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(Probable) Roadmap

1. Review Background
1. Task Planning

2. Motion Planning
2. Hybrid Planning

1. Prediscretized & Numeric Planning [Fig from Erion Plaku]
2. Multi-Modal Motion Planning
3. Integrated TAMP

3. PDDLStream

4. TAMP under Uncertainty

1. Partially Observable
2. Unknown Obijects



Planning for Autonomous Robots
s

» Robot must select both high-level actions & low-level controls

= Application areas: semi-structured and human environments
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Serve Water and “Cooked” Block

[ GarreH 20200]
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Localize Spam in Bottom Drawer

[Garrett 2020b]
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Assemble Large Timber Structure

[Huang, Leung, Garrett, Gramazio, Kohler, & Mueller 2021 ]
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Pouring, Scooping, and Stirring to

Prepare “Coffee”

[Garrett 2020a]




Problem Class

Discrete-time
Plans are finite sequences of controls
Deterministic (for now)
Actions always produce the intended effect
Solutions are plans (instead of policies)
Observable (for now)
Access to the full world state
Hybrid

States & controls composed of mixed discrete-
continuous variables



- Task Planning



Task (Classical, Symbolic) Planning

Discrete problems with many variables

Often enormous, but finite, state-spaces

Problems typically described using an action language

Proposiiional I.Ogic (STRIPS) [Fikes 197 1][Aeronautiques 1998]
Planning Domain Description Language (PDDL)

Develop domain-independent algorithms
Can apply to any problem expressible using PDDL

Exploit factored and sparse structure to develop
efficient algorithms



Classical Planning Representations

— :

Blocksworld
coman E_l_l_l El

Initial State Goal State
o Facts: on(x,y), onTable(x), clear(x), holding(xz), armEmpty().

o Initial state: {onTable(E), clear(E), ..., onTable(C'), on(D,C),
clear(D), armEmpty()}.

o Goal: {on(E,C), on(C,A), on(B,D)}.
@ Actions: stack(x,y), unstack(x,y), putdown(x), pickup(x).

o stack(x.y)? pre : {holding(x), clear(y)}
add : {on(x,y), armEmpty() }

del : {hOldmg (33), Clear(y)}- [Figs from Hector Geffner]



First-Order Action Languages

Predicate: boolean function on (?b1, ?b2)=True/False

Facts (literals): instantiated predicates on (D, C)=True

State: set of facts {On (A, B)=False, On(D, C)=True, ..}

Equivalently, boolean state variables I_H

Closed-world assumption: unspecified
facts are false

Initial State

Facts: on(z,y), onTable(x), clear(x), holding(x), armEmpty().
E

Initial state: {onTable(FE), clear(E), ..., onTable(C), on(D,C),
clear(D), armEmpty()}. - I

Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(z,vy), unstack(x,y), putdown(x), pickup(z). Goal State




(Lifted) Action Schema

A tuple of free
A formula tests applicability
An formula modifies the state

Logical conjunctions enable factoring

Effects are deltas (action unstack
(:action stack (?bl, 7?b2)
(?bl, 7?b2) {ArmEmpty (),
{ On (?bl, ?b2),
Holding (?bl), Clear (?b2) } Clear (?bl) }
{ArmEmptv (), {Holding (?bl),
On (?bl, ?b2), Clear (?b2),
Clear (?bl) -Clear (?bl),
-Holding (?bl), “ArmEmptyvy (),

-Clear (?b2) } -0On (?bl, ?b2)}



Planning Approaches

State-space search: [Bonet 2001] [Hoffman 2001] [Helmert 2006]
Progression (forward) or regression (backward)
Best-first heuristic search algorithms

Partial-order planning [penberthy 1992
Search directly over plans (plan-space)

Planning as Satisfiability [kautz 1999

Compile to fixed-horizon SAT instance
SAT is NP-Complete

Planning is PSPACE-Complete

Increase horizon if formula unsatisfiable



Forward Best-First Search

For a state s
Path cost: g(s)
Heuristic estimate: h(s)
Open list sorted by priority f(s)

Weighted A*: f(s) = g(s) + wh(s)
Uniform cost search: w=0 = f(s)=g(s)
A* search: w=1 = f(s) =g(s)
Greedy best-first search: w =00 = f(s) = h(s

How do we estimate h(s) 2

+ h(s)
)

No obvious metric (no metric-space embedding)



Predict the Minimum Plan Length

= Can stack / unstack anywhere on the ground

= Hint: is an even number

-

B

Initial State

E
C B

1 B |

Goal State




Predict the Minimum Plan Length

= Solution (length=46):

= unstack (D, C)
= stack (D

4

B)

= unstack (C, ground)
= stack (C, A)

= unstack (.
= stack (E

4

1

C)

F,, ground)

-

B

Initial State

Goal State



Predict the Minimum Plan Length
TN

Initial State Goal State



Domain-Independent Heuristics

Estimating h(s) is nontrivial
Can we do it in an a domain-independent manner?
Solve a related, approximate planning problem

Primary focus for almost all of classical planning

Suggestions for how to do this?

