CSE-571

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

Motion/Path Planning

* Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

» Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

of what 1s usually referred to as path planning):

“ 2 ,\ \

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

4< “Immovable 4
—]-Obstacles
A i / i
v h <

A
Goal Configuration

Start

Configuration
. J

Piano Movers =~ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

A 4

Path/Motion Planner)

path

> Controller

lcommands

map update pose update

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

" Path/Motion Planner)
path
. Controller)
lcommcmds
B
map update pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning;
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
° Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (i.e., most likely) environme, 07 ¢Viaies off s path

- plan a single least-cost trajectory under th* .
- re-plan as new information arrives re-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning;
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

computationally MUCH harder

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning

- constructing a graph
- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning

- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

v

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

discretize

v

planning map

S: 8828y

g, convert into a graph .
s O

search the graph
for a least-cost path

86 @ fI’OIIl Sstart tO Sgoa[

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S{ S, | S
1 2 3 9 e‘ @ search the graph

convert into a graph
Ss | Ss stapi @ @ for a least-cost path

Se @ from S, t0 Sgoa

CSE-571: Courtesy of Maxim Likhachev, CMU

planning map

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

- Problem: transitions difficult to execute on non-holonomic
robots

discretize

v

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

 Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

replicate it

% D .
online

Q"’ 37
C(s,,s,) = 100

C(s4Sg) =95

C(s4,S¢) =95

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

 Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness Sﬂ% %

action template

! g

- W
C(s,S,) = 100

. ., C(s;,85) =5
replicate it

online

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning
- constructing a graph

- search with D*

 Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

* Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s (0 Sgp4

h(s) -

the cost of a shortest path
from sy, to s found so far

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

* Computes optimal g-values for relevant states

at any point of time:

heuristic function

S)—,

/

h(s)

b

one popular heuristic function — Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

o GG,
CLOSED = {} Jl 2

OP EN = {Sstart}

next state to expand: s,,,,, 3 @/

§= ® §= x®
Maxim Likhachev, University of Pennsyfilinza h=1

|

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

lfg(S ;) g g(S) i C(S’S;) g(SZ) > g(Sstarl) + C(Ssz‘art’SZ)
ofs) = g(5) + clss) Y
insert s~ into OPEN;
8= 8= ©
h=2 h=1

CLOSED = {] hi)/' 0
OPEN = {s,..} @ J 1 | Sgoal
next state to expand: s,,,,, 3 @/

§= ® §= x®
Maxim Likhachev, University of Pennsyfilinza h=1

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=0 2
CLOSED = {51, Cﬁ %

OPEN = {5,

next state to expand: s, 3 @/

§= ® §= ®
Maxim Likhachev, University of Pennsyfilinza h=1

|

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

— 2 _
CLOSED = {s.,.5,) i &) % =0
starp® 2 Jl

OPEN = {s,,s,/

next state to expand: s, 3 @/

g=2 g= ®
Maxim Likhachev, University of Pennsylianda h=1

|

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 —=
B h=3 @ %

CLOSED = {S47053:5)/ |
OPEN = {848 gouif i
next state to expand: s, 3

g=2 g= @

Maxim Likhachev, University of Pennsylianda h=1

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=1 g=3
h=2 h=1
APPOLONg
_ h=3 2

CLOSED = {s,,.,555,,5,/ 1
OPEN = {83,8 5ou1f i
next state to expand: Sgoal 3

g=2 g=35

Maxim Likhachev, University of Pennsylianda h=1

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) + c(s.s)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

OPEN = {53}

done 3

g=2 g=>
Maxim Likhachev, University of Pennsylianda h=1

=0 2 _
CLOSED = s A % i
o {Sstart’SZ’S]’S4’Sg0al} J i

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —*3 @

we can now compute a least-cost path g=2 g=3
Maxim Likhachev, University of Pennsylianda h=1

AP OSSO
h=3 2 h=0
o !

1

A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —*3 @

we can now compute a least-cost path g=2 g=3
Maxim Likhachev, University of Pennsylianda h=1

APPSO
h=3 2 h=0
S !

