Domain Description Language (PDDL)
- Develop domain-independent algorithms
 - Can apply to any problem expressible using PDDL
- Exploit factored and sparse structure to develop efficient algorithms

Classical Planning Representations

Blocksworld domain

Initial State

- Goal State
- Facts: on(x,y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state: $\{onTable(E), clear(E), \ldots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal: $\{on(E,C), on(C,A), on(B,D)\}.$
- Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- stack(x, y)? $pre : \{holding(x), clear(y)\}\}$ $add : \{on(x, y), armEmpty()\}\}$ $del : \{holding(x), clear(y)\}.$

[Figs from Hector Geffner]

First-Order Action Languages

- Predicate: boolean function On (?b1, ?b2) = True/False
- Facts (literals): instantiated predicates on (D, C)=True
- State: set of facts $\{On(A, B) = False, On(D, C) = True, ...\}$
 - Equivalently, boolean state variables
 - Closed-world assumption: unspecified facts are false

Initial State

E

Facts: on(x,y), onTable(x), clear(x), holding(x), armEmpty(). Initial state: $\{onTable(E), clear(E), \ldots, onTable(C), on(D,C), clear(D), armEmpty()\}$.

Goal: $\{on(E, C), on(C, A), on(B, D)\}.$

Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

Goal State

(Lifted) Action Schema

A tuple of free parameters

→Holding(?b1),

 \neg Clear(?b2)}

- A precondition formula tests applicability
- An effect formula modifies the state
- Logical conjunctions enable factoring

```
Effects are deltas
                              (:action unstack
                               :parameters (?b1, ?b2)
(:action stack
                               :precondition {ArmEmpty(),
:parameters (?b1, ?b2)
                                On (?b1, ?b2),
:precondition {
                                Clear(?b1)}
  Holding(?b1), Clear(?b2) }
                               :effect {Holding(?b1),
:effect {ArmEmpty(),
  On (?b1, ?b2),
                                Clear(?b2),
                                ¬Clear(?b1),
  Clear(?b1)
```

-ArmEmpty(),

¬On (?b1, ?b2)}

Planning Approaches

- State-space search: [Bonet 2001] [Hoffman 2001] [Helmert 2006]
 - Progression (forward) or regression (backward)
 - Best-first heuristic search algorithms
- Partial-order planning [Penberthy 1992]
 - Search directly over plans (plan-space)
- Planning as Satisfiability [Kautz 1999]
 - Compile to fixed-horizon SAT instance
 - SAT is NP-Complete
 - Planning is PSPACE-Complete
 - Increase horizon if formula unsatisfiable

Forward Best-First Search

- lacktriangle For a state S
 - Path cost: g(s)
 - Heuristic estimate: h(s)
 - lacksquare Open list sorted by priority f(s)
- Weighted A*: f(s) = g(s) + wh(s)
 - Uniform cost search: $w=0 \implies f(s)=g(s)$
 - A* search: $w=1 \implies f(s)=g(s)+h(s)$
 - Greedy best-first search: $w=\infty \implies f(s)=h(s)$
- lacksquare How do we estimate h(s) ?
 - No obvious metric (no metric-space embedding)

- Can stack / unstack anywhere on the ground
- Hint: is an even number

- Solution (length=6):
 - unstack(D, C)
 - stack(D, B)
 - unstack(C, ground)
 - stack(C, A)
 - unstack (E, ground)
 - stack(E, C)

Initial State

Goal State

Domain-Independent Heuristics

- Estimating h(s) is nontrivial
- Can we do it in an a domain-independent manner?
- Solve a related, approximate planning problem
 - Primary focus for almost all of classical planning
- Suggestions for how to do this?
 - Independently plan for each goal
 - Remove some action preconditions [Helmert 2006]
 - Remove negative (delete) effects [Bonet 2001] [Hoffman 2001]

• • •

Delete-Relaxation Heuristics

- Remove all negative (¬) effects
 - Solving optimally is NP-Complete
 - Can greedily find a short plan in polynomial time
- Basis for both admissible and greedier, nonadmissible heuristics (:action unstack)

```
:parameters (?b1, ?b2)
(:action stack
                               :precondition {ArmEmpty(),
:parameters (?b1, ?b2)
:precondition {
                                 On (?b1, ?b2),
                                 Clear(?b1)}
  Holding(?b1), Clear(?b2) }
                               :effect {Holding(?b1),
:effect {ArmEmpty(),
                                 Clear(?b2),
  On (?b1, ?b2),
                                 -Clear (?b1),
  Clear(?b1)
                                 -ArmEmpty(),
  Holding (?b1),
                                 \neg on (?b1, ?b2)
  \neg Clear(?b2)
```

Predict the Minimum Delete-Relaxed Plan Length

- Can stack / unstack anywhere on the ground
- Hint: is **no greater** than 6

Predict the Minimum Delete-Relaxed Plan Length

- Solution (length=6):
 - unstack(D, C)
 - stack(D, B)
 - unstack(C, ground)
 - stack(C, A)
 - unstack (E, ground)
 - stack(E, C)

Initial State

Goal State

- Can stack / unstack anywhere on the ground
- Hint: is an even number

- Solution (length=12):
 - unstack(E, C)
 - stack(E, ground)
 - unstack(C, A)
 - stack(C, ground)
 - unstack (E, ground)
 - stack(E, C)
 - unstack(B, D)
 - stack(B, ground)