Independently plan for each goal
Remove some action preconditions [Helmert 2006]

Remove negative (delete) effects [Bonet 2001] [Hoffman 2001]



Delete-Relaxation Heuristics

Remove all negative (7) effects
Solving optimally is NP-Complete
Can greedily find a short plan in polynomial time

Basis for both admissible and greedier, non-

admissible heuristics .
(:action unstack

(:action stack (?bl, 7?b2)
(?bl, 7?b2) {ArmEmpty (),
{ On (?bl, ?b2),
Holding (?bl), Clear (?b2) } Clear (?bl) }
{ArmEmptv (), {Holding (?bl),
On (?bl, ?b2), Clear (?b2),
Clear (?bl) —-Ctear {2l
—Hoterrg{2b+ —AERERPEYO+

s L\ L L



Predict the Minimum

Delete-Relaxed Plan Length

= Can stack / unstack anywhere on the ground

= Hint: is no greater than 6
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Predict the Minimum Delete-

Relaxed Plan Length
=T

= Solution (length=46):
= unstack (D, C)
= stack (D, B)
= unstack (C, ground)
= stack (C, A)

1

= unstack (E, ground)

= stack (E, C) r_L_]
E

B

Initial State Goal State



Predict the Minimum Plan Length

23
= Can stack / unstack anywhere on the ground

= Hint: is an even number

i

C B E

1 B | c

Initial State Goal State




Predict the Minimum Plan Length

24
= Solution (length=12):

- unstack (E, C) = unstack (D, ground)
- stack (E, ground) « stack (D, A)
- unstack (C, A) = unstack (B, ground)
- stack (C, ground) - stack (B, D)

1

= unstack (E, ground)
= stack (E, C) I_J_1
= unstack (B, D) E

- stack (B, ground) C R

Initial State Goal State



Predict the Minimum Delete-

Relaxed Plan Length
s

= Can stack / unstack anywhere on the ground

= Hint: is no greater than 12

2l

C B E

1 B | c

Initial State Goal State




Predict the Minimum Delete-
Relaxed Plan Length

= Solution (length=15):

T

= unstack (E, C)

= unstack (
- unstack(B, D)
= unstack (D, ground)

= stack (D, A)

E

C

1 B |

Initial State

B

B

il |

Goal State




- Motion Planning



Review: Motion Planning

Plan a path for a robot from an initial configuration
to a goal configuration that avoids obstacles

Sequence of continuous configurations

Configurations often are high-dimensional
Example: 7 DOFs

A \ ./‘V—J\ Py
’ ’ A 4 ‘
- * !
” N
4 =
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“N

High-level approaches:

-

Geometric decomposition

Sampling-based

Optimization-based



Sampling-Based Motion Planning

Discretize configuration space by sampling
Sampling be deterministic or random

Implicitly represent the collision-free configuration

space using an blackbox collision checker
Abstracts away complex robot geome’rryq
b

Algorithms
Probabilistic Roadmap (PRM)
Rapidly-Exploring Random Tree (RRT)
Bidirectional RRT (BiRRT) >

[Kavraki 1994][Kuffner 2000][LaValle 2006] [Fig from Erion Plaku]




Probabilistic Roadmap (1/7)

[Fig from Erion Plaku]
Find a path from init to goal that avoids the obstacles



Probabilistic Roadmap (2/7)

[Fig from Erion Plaku]
Sample a set of configurations



Probabilistic Roadmap (3/7)

[Fig from Erion Plaku]
Remove configurations that collide with the obstacles



Probabilistic Roadmap (4/7)

[Fig from Erion Plaku]
Connect nearby configurations



Probabilistic Roadmap (5/7)

[Fig from Erion Plaku]
Prune connections that collide with the obstacles



Probabilistic Roadmap (6/7)

[Fig from Erion Plaku]
The resulting structure is a finite roadmap (graph)



Probabilistic Roadmap (7 /7)

[Fig from Erion Plaku]
Search for the shortest-path on the roadmap



Collision Checking is Expensive

Collision checking dominates runtime

Complex geometries & fine resolutions (for safety)
Many edges clearly do not lie on a low-cost path
Optimistically plan without collisions

Check collisions lazily only by only evaluating
candidate plans




Lazy PRM (1/10)

Talk

[Fig from Erion Plaku]
Construct a PRM ignoring collisions



Lazy PRM (2/10)

Talk

[Fig from Erion Plaku]
Search for the shortest-path on the roadmap



Lazy PRM (3/10)

A

Talk

[Fig from Erion Plaku]
Remove plan edges that collide with obstacles



Lazy PRM (4/10)

S K

A

Talk

[Fig from Erion Plaku]
Search for the new shortest-path on the roadmap



Lazy PRM (5/10)

=~
‘

Talk

[Fig from Erion Plaku]
Check the edges on the plan for collisions



Lazy PRM (6/10)