1

A* Search

* [s guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

» Performs provably minimal number of state expansions
required to guarantee optimality — optimal 1n terms of the

computations

g=2 g=)5
h=2 h=1

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

* Is guaranteed to return an optimal nath (in fact, for every

expanded state) — 071é2ps with robot deviating off its patﬁ‘. mnm
if we search with A*
backwards (from goal to start)

» Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal 1n terms of the
computations

|

g=2 g=)5
h=2 h=1

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

e A* Search: expands states in the order of f = g+4 values

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

e A* Search: expands states in the order of f = g+4 values

for large problems this results in A* quickly
running out of memory (memory. O(n))

CSE-571: Courtesy of Maxim Likhachev, CMU

Eftect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > I = bias towards states that are closer to
goal

solution is always e-suboptimal.:
cost(solution) < e-cost(optimal solution)

Sctrrrr

goal

CSE-571: Courtesy of Maxim Likhachev, CMU

initial search (e = 2.5) second search (¢ = 1.5) third search (¢ = 1.0)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > I = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Eftect of the Heuristic Function

* planning in 8D (<x,y> for each foothold)
 heuristic 1s Euclidean distance from the center of the body to the goal location
« cost of edges based on kinematic stablhty of the robot and quality of footholds

P Hw[|
"P Eﬂ

planning with R* (randonﬁied version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning

- constructing a graph
- search with A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRYV navigating
initially-unknown environment planning map and path

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):
— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

Tlartanracing, CMU
CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially

J3[12]1nJiolol8[7[6]l6]6l6]6]6l6]6[6]6
ll2lunliolols|7l615 515151515 151515
41312111110 9[8[7165444l alalalal4a
({1l ols[7654313331333
413121110l 9ol8l71l6l514al3 2212121213
14 13112 wlolsl7lels5sla432l1 11213
14 [1312 9 71615432 10ea 1213

514321 ry1 111213
14 [13 10 | 9 |8 F6-y5"d"13—12 |22]2]12]3
413 [12[11]10] 9 51433333313
413 [12 11101 71654 lalalalalalala
141312 111 7161515551515 [5[51[5
14113112 12 71l6l6l6|l6l6l6]l616l16]6
F_’:% 7171717171717 1717 1717
18 |s 16514 | 14 S| 8|8 8|8 |8 8|88 8%

cost of least-cost paths to s,,, after the door turns out to be closed

14113 112111]110]9 |8 [76
1413121111109 817 1]6
1411312111019 [8] 716
1411312111019 [81716
1413112)11[10] 9 [8 |7] 6
13 |12 9 L& T 6
13 | 12 9 7 16 Sgoal

f

(o] DN (@) (W] BN (UR] | B8] [y SR (ol | RO) LR BEN)] (@)

(o2e] DN | (@)Y L] L] (O LO0) L0000 LW (B9 L L L) () (@)
[o2s] BN (@) (W] BEN B BN BN REN AEN EEN EEN BN (9] (@)Y
[07s] ON] (@) (7] BN (UF] [O] [1] (RS (§0] (RS (V5] I (I} (@)Y
(o7e] EN] (@)} (W] SN (U] | WS] [T Py ol | RO) LUS] NEN 0] (@)Y
[o7e] BN] (@)} L] FEN (UF] [8] [8] | RS (§0] | NS (UF] NN ()] (@)Y
(ve) EN] (@) (W] F=N U] LUV] (F%] LUS] (U%] LUS] UV F=N () (@)Y

(o7e] EN] (@)} (W] FEN] (U] (U] (FN] (FR) §5] (FN] LUN] NEN U] (@)Y
[os] BN] (@) [92] WSS (OS] |87 [ol P | RO (US] NN () (@)Y

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially

14113112]11]10[9 |8 |76 |6 |6]|6|6]6]6][6]61]6
411312]11]10[{9 | 8|7 |6 |5 |5]|5|5]5]5[5]51]5
1411312111101 9 1817165141414 [41414([4]4
14113112 (11 (10| 9 | 8716|5413 131313131313
4113112111019 8176|5413 [2[]2]121]12]21]3
14113112 0l 918716151413 ([21]1 | 1 [21]3
14113] 12 9 7 161541312 1 dseeql1 213

S14 (312141 11213
14113 10| 9 |8 y=Foyeoy=Sopdpr 3= | 2 | 2 121213
14113]12[11]10] 9 5 a3 13 122 L 2 | 2|3
4131211101 7 1 6 | Sonus _) :
1413 [12 1] 1 7 These costs are optimal g-values if search is
CEREREp VA 3 ; S done backwards
|18|Smm|161|15!14114 8 [81818 8 | 5 or I om oMo Ty

cost of least-cost paths to s,,, after the door turns out to be closed

14113 112111]110]9 |8 [76
1413121111109 817 1]6
1411312111019 [8] 716
1411312111019 [81716
1413112)11[10] 9 [8 |7] 6
13 |12 9 L& T 6
13 | 12 9 7 16 Sgoal

f

(o] DN (@) (W] BN (UR] | B8] [y SR (ol | RO) LR BEN)] (@)