- unstack (D, ground)
- stack(D, A)
- unstack (B, ground)
- stack(B, D)

Predict the Minimum Delete-Relaxed Plan Length

- Can stack / unstack anywhere on the ground
- Hint: is no greater than 12

Predict the Minimum Delete-Relaxed Plan Length

- Solution (length=5):
 - unstack(E, C)
 - unstack(C, A)
 - unstack(B, D)
 - unstack(D, ground)
 - stack(D, A)

Motion Planning

Review: Motion Planning

- Plan a path for a robot from an initial configuration to a goal configuration that avoids obstacles
 - Sequence of <u>continuous</u> configurations
 - Configurations often are high-dimensional
 - Example: 7 DOFs

- High-level approaches:
 - Geometric decomposition
 - Sampling-based
 - Optimization-based

Sampling-Based Motion Planning

- Discretize configuration space by sampling
 - Sampling be deterministic or random
- Implicitly represent the collision-free configuration space using an blackbox collision checker
 - Abstracts away complex robot geometry
- Algorithms
 - Probabilistic Roadmap (PRM)
 - Rapidly-Exploring Random Tree (RRT)
 - Bidirectional RRT (BiRRT)

[Fig from Erion Plaku]

Probabilistic Roadmap (1/7)

[Fig from Erion Plaku]

Find a path from init to goal that avoids the obstacles

Probabilistic Roadmap (2/7)

[Fig from Erion Plaku]

Sample a set of configurations

Probabilistic Roadmap (3/7)

[Fig from Erion Plaku]

Remove configurations that collide with the obstacles

Probabilistic Roadmap (4/7)

[Fig from Erion Plaku]

Connect nearby configurations

Probabilistic Roadmap (5/7)

[Fig from Erion Plaku]

Prune connections that collide with the obstacles

Probabilistic Roadmap (6/7)

[Fig from Erion Plaku]

The resulting structure is a finite roadmap (graph)

Probabilistic Roadmap (7/7)

[Fig from Erion Plaku]

Search for the shortest-path on the roadmap

Collision Checking is Expensive

- Collision checking dominates runtime
 - Complex geometries & fine resolutions (for safety)
- Many edges clearly do not lie on a low-cost path
- Optimistically plan without collisions
- Check collisions lazily only by only evaluating

candidate plans

Lazy PRM (1/10)

[Fig from Erion Plaku]

Construct a PRM ignoring collisions

Lazy PRM (2/10)

[Fig from Erion Plaku]

Search for the shortest-path on the roadmap

Lazy PRM (3/10)

[Fig from Erion Plaku]

Remove plan edges that collide with obstacles

Lazy PRM (4/10)

[Fig from Erion Plaku]

Search for the new shortest-path on the roadmap

Lazy PRM (5/10)

[Fig from Erion Plaku]

Check the edges on the plan for collisions

Lazy PRM (6/10)

[Fig from Erion Plaku]

Check the edges on the plan for collisions (with increased resolution)

Lazy PRM (7/10)

[Fig from Erion Plaku]

Remove plan edges that collide with obstacles

Lazy PRM (8/10)

[Fig from Erion Plaku]

Search for the new shortest-path on the roadmap

Lazy PRM (9/10)

[Fig from Erion Plaku]

Check the edges on the plan for collisions

Lazy PRM (10/10)

[Fig from Erion Plaku]

Return the current path as a solution

Lazy Motion Planning

- Defer collision checking until a path is found
- Remove colliding edges path from the roadmap
- Repeat this process with a new path
- Terminate when a collision-fee path is found

[Bohlin 2000][Dellin 2016]

Theoretical Properties

- Sampling-based algorithms cannot prove infeasibility nor even solve every feasible problem
 - Robustly feasible: a <u>problem</u> that admits a solution for which all local perturbations are also solutions
- Probabilistic complete: an <u>algorithm</u> that solves any robustly feasible problem with probability 1

[Fig from
Jenny Barry]

Trajectory Optimization

 Frame motion planning as a non-convex constrained optimization problem & solve for local minima

```
minimize f(\mathbf{x})

subject to g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, n_{ineq}

h_i(\mathbf{x}) = 0, \quad i = 1, 2, \dots, n_{eq}
```

Collision constraints
 enforced via signed
 distance (sd)

[Ratliff 2009][Schulman 2013]

Hybrid Planning Spectrum

Prediscretized & Numeric Planning

Prediscretized Planning

- Assumes that a finite set of object placements, object grasps, and (sometimes) robot configurations are given
- Can directly perform discrete task planning
- Still need to evaluate reachability
 - Eagerly in batch [Lozano-Pérez 2014][Garrett 2017][Ferrer-Mestres 2017]
 - Eagerly during search [Dornhege 2009]
 - **Lazily** [Erdem 2011][Dantam 2018][Lo 2018]

Discrete-Control Numeric Planning

- Classical planning with real-valued variables and durative actions
 - Examples: time and energy
- Most planners only support linear/polynomial dynamics
- Non-linear dynamics addressed by discretizing time

Example: battery domain

$$\begin{array}{l} \frac{d\delta}{dt} = \frac{i(t)}{c} - k'\delta \underset{\text{Fixed conductor}}{\longrightarrow} \text{load} \\ \frac{d\gamma}{dt} = -i(t) \underset{\text{battery capacity}}{\longrightarrow} \text{battery capacity} \\ \delta(t) = \frac{I}{c} \cdot \frac{1 - e^{-k't}}{k'} \\ \gamma(t) = C - It \end{array}$$