’(f"d

NIt

[Fig from Erion Plaku]
Check the edges on the plan for collisions

(with increased resolution)




Lazy PRM (7 /10)

NIt

[Fig from Erion Plaku]
Remove plan edges that collide with obstacles



Lazy PRM (8/10)

Talk

[Fig from Erion Plaku]
Search for the new shortest-path on the roadmap



Lazy PRM (9/10)

goal

"/

i

NIt

[Fig from Erion Plaku]
Check the edges on the plan for collisions



Lazy PRM (10/10)

oal
"/ J

L — X

NIt

[Fig from Erion Plaku]
Return the current path as a solution



Lazy Motion Planning

Defer collision checking until a path is found
Remove colliding edges path from the roadmap
Repeat this process with a new path

Terminate when a collision-fee path is found

77 checks 23 checks

=\

o mrmm—

Eager (during search) Lazy
[Bohlin 2000][Dellin 201 6]



Theoretical Properties

Sampling-based algorithms cannot prove infeasibility
nor even solve every feasible problem

Robustly feasible: a problem that admits a solution
for which all local perturbations are also solutions

Probabilistic complete: an algorithm that solves any
robustly feasible problem with probability 1

Gap cxactly the width
of the robot

[Fig from

Jenny Barry]



Trajectory Optimization

= Frame motion planning as a non-convex constrained
optimization problem & solve for local minima
minimize f(x)
subject to
g:(x) <0, 1=1,2,...,Nneq
hi(x) =0, 1=1,2,...,N¢q
= Collision constraints
enforced via signed
distance (sd)

[Ratliff 2009][Schulman 201 3]



Hybrid Planning Spectrum
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- Prediscretized & Numeric Planning



Prediscretized Planning
s

= Assumes that a finite set of object placements, object
grasps, and (sometimes) robot configurations are given

= Can directly perform discrete task planning

= Still need to evaluate reachability
= Eagerly in batch [Lozano-Pérez 2014][Garrett 2017][Ferrer-Mestres 2017
= Eagerly during search [pornhege 2009]

m LﬂZily [Erdem 201 1][Dantam 201 8][Lo 201 8]




Discrete-Control Numeric Planning

Classical planning with real-valued variables and

durative actions

Examples: time and energy

Most planners only support linear/polynomial dynamics

Non-linear dynamics addressed by discretizing time

Example: battery domain
ds __ i(t) 75 > Joad
dt C T
Fixed conductan

dvy __ -

—L = —12(1

dt ( )~> battery capacity
Y | 1—e— k't

5(t) — ¢ K

v(t)= C — It

[Fox 2003][Hoffmann 2003][Eyerich 2009]

Bound
charge

\

Charge flow

—

Free
charge

lLoad draws

—

charge

N
N

Total charge y



Continuous-Control Numeric Planning

Continuous control parameters

Tackle convex dynamics using
cone programming

Non-convexity handled by
partitioning the state-space

In contrast, TAMP is often:
High-dimensional

Non-convex

- T1T

3D collision constraints e
[Deits 201 5][Shoukry 201 6]

Less sophisticated dynamically  [Fernandez-Gonzalez 2018]



- Multi-Modal Motion Planning



Multi-Modal Motion Planning

Collision-free configuration space
changes when objects are
manipulated

Use a sequence of motion planning
problems each defined by a mode

Mode: a set of motion

constraints Walk

Gripper is empty LY ayime NS

. . Reach Reach

Relative object pose Left [/ “rome \ Right
. Object o N\ Object
remains constant métamhm,nme El/\co’
In view \ / in view

[Alami 1994][Siméon 2004][Hauser 201 1] PL:?th ) ( Push )

ot Right

~— -

[Barry 201 3][Vega-Brown 201 6]



Low-dimensional Intersections

58
» Need samples that connect adjacent modes

= |ntersection of two modes is often low-dimensional
= Special-purpose samplers are needed
« Example: transition from gripper empty to holding

= Configurations at the intersection obtained using
inverse kinematics (1K)

{
\c

[Hauser 201 1]




Sampling-Based Multi-Modal Planning

1. Sample from the set @— @2— | g:ji:@
of modes [ Clﬁ ﬁ _‘\:(\
a =
2. Sample at the low- | & ) \g g
dimensional @‘” S § ) @
) ) A5 H &nr ;
intersection of 5 i) ﬁ )
Adjacent modes Intersections

adjacent modes

2N IS - ey

\ X S S g ov\.%‘

3. Sample a roadmap “zf,\iﬂ N
within each mode il N ok [ &=

4. Discrete search on N L3

i- W 1S [ Aol Y]la .

the gwl’rl modal # 2] B «;% Sk
roaamap Individual mode Combined

[Hauser 201 1] roadmaps Roadmap



Mixed Integer Programming (MIP)

Continuous and integer variables
Convex constraints and costs
Branch-and-bound

Split on integer variables

Integrality relaxation :
A
Lower bound on cost o fe-o
Loose when logical operations T Nt