(o2e] DN | (@)Y L] L] (O LO0) L0000 LW (B9 L L L) () (@)
[o2s] BN (@) (W] BEN B BN BN REN AEN EEN EEN BN (9] (@)Y
[07s] ON] (@) (7] BN (UF] [O] [1] (RS (§0] (RS (V5] I (I} (@)Y
(o7e] EN] (@)} (W] SN (U] | WS] [T Py ol | RO) LUS] NEN 0] (@)Y
[o7e] BN] (@)} L] FEN (UF] [8] [8] | RS (§0] | NS (UF] NN ()] (@)Y
(ve) EN] (@) (W] F=N U] LUV] (F%] LUS] (U%] LUS] UV F=N () (@)Y

(o7e] EN] (@)} (W] FEN] (U] (U] (FN] (FR) §5] (FN] LUN] NEN U] (@)Y
[os] BN] (@) [92] WSS (OS] |87 [ol P | RO (US] NN () (@)Y

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially

14113112]11]10[9 |8 |76 |6 |6]|6|6]6]6][6]61]6
411312]11]10[{9 | 8|7 |6 |5 |5]|5|5]5]5[5]51]5
1411312111101 9 1817165141414 [41414([4]4
14113112 (11 (10| 9 | 8716|5413 131313131313
4113112111019 8176|5413 [2[]2]121]12]21]3
14113112 0] 9|1 8|17 [6]5]14]13[21]1 | 1 [21]3
14113] 12 9 7 161541312 1 dseeql1 213

S14 (312141 11213
14113 10| 9 |8 y=Foyeoy=Sopdpr 3= | 2 | 2 121213
14113]12[11]10] 9 5 a3 13 122 L 2 | 2|3
4131211101 7 1 6 | Sonus _) :
1413 [12 1] 1 7 These costs are optimal g-values if search is
CEREREp VA 3 ; done backwards

| 18 |Smm| 16 .| 15-147] 14 8

How to reuse these g-values from one search to
cost of least-cost paths to

Sgoal another? — incremental A*

1413112111101 9 8 7 6
14113 [12]111[10] 9 8 7 6
14113[12111[10] 9 8 7 6
1411312111101 9 8 7 6
14113 112(11]110] 9 8 7 6

13112 9 8 e 6

13112 9 7 6 Sanal

f

o] DN (@ (W] BN (UR] | B8] [y SR (ol | RO) LVR) RSN)] ¢

071 BN] ()] (W] (9] (W) (W |9) (W) @) (W2 L) (9] 92 ‘)
[o2] BN | (@)Y (W] EEN SN BEN BEN SN TRy AEN) RN HEN D] (@)
[o7] BN] (@)Y (W] F=N| (F¥] [F¥] [F%] (V] F5] (F¥] [FS] NEN) (o
[o%e] BN (<) (W] =N (W8] [XS] [S (S = (NS) [F¥] o Y 'd
[05:] ON] (o) (W] F=N (F5] [[S] [NS] (] 1] (S]] (V5] IS W)Y (o
o] BN (=) [W]] F=N [F%] [9%] (9% [F¥] (F¥] [F¥] %] iy Y [d

(o] BN | (@) (W] BEN (UR]] | 8] | 8] | S0 (3] | S0 (U8] NEN)] (@)
(o70] CN] (@) (9] SN (9] [RO] Py Py PR | RO LUF] NEN) (o

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches

cost of least-cost paths to S, initially

1411312]11]10] 9 1
14113 [12]11]10] 9 7
141131211110 9
1411311211101 9
9
9
9

[oze]l (o2¢] [o7e] [wre] (7e] (e}

141131211110
14 13 [12 10

7

7

7

13 7

14113112 . - 7
9

14 | 13 10 8 | 7

7

' 7

7

7

]

f

|l o—E |—o|w ||y

14113]12]11]10
141131121110
1411312 11
14 | 13] 12 12

- Would # of changed g-values be
cost of least-cost paths to s, very a’iﬁ”eren { fO?’ fOVWLZVd A*?

14

W] F=N LUS] (V5] (U] (FN) (FN) (FN] (FN] NEN (U} (@)Y

NP == = I | | = [[N

) SN (U] [6] [38] ([S] RS ([] (FS] NEN ()} (@)
PAESS (93] 1887 [0 o o) (W] LU] B () (@)
VA ESN (O8] 1R8] (18] 18] [] 9] V5] NaN)] (@)Y
.| SN LVS] (U%] (99] (V5] LUS] (VF] (V] NiN) (] [@)

DY I P S T U 1 T S (O

lO\O\O\ @)} (@2} [e)) (o)) [0)} [0)] @)} @)}
e (O (W) (O (V) (9} ()] ()Y) (9 (9} 9] =)