[Fox 2003][Hoffmann 2003][Eyerich 2009]

Continuous-Control Numeric Planning

- Continuous control parameters
- Tackle convex dynamics using cone programming
- Non-convexity handled by partitioning the state-space

- In contrast, TAMP is often:
 - High-dimensional
 - Non-convex
 - 3D collision constraints
 - Less sophisticated dynamically

[Deits 2015][Shoukry 2016] [Fernandez-Gonzalez 2018]

Multi-Modal Motion Planning

Multi-Modal Motion Planning

- Collision-free configuration space changes when objects are manipulated
- Use a sequence of motion planning problems each defined by a mode
- Mode: a set of motion constraints
 - Gripper is empty
 - Relative object pose remains constant

Reach

Low-dimensional Intersections

- Need samples that connect adjacent modes
- Intersection of two modes is often low-dimensional
 - Special-purpose samplers are needed
- Example: transition from gripper empty to holding
- Configurations at the intersection obtained using inverse kinematics (IK)

Sampling-Based Multi-Modal Planning

- 1. Sample from the set of modes
- 2. Sample at the low-dimensional intersection of adjacent modes
- 3. Sample a roadmap within each mode
- 4. Discrete search on the multi-modal roadmap

Individual mode roadmaps

Mixed Integer Programming (MIP)

- Continuous and integer variables
- Convex constraints and costs
- Branch-and-bound
 - Split on integer variables
- Integrality relaxation
 - Lower bound on cost
 - Loose when logical operations
- Planning limitation
 - # of variables may be
 exponential in problem size

Optimization-Based Multi-Modal Motion Planning

- Discrete search over sequences of mode switches
 - Sequences have varying length
 - Each sequence induces a non-convex constrained optimization problem
- Sequences can be pruned using lower bounds obtained by relaxing some constraints

 $\min_{x,a_{1:K},s_{1:K}} \int_0^T f_{\text{path}}(\bar{x}(t)) \ dt + f_{\text{goal}}(x(T))$ s.t. $x(0) = x_0, \ h_{\text{goal}}(x(T)) = 0, \ g_{\text{goal}}(x(T)) \leq 0,$ $\forall t \in [0,T]: \ h_{\text{path}}(\bar{x}(t),s_{k(t)}) = 0,$ $g_{\text{path}}(\bar{x}(t),s_{k(t)}) \leq 0$ $\forall k \in \{1,..,K\}: \ h_{\text{switch}}(\hat{x}(t_k),a_k) = 0,$ [Toussaint 2015] $g_{\text{switch}}(\hat{x}(t_k),a_k) \leq 0,$ $s_k \in \text{succ}(s_{k-1},a_k) \ .$

[Lagriffoul

2014]

Hybrid Planning Spectrum Revisited

Task and Motion Planning (TAMP)

Shakey the Robot (1969)

- First autonomous mobile manipulator (via pushing)
 - Visibility graph, A* search, and STRIPS!
- Decoupled task and motion planning
 - Task planning then motion planning

[Fikes 1971] [Nilsson 1984]

```
type(robot robot) type(ol object)
name(robot shakey) name(ol boxl)
at(robot 4.1 7.2) at(ol 3.1 5.2)
theta(robot 90.1) inroom(ol rl)
shape(ol wedge)
radius(ol 3.1)
```

GOTHRU(d,r1,r2)

<u>Precondition</u> INROOM(ROBOT,r1) \(\Lambda\) CONNECTS(d,r1,r2)

Delete List INROOM(ROBOT,\$)

Add List INROOM(ROBOT,r2)

Obstacle Blocks Shakey's Path

- What if a movable block prevented Shakey from safely moving into the adjacent room?
- Shakey could push it out of the way or go around it
 - What's more efficient? How to push it? ...

Decoupled vs Integrated TAMP

- Decoupled: discrete (task) planning then continuous (motion) planning
- Requires a strong downward refinement assumption
 - <u>Every</u> correct discrete plan can be refined into a correct continuous plan (from hierarchal planning)
- Integrated: <u>simultaneous</u> discrete & continuous planning

Task and Motion Planning (TAMP)

- Continuous robot motion with discrete-time actions
- Mixed discrete/continuous (hybrid) states and actions:
- State variables include:
 - Continuous: robot config, object poses, door joint angles
 - Discrete: is-on, is-cooked
- Solution components:
 - Plan structure: action sequence
 - Action parameter values: placements, grasps, ...
 - Control values: continuous motions

TAMP Example: Cook Object A

 $s_0 = \{ \mathtt{atRob} = \mathbf{q_0}, \mathtt{at[A]} = \mathbf{p_0}, \mathtt{holding} = \mathtt{None}, \mathtt{cooked[A]} = \mathtt{False} \}$

Goal conditions: cooked[A]=True

Plan Skeleton & Action Parameters

moveF pick[A] moveH[A] place[A] cook[A]

 $s_2 \hspace{1cm} s_3$ State variable values

 S_4

 S_5

Plan Constraints & Parameter Values

Constraint Network (Factor Graph)

- Compress plan skeleton into a constraint network
- Undirected bipartite graph of variables & constraints
- Can address with optimization and/or sampling

Sampling Network

- Satisfy constraint network compositionally
- Directed acyclic graph (DAG)
 - Conditional samplers consume inputs and generate completing outputs