. e

Planning limitation

# of variables may be
exponential in problem size




Optimization-Based Multi-Modal

Motion Planning
T

= Discrete search over sequences of mode switches
= Sequences have varying length

= Each sequence induces a non-convex constrained
optimization problem

= Sequences can be pruned using lower bounds  [Lagriffou
® ® ° 20]4]
obtained by relaxing some constraints

T
min Fran(Z(8)) b+ foon(2(T))

r,a1:K:51:K 0

s.t. 2(0) =z, heoat(2(1)) =0, geour(z(1)) <0,
vt € [0,T] 1 hpan(Z(t), sk)) = 0,
Jpan (Z(t), Sk(e)) < 0
Vk e {1,.., K} : hgwien(Z(tk),ax) =0,
[Toussaint 201 5] Gswiteh (Z(1x ), ar) <0,
[Toussaint 201 8] sk € succ(sp1,ar) -




Hybrid Planning Spectrum Revisited
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- Task and Motion Planning (TAMP




Shakey the Robot (1969)

I I —
= First autonomous mobile manipulator (via pushing)

= Visibility graph, A* search, and STRIPS!

= Decoupled task and motion planning

[Fikes 1971]
[Nilsson 1984]

= Task planning then motion planning

type(robot robot) type(ol object)
name( robot shakey) npame(ol boxl)

at(robot 4.1 7.2) at(el 3.1 3.2)

theta(robot 90.1) inroom(ol rl)
shape(ol wedge)

radius(ol 3.1)

GOTHRU({(d,r1,r2)
Precondition INROOM(ROBOT i} A CONNECTS(d,rl,r2)

Delete List INROOM(ROBOT,$}

Add List  INROOM(ROBOT,r2)




Obstacle Blocks Shakey’s Path

« What if a movable block prevented Shakey from
safely moving into the adjacent room?

= Shakey could push it out of the way or go around it

 What’s more efficiente How to push it? ...




Decoupled vs Integrated TAMP

Decoupled: discrete (task) planning then continuous
(motion) planning

Requires a strong downward refinement assumption

Every correct discrete plan can be refined into @
correct continuous plan (from hierarchal planning)

Integrated: simultaneous discrete & continuous planning

r )
Discrete Planning /\
\_ * J ([ ) ( )
- 1 Discrete Planning| [Continuous Planning
o W, \_ W,

Continuous Planning

k J ~

Decoupled Integrated




Task and Motion Planning (TAMP)

= Continvous robot motion with discrete-time actions

= Mixed discrete /continuous (hybrid) states and actions:

= State variables include:

= Continuous: robot config, object
poses, door joint angles

= Discrete: is-on, is-cooked

= Solution components:
= Plan structure: action sequence

= Action parameter values:
placements, grasps, ...

= Control values: continuous motions



TAMP Example: Cook Obiject A

so = {atRob=qo, at [A] =po,holding=None, cooked[A] =False}

Goal conditions: cooked[A]=True

Initial state Goal state(s)

holding
at [A] ' Planning '

cooked[A]
S0

S %



Plan Skeleton & Action Parameters

Plan skeleton (structure)

moveF pick[A] moveH [A] place[A] cook[A]

atRob
holding
at [A] @
cooked [A] @

S0 S1 S92 S3 S4
State variable values



Plan Constraints & Parameter Values

Example plan: 7 = [moveF(qo, 71, 1), pick[A1(g1, Po, g2),
moveH [A] (qla 73, QS); place [A] (q37 P4, 92)7 cook [A] (pl)]

oveF pick[A] moveH [A] place[A] cook[A]
CFreeW CFreeW @
Motion Motion
wroo@o) /) @—@) / (@——(1)——®
(CFreeA Kin[A] CFreew[A] Kin[A]
W/ W/
(BtablelA] Stable [A] OnStove[A]
o) Py ({02 S
Grasp[A] Grasp[A]]
cookea 4125
S0 S1 S92 S3 S4 S5

Constraints



Constraint Network (Factor Graph)

Compress plan skeleton into a constraint network
Undirected bipartite graph of variables & constraints

Can address with optimization and/or sampling

Mot ion KlIl [A]] [Mot ion [Kln [A]]

dbﬁe@@a@

[CFreeA [CFreeW] [Grasp [A]] [CFreew [A]] [CFreeW] [Stable [A]] [DnStove [A]]




Sampling Network

Satisfy constraint network compositionally
Directed acyclic graph (DAG)

Conditional samplers consume inputs and
generc:’re completing outputs

[DnSt ove [A] Kin[ A]
FreeW[A]

[Grasp [A] @ Kin[A] otlon@
CFreeW

CFreew
Po

Motlon

Q@

CFreeA]




The Need for Integrated Planning

= Continuous constraints limit
feasible plan structures
= Kinematics, joint limits, collisions,
stable grasps, visibility,
stability, stiffness, dynamics

= Strict hierarchy (task planning
then motion planning) fails

= Reachability, obstruction,
occupancy, occlusion

* Need to plan jointly




Spam in Left Cabinet & Door Closed

= Non-monotonic problem
= Plan must temporarily undo goals

= Open then later close the door

= Planning automatically discovers
through propagating constraints

[Garrett 2020b]




3D Print (Extrude) Klein Bottle Design

* Plan sequence & motions for 246 extrusions

Stiffness constraint

[Garrett, Huang, Lozano-Pérez,

& Mueller 2020]




Taxonomy of TAMP Approaches

Pre-discretized

Sampling

Optimization

Satisfaction first

Ferrer-Mestres et al. (84, 85 )b

Siméon et al. (22)?
Hauser et al. (13, 14, 29)?
Krontiris & Bekris (87, 88)*

Akbari & Rosell (89)°
Vega-Brown & Roy (90)?