~

13/12111110] 9 1817616
14113 112111]110]9 | 8 [7 |6
1411312111019 [8] 716
1411312111019 [81716
1413112)11[10] 9 [8 |7] 6
13 |12 9 L& T 6
13 | 12 9 7 16 Sgoal

f

[o2e] EN] (@)Y (W] BN LUN] | SO] oy SR Tl RO LUR] BEN)

(020 BN (@) (W] L] (W) L4 L) L () L L] L) ()
ore] DN (o) (U] BN BE BEN BEN EEN AN BEN EEN BEN (O] (o)
[vle] CN] (@) (W] NEN) (FF]) LUN] (UF] (FU] UV (U9] (FW] NN ()
[o7e] EN] (@) (W] N (UF] | RS] | 9] | RS R0] | [0 (UF] NEN)}
[07s] O] (@)Y (9] FSSS (UF] [RS] [t [Pl P2 | RO) (U9 BN ()
[vle] CN] (@) (] SN (U] [W] [Ton) (Sl (S | RO) LU NN (9731

[o7e] EN] (@) (W] N (UF] [RS] | 9] | RS (0] | RO (U5] NiN)}
(7] BN] (@)Y (W] F=N [FF] [FF] (9% [FF] [(FF] [US] (F¥) NiN (W)

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially

411312 /11]10]/ 918 17]16]6|6]161616]61]16161F6

1413112]11f(10]9 |87 |65 [S5]5]5 |55]|5[515

1411312111019 8|76]5]414[4]14]14]14]14114

1411312111109 181765413 13131313 ([31]3

1411312111110} 9187|6543 [2[2]2]12]21]3

14 13 [12 10/ 9| 8|7 |6|5|4]3[2]1]1]1]21]3

9 7 1615 41312 | 1hsgy 1 [21]3

S{413 121471111213

Frope gy St 3= | 2 | 2 12 [23

1411312 10 S|4 1313131313313

141131121110 7165414141414 14([414

1411312 11 7165 fst=s "~)
14 113112 12 71 e

F 13
18 [s 161514 | 14

work needs to be done if robot

S
=

cost of least-cost paths to »,, deviates o ﬁ 11S path 7

Al B[]iuliolols8[7161610, . -
1413121111101 9 8 7 6 5 5 5 5 5 5 5 5 5
14113112111 1101 9 8 7 6 5 4 [4 4] 4 4 | 4 4 1 4
Al 0] o 8 7161514131313 13131313
a3l liolols 7 le6lsala3lolalol2]2]3
312 O 817 161514324411 [1[>3
1312 9 71615141321 o123
512321111213

512312121212 1213

51433333313

5 4 4 4] 4 4 | 4 4 |1 4

515 55515151515

6l6l6l6l6l6l61616

717 171 71717171717

8 |8 8181818]8]8]8

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

1 B3 BT B B B B B

CSE-571: Courtesy of Maxim Likhachev, CMU

cost

13,000

11,000

9,000

7,000 !

Anytime Aspects

cost = 133,736
=390
expands = 1,715

cost = 77,345
e=1.0

expands = 14,132

0.2 | 0.4 | 0.6
time (secs)

CSE-571: Courtesy of Maxim Likhachev, CMU

Searching the Graph

 Incremental behavior of Anytime D*:

initial path a path after re-planning

Maxim Likhachev & Dave Ferguson

51

Searching the Graph

e Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

go

S=(z, y, 0, v)

Maxim Likhachev & Dave Ferguson

53

Searching the Graph

* In our planner: i(s) = max(h,,,..(s), h,,(s)), where

— h,,..;,(s) — mechanism-constrained heuristic

eny

— h,,,(s) — environment-constrained heuristic

Necn(S) — considers only dynamics constraints heno(S) — considers only environment
and ignores environment constraints and ignores dynamics

l

Maxim Likhachev & Dave Ferguson 54

Searching the Graph

* In our planner: i(s) = max(h,,,..(s), h,,(s)), where

— h,,..;,(s) — mechanism-constrained heuristic

eny

— h,,,(s) — environment-constrained heuristic

Necn(S) — considers only dynamics constraints heno(S) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

\

e 7] WS

Maxim Likhachev & Dave Ferguson 55

Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hap 26,108 1.30
hfsh 124,794 3.49

CSE-571: Courtesy of Maxim Likhachev, CMU

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Trajectory Pre-Computation and
Optimization

Pre-compute parameters for set of end points

(a) (b) zm) () ym o i

x(m) @) y(m)

Optimize (fine-tune) parameters initialized via interpolation

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Summary

 Deterministic planning

- constructing a grapk
- search Wlth A* used a lot in real-time

- search with D*
think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

\

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

CSE-571: Courtesy of Maxim Likhachev, CMU