The Need for Integrated Planning

- Continuous constraints limit feasible plan structures
 - Kinematics, joint limits, collisions, stable grasps, visibility, stability, stiffness, dynamics
- Strict hierarchy (task planning then motion planning) fails
 - Reachability, obstruction, occupancy, occlusion
- Need to plan jointly

Spam in Left Cabinet & Door Closed

- Robot forced to regrasp the spam
 - Change from a top to a side grasp
- Non-monotonic problem
 - Plan must temporarily undo goals
 - Open then later close the door
 - Planning automatically discovers through propagating constraints

3D Print (Extrude) Klein Bottle Design

Plan sequence & motions for 246 extrusions

Stiffness constraint

[Garrett, Huang, Lozano-Pérez, & Mueller 2020]

Taxonomy of TAMP Approaches

	Pre-discretized	Sampling	Optimization
Satisfaction first	Ferrer-Mestres et al. (84, 85) ^b	Siméon et al. (22) ^a	
		Hauser et al. (13, 14, 29) ^a	
		Garrett et al. (21, 86) ^b	
		Krontiris & Bekris (87, 88) ^a	
		Akbari & Rosell (89) ^b	
		Vega-Brown & Roy (90) ^a	
Interleaved	Dornhege et al. (62, 63, 91) ^b	Gravot et al. (96, 97) ^b	Fernández-González
	Gaschler et al. (92–94) ^b	Stilman et al. (23, 98, 99) ^a	et al. (109) ^b
	Colledanchise et al. (95) ^b	Plaku & Hager (100) ^a	
		Kaelbling & Lozano-Pérez (101, 102)b	
		Barry et al. (30, 103, 104) ^a	
		Garrett et al. (70, 71) ^b	
		Thomason & Knepper (105)b	
		Kim et al. (106, 107) ^b	
		Kingston et al. (108) ^a	
Sequencing first	Nilsson (3) ^b	Wolfe et al. (114) ^b	Toussaint et al. (61, 68,
	Erdem et al. (74, 75) ^b	Srivastava et al. (60, 76) ^b	69) ^b
	Lagriffoul et al. (65–67) ^b	Garrett et al. (55, 73) ^b	Shoukry et al. (81–83) ^b
	Pandey et al. (110, 111) ^b		Hadfield-Menell
	Lozano-Pérez & Kaelbling (112) ^b		et al. (115) ^b
	Dantam et al. (77–79) ^b		
	Lo et al. (113) ^b		

^aApproaches for MMMP.

^bApproaches for TAMP.

My Approach: PDDLStream

- Extends Planning Domain Definition Language (PDDL)
 - States and actions described using predicate logic
 - Standardized, factored, lifted, domain-independent

- Specification of sampling procedures as streams
 - Can model domains with infinitely-many actions

- Algorithms plan while treating streams as blackboxes
- Reduce planning to a sequence of finite problems
 - PDDL heuristic search algorithms as subroutines

PDDLStream Language

[Garrett, Lozano-Pérez, Kaelbling 2020a]

2D Pick-and-Place Domain

- Robot and block poses are continuous [x y] pairs
- Goal: block A within the red region
 - Block B obstructs the placement of A

2D Pick-and-Place Solution

One (of infinitely many) possible solutions

```
[move(...), pick(B,...), move(...), place(B,...), move(...), place(A,...)]
```


2D Pick-and-Place Initial & Goal

- Not all values are discrete, some are continuous
- Static (constant) initial facts satisfied constraints

$$F = \begin{cases} \text{Block}(\mathbf{A}), & \text{Block}(\mathbf{B}), & \text{Region}(\mathbf{red}), \\ \text{Region}(\mathbf{grey}), & \text{Conf}(\underline{\textbf{[-7.5, 5]}}), \\ \text{Pose}(\mathbf{A}, \underline{\textbf{[0.0.]}}), & \text{Pose}(\mathbf{B}, \underline{\textbf{[7.5 0.]}}) \end{cases}$$

Fluent (changing) initial facts - state variables

Goal logical formula - set of goal states

$$S_* = exists(?p) \{Contained(A, ?p, red), AtPose(A, ?p) \}$$

Pick-and-Place Actions

- Typical PDDL action description except that arguments are high-dimensional & continuous!
- To use, must satisfy static facts (constraints)

```
Motion ?q1 ?t, ?q2
                              Kin(?b,
(:action move
:parameters (?q1, ?t, ?q2)
:precondition {Motion(?q1, ?t, ?q2), AtConf(?q1)}
:effect {AtConf(?q2), ¬AtConf(?q1)))
(:action pick
:parameters (?b, ?p, ?g, ?q)
:precondition {Kin(?b, ?p, ?q, ?q), AtConf(?q),
               AtPose(?b, ?p), HandEmpty()}
:effect {AtGrasp(?b,?g), ¬AtPose(?b,?p), ¬HandEmpty()})
```

Search in Discretized State-Space

Suppose an oracle gave use the following values and facts:

$$F = \begin{cases} \text{Motion}([-7.5 \ 5.], \tau_1, [0. \ 2.5]), & \text{Motion}([-7.5 \ 5.], \tau_2, [-5. \ 5.]), \\ \text{Motion}([-5. \ 5.], \tau_3, [0. \ 2.5]), & \text{Kin}(\mathbf{A}, [0. \ 0.], [0. \ -2.5], [0. \ 2.5]), \dots \end{cases}$$

$$a \in A_{\text{move}}$$

$$\text{move}([-7.5 \ 5.], \tau_1, [0. \ 2.5])$$

$$AtPose(\mathbf{B}, [7.5 \ 0.])$$

$$AtConf([0. \ 2.5])$$

$$AtConf([0. \ 2.5])$$

$$AtGrasp(\mathbf{A}, [0. \ 0.], [0. \ -2.5], [0. \ 2.5])$$

$$AtGrasp(\mathbf{A}, [0. \ -2.5])$$

$$AtPose(\mathbf{B}, [7.5 \ 0.])$$

AtConf([-5.5.])