Interleaved

Dornhege et al. (62, 63, 91)°
Gaschler et al. (92-94)°
Colledanchise et al. (95)P

Gravot et al. (96, 97)P

Stilman et al. (23, 98, 99)*

Plaku & Hager (100)?

Kaelbling & Lozano-Pérez (101, 102)"
Barry et al. (30, 103, 104)?

Garrett et al. (70, 71)P

Thomason & Knepper (105)°

Kim et al. (106, 107)®

Kingston et al. (108)?

Fernandez-Gonzalez
et al. (109)P

Sequencing first

Nilsson (3)P

Erdem et al. (74, 75)P

Lagriffoul et al. (65-67)"

Pandey et al. (110, 111)P
Lozano-Pérez & Kaelbling (112)
Dantam et al. (77-79)

Lo etal. (113)P

Wolfe et al. (114)
Srivastava et al. (60, 76)P

Garrett et al. (55, 73)°

Toussaint et al. (61, 68,
69)P
Shoukry et al. (81-83)P
Hadfield-Menell
etal. (115)

*Approaches for MMMP.
b Approaches for TAMP.

Garrett et al., 2021. “Integrated Task and Motion Planning”,
Annual Review of Control, Robotics, and Autonomous Systems.




My Approach: PDDLStream

Extends Planning Domain Definition Language (PDDL)
States and actions described using predicate logic

Standardized, factored, lifted, domain-independent

Specification of sampling procedures as streams

Can model domains with infinitely-many actions

Algorithms plan while treating streams as blackboxes
Reduce planning to a sequence of finite problems

PDDL heuristic search algorithms as subroutines



PDDLStream Language

[Garrett, Lozano-Pérez, Kaelbling 2020a]




2D Pick-and-Place Domain

Robot and block poses are continuous [x y] pairs
Goal: block A within the red region

Block B obstructs the placement of A

l Movable Blocks
Robot Vacuum / \

Gripper

grey

/

Placement Regions



2D Pick-and-Place Solution

One (of infinitely many) possible solutions

[move (...), pilcC.

(B, ...

move (..) , pilcC.

< (A, ...

), move(..), p.

Lace (B, ...)

), move(..), p.

Lace (A4, ...)

]



2D Pick-and-Place Initial & Goal

Not all values are discrete, some are continuous

Static (constant) initial facts - satisfied constraints

{Block (A), Block(B), Region(red),
I = Region(grey), Conf (I-7.5, 51),
Pose (A, [0. 0.]1), Pose(B, [7.5 0.1)}

Fluent (changing) initial facts - state variables

S __{AtConf ([-7.5 5.1), HandEmpty (),
0 — AtPose (A, [10. 0.]), AtPose (B, 7.5 0.])}

Goal logical formula - set of goal states

S, —exists (?p) {Contained (A, ?p,red) ,AtPose (A, ?p) }



Pick-and-Place Actions

Typical PDDL action description except that
arguments are high-dimensional & continuous!

To use, must satisfy static facts (constraints)

Motion|?gl, ?t, [?gZf Kin (?b, [?p [ ?2gl [?g]
N\ d/ vV *d
(:action move N SEX:) N 14
:parameters (?2gl, ?t, ?2g2) move
:precondition {Motion (?gl, ?t, q2), AtConf (?gl) }
:effect {AtConf (?g2), =AtConf (?gl)))

(:action pick 14pidk
:parameters (?b, ?p, ?g, ?g)
:precondition {Kin(?b, ?p, ?g, ?qg), AtConf (?q),
AtPose (?b, ?p), HandEmptvy () }
:effect {AtGrasp(?b, ?g), =AtPose (?b, ?p), =HandEmpty () })




Search in Discretized State-Space

Suppose an oracle gave use the following values and facts:

I3 ~ {Motion ([-7.5 5.],7, [@0. 2.5]), Motion([-7.5 5.],1, [-5. 5.])
~ Motion([-5. 5.]1,1s,[0. 2.5]1), Kin(a,[0. 0.1,[0. -2.51,[0. 2.51), ..}

AtConf ([0. 2.5])
AtPose (A, [0 O.])
AtPose (B, [7.5 0.1])
a & Amove HandEmpty () a/// - Apick

move ([-7.5 5.1, 7., [O. 2.5]/7 \pick(A, [0. 0.1, [0. -2.51,[0. 2.5])