HandEmpty()

AtPose (A, [0. 0.])

AtPose (**B**, [7.5 0.])

No a Priori Discretization

Values given at start:

■ 1 initial configuration: Conf ([-7.5 5.])

2 initial poses:

Pose (A, [0.0.])

Pose (B, [7.5 0.])

Planner needs to find:

l pose for A within red: Contain (A, ?p, red)

■ 1 collision-free pose for B: CFree (A, ?p, B, ?p2)

1 grasp for A and B: Grasp(A,?g), Grasp(B,?g)

4 grasping configurations: Kin(?b, ?p, ?g, ?q)

4 robot trajectories:
Motion(?q1, ?t, ?q2)

What Samplers Do We Need?

- Low-dimensional placement stability constraint (Contain)
 - e.g. 1D line embedded in 2D placement space
- Directly sample values that satisfy the constraint
- May need arbitrarily many samples
 - Gradually enumerate an infinite sequence

Intersection of Constraints

- Kinematic constraint (Kin) involves poses, grasps, and configurations
- Conditional samplers function from input values
 to a sampler that generates output values

Composing Conditional Samplers

Stream: Specification for a Sampler

- What do inputs & outputs represent?
 - Communicate semantics using predicates (constraints)

- Declarative stream specification:
 - Domain facts static facts declaring legal inputs
 - e.g. only configurations can be motion planner inputs
 - Certified facts static facts that all outputs are asserted to satisfy with their corresponding inputs
 - e.g. poses sampled from a region are within it

Region(r)

Sampling Placements in a Region

```
(:stream sample-region
 :inputs (?b, ?r)
 :domain {Block(?b), Region(?r)}
 :outputs (?p)
 :certified {Pose(?b, ?p), Contain(?b, ?p, ?r)})
                   def sample_region(b, r):
                     x_min, x_max = REGIONS[r]
                    w = BLOCKS[b].width
                     while True:
                         x = random_uniform(x_min + w/2,
                                           x max - w/2
                         p = np.array([x, 0.])
                         yield (p,)
      Block(b
                 sample-region
                                  Pose(b, p_1), Pose(b, p_2), ...
```

Sampling IK Solutions

- Inverse kinematics (IK) to produce robot grasping configurations
- Trivial in 2D, non-trivial in general (e.g. 7-DOF arm)

```
(:stream solve-ik
:inputs (?b, ?p, ?g)
:domain {Pose(?b, ?p), Grasp(?b, ?g)}
:outputs (?q)
:certified {Conf(?q), Kin(?b, ?p, ?g, ?q)})
```


Pose(b, p)

Grasp(b, g)

solve-ik Conf(q_1), Conf(q_2)

Invoking a Motion Planner

- "Sample" multi-waypoint robot trajectories
- Use off-the-shelf motion planner (e.g. RRT)

```
(:stream sample-motion
  :inputs (?q1, ?q2)
  :domain {Conf(?q1), Conf(?q2)}
  :outputs (?t)
  :certified {Traj(?t), Motion(?q1, ?t, ?q2)})
```



```
Conf(q<sub>1</sub>)
conf(q<sub>2</sub>)
sample-motion Traj(\tau)
conf(q<sub>2</sub>)
```

PDDLStream Algorithms

[Garrett, Lozano-Pérez, Kaelbling 2020a]

Two PDDLStream Algorithms

- PDDLStream algorithms decide which streams to use
- Reduce planning to a sequence of PDDL problems
 - 1. Search a finite PDDL problem for plan
 - 2. Modify the PDDL problem (depending on the plan)

Discrete Search Feedback

New values

Sample Streams

[Garrett 2018] [Garrett 2020a]

- Implement search using off-the-shelf domainindependent PDDL planners (e.g. FastDownward)
 - Greedy best-first heuristic search
 - Exploit factoring in PDDL for heuristics (e.g. hff)

Incremental Algorithm

- Incrementally grow the set of values and facts
- Repeat:
 - 1. **Instantiate** and **sample** streams to generate new values and prove new facts
 - 2. Search for a plan using the current values
 - 3. Return when a plan is found

Incremental: Iteration 1 - Sampling

- Iteration 1 evaluated 14 streams
- Sampled:
 - 4 new block poses:

 A new block poses:
 - 2 new robot configurations:
 - 2 new trajectories:

Incremental: Iteration 1 - Search

- Pass current discretization to FastDownward
- If infeasible, the current set of samples is insufficient

Incremental: Iteration 2 - Sampling

- Iteration 2 evaluated 54 streams
- Sampled:

 - 4 new robot configurations:
 - 10 new trajectories:

Incremental: Iteration 2 - Search

- Pass current discretization to FastDownward
- If infeasible, the current set of samples is insufficient