([-7.5 5.171)
AtConf ([0 2 o)
—— AtPose (A, [0. 0.])
50 = AtPose (B, [7.5 0.]) AtGrasp (B, (0. —2.5]) wemfl € @ @

HandEmpt;() AtPose(B,[7 5 0.1)

move ([-7.5 5.1, 1, [-5. SN move ([-5. 5.], 13, [0. 2.5])

//
a, E Amove AtCont S.]) a E Amove
AtPose

([-9.
(A, |
AtPose (B, |
HandEmpty (

0. 0.]) 'I
7.5 0.]) eee
)




No a Priori Discretization

Values given at start:

1 initial configuration: Conf ([=7.5 5.1)
Pose (A, [0. 0.])

Pose (B, [7.5 0.])

2 initial poses:

Planner needs to find:

1 pose for A within red: Contain (A, ?p, red)

1 collision-free pose for B: crree(a, ?p, B, ?p2)

| grasp for A and B: Grasp (A, ?g) ,Grasp (B, ?g)
4 grasping configurations: Xin (?b, ?p, 2?g, 29)

4 robot trajectories: Motion (?gl, ?t, 2g2)



What Samplers Do We Need?

Low-dimensional placement stability constraint (Contain)
e.g. 1D line embedded in 2D placement space

Directly sample values that satisfy the constraint

May need arbitrarily many samples

Gradually enumerate an infinite sequence

Placement
Sampler

Pose {pl,pg, }




Intersection of Constraints
T

= Kinematic constraint (Kin) involves poses, grasps,
and configurations

= Conditional samplers - function from input values
to a sampler that generates output values

Pose D

Config {ql, qo, }

Grasp ¢



Composing Conditional Samplers
N

= Outputs of one conditional

sampler are the inputs to
another sampler

Pose D .
= Sampling network

= Directed acyclic graph (DAG)

of conditional samplers
Config q

Gras
P9 Trajectory T

Config q’



Stream: Specification for a Sampler

What do inputs & outputs represent?

Communicate semantics using predicates (constraints)

Declarative stream specification:
Domain facts - static facts declaring legal inputs

e.g. only configurations can be motion planner inputs

Certified facts - static facts that all outputs are
asserted to satisfy with their corresponding inputs

e.g. poses sampled from a region are within it



Sampling Placements in a Region

(:stream sample-region

:1inputs (?b, 7?r)

:domain {Block (?b), Region(?r)}

:outputs (?p)

:certified {Pose(?b, ?p), Contain(?b, ?p, ?r)})

def sample_region(b, r):

x_min, x_max = REGIONSI[r]

w = BLOCKS[b].width

while True:
X = random.uniform(x_min + w/2,

X_max — w/2)

p = np.array([x, 0.])
yield (p,)

/ » Pose(b, p1), Pose(b, p2), ...

Block(b)

Region(r)



Sampling IK Solutions

* Inverse kinematics (IK) to produce robot grasping
configurations

= Trivial in 2D, non-trivial in general (e.g. 7-DOF arm)

(:stream solve-1k

:inputs (?b, ?p, ?g)

:domain {Pose(?b, ?p), Grasp(?b, ?9)}
:outputs (?q)

:certified {Conf(?qg), Kin(?b, ?p, ?g, ?29d)})

Pose(b, p)
t ‘/ » Conf(q1), Conf(qg2)

Grasp(b, g)




Invoking a Motion Planner

ST | —
= “Sample” multi-waypoint robot trajectories

= Use off-the-shelf motion planner (e.g. RRT)

(:stream sample-motion

:inputs (?gl, ?2g2)

:domain {Conf (?gl), Conf (?2gZ2) }

:outputs (?t)

:certified {Traj(?t), Motion(?gl, ?t, ?g2)})

a




PDDLStream Algorithms

[Garrett, Lozano-Pérez, Kaelbling 2020a]




Two PDDLStream Algorithms

PDDLStream algorithms decide which streams to use
Reduce planning to a sequence of PDDL problems

1. Search a finite PDDL problem for plan

2. Modify the PDDL problem (depending on the plan)

! 1" Feedback [ -

[Garrett 2018]
[Garrett 2020a]

L J_New values | :

Implement search using off-the-shelf domain-
independent PDDL planners (e.g. FastDownward)

Greedy best-first heuristic search

Exploit factoring in PDDL for heuristics (e.g. hrr)



Incremental Algorithm

94
* Incrementally grow the set of values and facts

= Repeat:

1. Instantiate and sample streams to generate new
values and prove new facts

2. Search for a plan using the current values

3. Return when a plan is found

No plan

Sample

Discrete

Start =
NY=Yelgels

Streams

_New values

Plan found

[Garrett 2018]
[Garrett 2020qa]

Donel




Incremental: lteration 1 - Sampling

Iteration 1 - evaluated 14 streams
Sampled:
4 new block poses:‘ A
2 new robot configurations: v
2 new trajectories:

V V

A NS AN




Incremental: lteration 1 - Search

e B
= Pass current discretization to FastDownward

= |f infeasible, the current set of samples is insufficient

Discrete
| ‘ I
S ch Infeasiblel




Incremental: lteration 2 - Sampling

lteration 2 - evaluated 54 streams
Sampled:
4 new block poses:‘ A
4 new robot configurations: v
10 new trajectories: =l

AW/

AN _NE A AN




Incremental: lteration 2 - Search

98
» Pass current discretization to FastDownward

= |f infeasible, the current set of samples is insufficient

vm SES s still Infeasible!
NY=Yeldels



Incremental Example: lterations 3-4

Iteration 3 - 118 queried streams - infeasible
Iteration 4 - 182 queried streams - solved!

Solution:
1 .move ([-7.5 5.1, . [7.5 2.5])
2.pick (B, 17.5 0.1, [0. -2.5], [7.5 2.5])
3.move ([7.5 2.5], «», [10.97 2.5])
4.place (B, [10.97 0.], [0. -2.5], [10.97 2.5])
5.move ([10 97 2.5], 15, [0. 2.5])
6.pick (A, [0. 0.1, [0. -2.5], [0. 2.5])
7 .move ([@ 2.5], T, [7.65 2.5])
8.place(a, [7.65 0.1, [0. -2.5], [7.65 2.5])

Planner generated all but the underlined values

Drawback - many unnecessary samples produced



Optimistic Stream Evaluation

Many TAMP streams are computationally expensive
Inverse kinematics, collision checking, motion planning
Only query streams after they are identified as useful

Plan with optimistic hypothetical outputs

Inductively create unique optimistic placeholder
values for each stream output (denoted by prefix #)

l.s-region (A, red)-#p0
2.s-ik (A, [0. 0.], [0. -2.5])-#g0,
3.s-1ik (A, #pO, [0. -2.5])-#92,

4 .s-motion (A 0 2)#t0, .. [Garrett 2018]
ton (A, 799, #92)-rt, [Garrett 2020a]




« Lazily plan using optimistic values before real values
Start

Focused Algorithm

= Repeat:

1.

Construct optimistic
stfream outpufts

2. Search with real &

optimistic values

3. Retrace and

evaluate streams

4. Replace optimistic

with real if they exist

. Return if all succeed

Optimistic
Streams

Optimistic wEvaluated
values e Streams
wmw Optimistic ©
Discrete slan Sample
Search Streams
+New values_.
Real plan
Donel

[Garrett 2018 ][Garrett 2020a]




Focused: lteration 1

Iteration 1 - optimistically evaluated 46 streams

Created:
» »
4 optimistic block poses: /%
6 optimistic robot configurations: *
o4
36 optimistic trajectories: ------.- >
AN Y AN




Focused: lteration 1 - Sampling

Optimistic plan:

[move ([-5. 5.1, #t0, #g0), pick(A, [0. 0.],[0. -2.5], #g0),
move (#g0, #t2, #qgl), place (A, #p0, [0. -2.5], #g1) ]

s-region: (A, red)->(#p0)

N

t-cfree:(A, #p0, B, [7.5 0. |)->() s-1k:(A, #p0, [-0. -2.5])->(#ql)

\

Queried streams: s-motion:(#q0, #ql)->(#t2)
1.s-region (A, red)-[8.21 0.]
2.s-ik(a, le. eo.], lo. -2.5])-l0. 2.5]
3.t-cfree(A, [8.21 0.], B, [7.5 0.])—-False

Temporarily remove these streams from the next search




Focused: lteration 2

Iteration 2 - optimistically evaluated 42 streams

Removed optimistic pose and configuration

Added sampled pose and configuration Av
Added 1 optimistic robot configurations:*

\'

Added 14 optimistic trajectories: ------- >

:J-d""——'h'h

AY;
‘ :“:) :
Se VMMM

\ Y ¢ *"

‘e Mo
\ \

priad RN
/;" \\
s
:l’;‘-fV'— o A--?m--
q

LR AR
1 1
4 Y




Focused: lteration 2 - Sampling

New optimistic plan:
[move ([-5. 5.],#t4,#g2), pick(B,[7.5 0.],[0. -2.5], #92),
move (#g2, #t9, #g3), place (B, #pl, [0. -2.5], #g3),
move (#g3, #t6, [0. 2.51), pick(@a,[0. 0.]1,[0. -2.5],10. 2.51),
move ([@0. 2.51, #t8, #94), place (A, [8.21 0.1, [0. -2.5],#94) ]

- .- .y,
’4 N
X 4
’ .

iy

AN
A\ 2

Different stream plan might succeed!

s-region:(B, grey)->(#pl)

/ ' -

\
t-cfree:(B, #pl, A, [0.0.])->() t-ctree:(A, [8.21 0. |, B, #p1)->() s-ik:(B, [7.50. ], [-0. -2.5])->(#q3)
Y

s-motion:([-5. 3.], #q3)->(#t4)




Optimistic Planning with Optimization

Instead of sampling, /conf(#ql)
directly optimize the  #ql — dist(#q0, #q1)
constraint network > cont(#q0)

motion(#q0, #t2, #ql)
dist([-5. 6.], #q0)

Kin(A, #q0, [0. 0.], [-0. -2.5])

“motion([-5. 6.], #0, #q0)

Non-convex constrained #q0 —
mathematical program q
solver as a stream

. #2
Additional PDDLStream X traj(#2)
algorithms... kin(A, #ql, #p0, [-0. -2.5])
[move ([-5. 6.], #t0, #g0), #10 —traj(#t0)
pick (A, [0. 0.],[0. -2.5], #g0),
move (#g0, #t2, #qgl), #p) —— /pose(A )
place (A, #p0, [0. -2.5],#gl) ] \cfree(A #p0, B, [7.50. ])

contain(A, #p0, red)



Scaling Experiments

Inremen’rc:l 120+
Focused ~25s

Incremental ~20s
Focused ~10s

Incremental 120+

Focused ~20s [Garrett 2018]




Diverse Experiments




Diverse Experiments

Problem

Regrasp

98

100

Push

100

11

100

13

Wall 95 10 98 13 100
Stacking 100 | 9 100 | 9 100
Nonmon. 25 21 08 15 0

Dinner 0 - 100 | 27 0

Success percentage (%), Average runtime in sec. (t)




TAMP with Uncertainty

[Garrett, Paxton, Lozano-Pérez, Kaelbling, & Fox 2020b]




Hybrid MDP /POMDP

I
= Nondeterministic outcomes - stochastic effects

= Partial observability - latent state
= The true state is unknown: probabilistic inference
= Belief space planning

= Plan over beliefs: probability distributions over states
[Kaelbling 201 3]

[Hadfield-Menell

201 5] R DG T




Dealing with Action Uncertainty

Partial observability and stochastic action effects
MPC policy: estimation, replanning, and control

State estimator compresses history into belief
statistic S; that encodes uncertainty

Planner finds plan [a1, ..., ap i’
Tail of plan serves as @
certificate that plan has n |
low cost-to-go s v e
Controller converts first 9t —> —

action a1 into torques a1



Localize and Cook Spam (on Stove)

[Garrett 2020b]

_dl|;

’
IT‘I




Dealing with State Uncertainty

ey
= Occlusions due to doors, drawers, objects, robot, ...

= State estimator: particle-filters over object poses

= Multimodal distributions capture view-cone geometry

« Need active information
gathering to find objects

= Open doors/drawers

= Relocate occluding objects
* Plan in belief space

» (Instead of state space)

= Plan future observations




Belief Space PDDLStream

State variables and action parameters are
probability distributions (instead of point estimates)

Observation actions model the belief update process:

Prior x observation — posterior

Pose pc:r’rlcleP ~ View-cone

distribution j %observqhon
(:action detect

:parameters (70, [?pbl] ?obs! [PpbZ
:preconditicn {BeliefUpdate (?0, 7pbl, 7?obs, ?pb2Z),
AtPoseB (7?0, ?pbl), BVisible(?0, ?pbl, ?0bs) }
:effect {AtPoseB(?0 ?pb2), =AtPoseB(?0, ?pbl),
total-cost+=0bsCost (?0, ?pbl, ?obs)}




Bayesian Inference Streams

e
Qutcomes of detect

P (xR — ~ P (D



Prior: Spam in One of the Drawers




TAMP with Unknown Objects

[Curtis*®, Fang™, Lozano-Pérez, Kaelbling, Garrett, 2021 ]




Goal: all objects are in a bowl of the same color

Yobj. =
119

bowl. =

color. In(obj,bowl) A Color (obj,color) A Color (bowl,color)




Plan using Estimated Affordances

= Learned segmentation, shape estimation, grasp prediction

= Streams call perceptual modules using object point clouds

Segmentation

Points Shape Grasps

Ref: 0194

Cat: Unknown
Color: #3B2
i Pos:(0.1,0.8, 0)

i Properties

PDDLStream

0

Points Shape Grasps

Ref: 0401

Cat: Unknown

Color: #FB2
Pas: (0.1,0.9, 0)

E Properties

¥ 9%

Points Shape  Grasps

Ref: 0290

Cat: Box
Color: #2F1

. Pos:(0.2,0.9, 0)
. Properties

Execution




Goal: all objects are on a blue target region

‘v’obj . dregion. On(obj, region) N Color (region,blue)

| —_— 'aﬂ{
N =

‘—.*




Single System Generalizes across
Obijects, Goals, Initial States




Takeaways

Task and Motion Planning (TAMP): hybrid planning
where continuous constraints affect discrete decisions

Sampling is powerful for exploring continuous spaces

PDDLStream: planning language that supports
sampling procedures as blackbox streams

Domain-independent algorithms

Lazy/optimistic planning intelligently queries only @
small number of samplers

Applies to probabilistic & partially observable TAMP
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