Incremental Example: Iterations 3-4

Iteration 3 - 118 queried streams - infeasible **Iteration 4** - 182 queried streams - **solved! Solution:**

```
1.move ([-7.5 \ 5.], \tau_1, [7.5 \ 2.5])
2.pick (B, [7.5 \ 0.], [0. -2.5], [7.5 \ 2.5])
3.move ([7.5 \ 2.5], \tau_2, [10.97 \ 2.5])
4.place(B, [10.97 \ 0.], [0. -2.5], [10.97 \ 2.5])
5.move ([10.97 \ 2.5], \tau_3, [0. \ 2.5])
6.pick (A, [0. \ 0.], [0. \ -2.5], [0. \ 2.5])
7.move ([0. \ 2.5], \tau_4, [7.65 \ 2.5])
8.place(A, [7.65 \ 0.], [0. \ -2.5], [7.65 \ 2.5])
```

- Planner generated all but the underlined values
- Drawback many unnecessary samples produced

Optimistic Stream Evaluation

- Many TAMP streams are computationally expensive
 - Inverse kinematics, collision checking, motion planning
- Only query streams after they are identified as useful
 - Plan with optimistic hypothetical outputs
- Inductively create unique optimistic placeholder
 values for each stream output (denoted by prefix #)

```
1.s-region(A, red)\rightarrow #p0

2.s-ik(A, [0. 0.], [0. -2.5])\rightarrow #q0,

3.s-ik(A, #p0, [0. -2.5])\rightarrow #q2,

4.s-motion(A, #q0, #q2)\rightarrow #t0, ...
```

[Garrett 2018] [Garrett 2020a]

Focused Algorithm

Lazily plan using optimistic values before real values
Start

- Repeat:
 - 1. Construct optimistic stream outputs
 - 2. Search with real & optimistic values
 - 3. Retrace and evaluate streams
 - 4. Replace optimistic with real if they exist
 - 5. Return if all succeed

Optimistic

Streams

Values

Discrete Search Optimistic plan

Optimistic

New values

Evaluated streams

Sample Streams

Real plan

Done!

Focused: Iteration 1

- Iteration 1 optimistically evaluated 46 streams
- Created:
 - 4 optimistic block poses:

6 optimistic robot configurations: \(\frac{1}{3}\)

■ 36 optimistic trajectories: -----

Focused: Iteration 1 - Sampling

Optimistic plan:

```
[move([-5. 5.], #t0, #q0), pick(A, [0. 0.], [0. -2.5], #q0), move(#q0, #t2, #q1), place(A, #p0, [0. -2.5], #q1)]
```


Queried streams:

1.s-region (A, red)
$$\rightarrow$$
 [8.21 0.]

2.s-ik(**A**, [0. 0.], [0. -2.5])
$$\rightarrow$$
[0. 2.5]

3.t-cfree (A, [8.21 0.], B, [7.5 0.])
$$\rightarrow$$
 False

Temporarily remove these streams from the next search

Focused: Iteration 2

- Iteration 2 optimistically evaluated 42 streams
- Removed optimistic pose and configuration
- Added sampled pose and configuration:
- Added 1 optimistic robot configurations: \(\frac{1}{3} \)
- Added 14 optimistic trajectories: ------

Focused: Iteration 2 - Sampling

105

New optimistic plan:

```
[move([-5.5.], #t4, #q2), pick(B, [7.5 0.], [0.-2.5], #q2), move(#q2, #t9, #q3), place(B, #p1, [0.-2.5], #q3), move(#q3, #t6, [0.2.5]), pick(A, [0.0.], [0.-2.5], [0.2.5]), move([0.2.5], #t8, #q4), place(A, [8.21 0.], [0.-2.5], #q4)]
```


Optimistic Planning with Optimization

- Instead of sampling, directly optimize the constraint network
- Non-convex constrained mathematical program
 solver as a stream
- Additional PDDLStream algorithms...

```
[move([-5.6.], #t0, #q0), pick(A,[0.0.],[0.-2.5],#q0), move(#q0, #t2, #q1), place(A,#p0,[0.-2.5],#q1)]
```


Scaling Experiments

Incremental 120+

Focused ~20s

[<u>Garrett</u> 2018]

Diverse Experiments

Diverse Experiments

	Incr.		Incr H		Focus		Focus - H	
Problem	%	t	%	t	%	t	%	t
Regrasp	98	1	100	2	98	1	95	1
Push	100	11	100	13	100	13	100	9
Wall	95	10	98	13	100	6	100	8
Stacking	100	9	100	9	100	2	100	3
Nonmon.	25	21	98	15	0	-	88	43
Dinner	0	-	100	27	0	-	98	22

Success percentage (%), Average runtime in sec. (t)

TAMP with Uncertainty

[Garrett, Paxton, Lozano-Pérez, Kaelbling, & Fox 2020b]

Hybrid MDP/POMDP

- Nondeterministic outcomes stochastic effects
- Partial observability latent state
 - The true state is unknown: probabilistic inference
- Belief space planning
 - Plan over beliefs: probability distributions over states

[Kaelbling 2013]

[Hadfield-Menell 2015]

Dealing with Action Uncertainty

- Partial observability and stochastic action effects
- MPC policy: estimation, replanning, and control
- State estimator compresses history into belief statistic \hat{s}_t that encodes uncertainty
- Planner finds plan $[\hat{a}_1,...,\hat{a}_h]$
 - Tail of plan serves as a certificate that plan has low cost-to-go
- Controller converts first ot action \hat{a}_1 into torques a_{t+1}

Localize and Cook Spam (on Stove)

Dealing with State Uncertainty

- Occlusions due to doors, drawers, objects, robot, ...
- State estimator: particle-filters over object poses
 - Multimodal distributions capture view-cone geometry
- Need active information gathering to find objects
 - Open doors/drawers
 - Relocate occluding objects
- Plan in belief space
 - (Instead of state space)
 - Plan future observations

Belief Space PDDLStream

- State variables and action parameters are probability distributions (instead of point estimates)
- Observation actions model the belief update process:
 - Prior x observation → posterior

```
Pose particle P(X) z View-cone distribution observation (:action detect :parameters (?o, ?pb1 ?obs ?pb2 :precondition {BeliefUpdate(?o, ?pb1, ?obs, ?pb2), AtPoseB(?o, ?pb1), BVisible(?o, ?pb1, ?obs)} :effect {AtPoseB(?o ?pb2), ¬AtPoseB(?o, ?pb1), total-cost+=ObsCost(?o, ?pb1, ?obs)}
```

Bayesian Inference Streams

Prior: Spam in One of the Drawers

TAMP with Unknown Objects

[Curtis*, Fang*, Lozano-Pérez, Kaelbling, <u>Garrett</u>, 2021]

Goal: all objects are in a bowl of the same color

 $\forall obj. \ \exists bowl. \ \exists color. \ \mathtt{In}(obj,bowl) \land \mathtt{Color}(obj,color) \land \mathtt{Color}(bowl,color)$

Plan using Estimated Affordances

- Learned segmentation, shape estimation, grasp prediction
- Streams call perceptual modules using object point clouds

Goal: all objects are on a blue target region

 $\forall obj. \exists region. On(obj, region) \land Color(region, blue)$

Single System Generalizes across Objects, Goals, Initial States

Takeaways

- Task and Motion Planning (TAMP): hybrid planning where continuous constraints affect discrete decisions
- Sampling is powerful for exploring continuous spaces
- PDDLStream: planning language that supports
 sampling procedures as blackbox streams
 - Domain-independent algorithms
 - Lazy/optimistic planning intelligently queries only a small number of samplers

Applies to probabilistic & partially observable TAMP

Thanks! Questions?

References

Classical Planning

- [**Fikes 1971**] Fikes, R.E. and Nilsson, N.J., 1971. "STRIPS: A new approach to the application of theorem proving to problem solving". *Artificial intelligence*, 2(3-4), pp.189-208.
- [Aeronautiques 1998] Aeronautiques, C., Howe, A., Knoblock, C., McDermott, I.D., Ram, A., Veloso, M., Weld, D., SRI, D.W., Barrett, A., Christianson, D. and Friedman, M., 1998. "PDDL: The Planning Domain Definition Language".
- [Hoffman 2001] Hoffmann, J. and Nebel, B., 2001. "The FF planning system: Fast plan generation through heuristic search". Journal of Artificial Intelligence Research, 14, pp.253-302.
- [Helmert 2006] Helmert, M., 2006. "The fast downward planning system". Journal of Artificial Intelligence Research, 26, pp.191-246.
- [Eyerich 2009] Eyerich, P., Mattmüller, R. and Röger, G., 2009. "Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning". in Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS). AAAI Press, pp. 130–137.

Motion Planning

- [Kavraki 1994] Kavraki, L. E. et al., 1996. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces". *IEEE Transactions on Robotics and Automation*, 12(4), pp. 566–580.
- [Bohlin 2000] Bohlin, R. and Kavraki, L.E., 2000. "Path planning using lazy PRM". In Proceedings 2000 ICRA. Millennium Conference. *IEEE International Conference on Robotics and Automation*. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 521-528).
- [Kuffner 2000] Kuffner Jr, J.J. and LaValle, S.M., 2000. "RRT-connect: An efficient approach to single-query path planning". In *IEEE International Conference on Robotics and Automation* (Vol. 2).
- [Kuffner 2001] LaValle, S.M. and Kuffner Jr, J.J., 2001. "Randomized kinodynamic planning". The International Journal of Robotics Research, 20(5), pp.378-400.
- [Karaman 2011] Karaman, S. and Frazzoli, E., 2011. "Sampling-based Algorithms for Optimal Motion Planning". *International Journal of Robotics Research (IJRR)*, Sage Publications, 30(7), pp. 846–894.

Pre-discretized Planning

- [Dornhege 2009] Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M. and Nebel, B., 2009. "Semantic attachments for domain-independent planning systems". *International Conference on Automated Planning and Scheduling*.
- [Erdem 2011] Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V. and Uras, T., 2011. "Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation". *IEEE International Conference on Robotics and Automation* (pp. 4575-4581).
- [Lagriffoul 2014] Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A. and Karlsson, L., 2014. "Efficiently combining task and motion planning using geometric constraints". The International Journal of Robotics Research, 33(14), pp.1726-1747.
- [Ferrer-Mestres 2017] Ferrer-Mestres, J., Frances, G. and Geffner, H., 2017. "Combined task and motion planning as classical Al planning". arXiv preprint arXiv:1706.06927.
- [Dantam 2018] Dantam, N.T., Kingston, Z.K., Chaudhuri, S. and Kavraki, L.E., 2018. "An incremental constraint-based framework for task and motion planning". *The International Journal of Robotics Research*, 37(10), pp.1134-1151.
- [**Lo 2018**] Lo, S.Y., Zhang, S. and Stone, P., 2018. "PETLON: Planning Efficiently for Task-Level-Optimal Navigation". *International Conference on Autonomous Agents and MultiAgent Systems* (pp. 220-228).
- [Huang 2018] Huang, Y., <u>Garrett, C.R.</u> and Mueller, C.T., 2018. "Automated sequence and motion planning for robotic spatial extrusion of 3D trusses". Construction Robotics, 2(1-4), pp.15-39.

Multi-Modal Motion Planning

- [Alami 1994] Alami, R., Laumond, J.P. and Siméon, T., 1994. "Two manipulation planning algorithms". In WAFR Proceedings of the workshop on Algorithmic foundations of robotics (pp. 109-125).
- **Siméon 2004**] Siméon, T., Laumond, J.P., Cortés, J. and Sahbani, A., 2004. "Manipulation planning with probabilistic roadmaps". *The International Journal of Robotics Research*, 23(7-8), pp.729-746.
- [Hauser 2011] Hauser, K. and Ng-Thow-Hing, V., 2011. "Randomized multi-modal motion planning for a humanoid robot manipulation task". The International Journal of Robotics Research, 30(6), pp.678-698.
- [Plaku 2010] Plaku, E. and Hager, G. (2010) "Sampling-based Motion Planning with Symbolic, Geometric, and Differential Constraints", IEEE International Conference on Robotics and Automation.
- [Barry 2013] Barry, J., Kaelbling, L.P. and Lozano-Pérez, T., 2013. "A hierarchical approach to manipulation with diverse actions". *IEEE International Conference on Robotics and Automation* (pp. 1799-1806).
- [**Toussaint 2015**] Toussaint, M., 2015. "Logic-geometric programming: An optimization-based approach to combined task and motion planning". *International Joint Conference on Artificial Intelligence*.
- [Vega-Brown 2016] Vega-Brown, W. and Roy, N., 2016. "Asymptotically optimal planning under piecewise-analytic constraints". Workshop on the Algorithmic Foundations of Robotics.
- [Toussaint 2018] Toussaint, M., Allen, K., Smith, K.A. and Tenenbaum, J.B., 2018. "Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning". Robotics: Science and Systems.

Task and Motion Planning

- [Gravot 2005] Gravot, F., Cambon, S. and Alami, R., 2005. "aSyMov: a planner that deals with intricate symbolic and geometric problems". In Robotics Research. The Eleventh International Symposium (pp. 100-110).
- [Kaelbling 2011] Kaelbling, L. P. and Lozano-Pérez, T., 2011. "Hierarchical task and motion planning in the now". *IEEE International Conference on Robotics and Automation*, Shanghai, 2011, pp. 1470-1477.
- [Srivastava 2014] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. and Abbeel, P., 2014. "Combined task and motion planning through an extensible planner-independent interface layer". *IEEE International Conference on Robotics and Automation* (pp. 639-646).
- [Garrett 2017] Garrett, C.R., Lozano-Perez, T. and Kaelbling, L.P., 2017. "FFRob: Leveraging symbolic planning for efficient task and motion planning". The International Journal of Robotics Research, 37(1), pp.104-136.
- [Garrett 2018] Garrett, C.R., Lozano-Pérez, T. and Kaelbling, L.P., 2018. "Sampling-based methods for factored task and motion planning". The International Journal of Robotics Research, 37(13-14), pp.1796-1825.
- [Garrett 2020a] Garrett, C.R., Lozano-Pérez, T. and Kaelbling, L. P., 2020. "PDDLStream: Integrating Symbolic Planners and Blackbox Samplers". International Conference on Automated Planning and Scheduling (ICAPS).
- [Garrett 2021] Garrett, C. R. et al., 2021. "Integrated Task and Motion Planning". Annual review of control, robotics, and autonomous systems, 4.

Probabilistic & Partially-Observable

- [Kaelbling 1998] Kaelbling, L.P., Littman, M.L. and Cassandra, A.R., 1998. "Planning and acting in partially observable stochastic domains". *Artificial intelligence*, 101(1-2), pp.99-134.
- [Yoon 2007] Yoon, S.W., Fern, A. and Givan, R., 2007. "FF-Replan: A Baseline for Probabilistic Planning". *International Conference on Automated Planning and Scheduling (ICAPS)* (Vol. 7, pp. 352-359).
- [Keyder 2008] Keyder, E. and Geffner, H., 2008. "The HMDPP planner for planning with probabilities". Sixth International Planning Competition at ICAPS, 8.
- [Platt 2010] Platt, R. et al., 2010. "Belief space planning assuming maximum likelihood observations". Robotics: Science and Systems VI. doi: 10.15607/RSS.2010.VI.037.
- [Silver 2010] Silver, D. and Veness, J., 2010. "Monte-Carlo planning in large POMDPs". Advances in neural information processing systems, pp. 2164–2172.
- [Kaelbling 2013] Kaelbling, L.P. and Lozano-Pérez, T., 2013. "Integrated task and motion planning in belief space". The International Journal of Robotics Research, 32(9-10), pp.1194-1227.
- [Garrett 2020b] Garrett, C. R. et al., 2020. "Online Replanning in Belief Space for Partially Observable Task and Motion Problems". International Conference on Robotics and Automation (ICRA).