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Motion/Path Planning

* Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

» Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...
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Motion/Path Planning

of what 1s usually referred to as path planning):
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Motion/Path Planning
Examples (of what is usually referred to as motion planning):
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the example above is borrowed from www.cs.cmu.edu/~awm/tutorials
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Motion/Path Planning

Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm
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Motion/Path Planning
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Motion/Path Planning

" Path/Motion Planner )
path
. Controller )
lcommcmds
B
map update pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)
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Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning;
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen
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Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
° Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (i.e., most likely) environme, 07 ¢Viaies off s path

- plan a single least-cost trajectory under th* .
- re-plan as new information arrives re-planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen
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Uncertainty and Planning

 Uncertainty can be in:
- prior environment (1.€., door 1s open or closed)
- execution (1.€., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning;
- assume some (1.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan 1f unaccounted events happen
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Urban Challenge Race, CMU team, planning with Anytime D*
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Outline

* Deterministic planning

- constructing a graph
- search with A*
- search with D*
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Outline

* Deterministic planning

- search with A*
- search with D*
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Planning via Cell Decomposition

» Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

v

planning map
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Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

discretize

v

planning map

S: 8828y

g, convert into a graph .
s O

search the graph
for a least-cost path

86 @ fI’OIIl Sstart tO Sgoa[
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Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S{ S, | S
1 2 3 9 e‘ @ search the graph

convert into a graph
Ss | Ss stapi @ @ for a least-cost path

Se @ from S, t0 Sgoa
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Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

- Problem: transitions difficult to execute on non-holonomic
robots

discretize

v
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Planning via Cell Decomposition

 Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

replicate it

% D .
online

Q"’ 37
C(s,,s,) = 100

C(s4Sg) =95

C(s4,S¢) =95
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Planning via Cell Decomposition

 Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness Sﬂ% %

action template

! g

- W
C(s,S,) = 100

. ., C(s;,85) =5
replicate it

online
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Outline

* Deterministic planning
- constructing a graph

- search with D*

 Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)
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A* Search

* Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s (0 Sgp4

h(s) -

the cost of a shortest path
from sy, to s found so far
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A* Search

* Computes optimal g-values for relevant states

at any point of time:

heuristic function

S )—,

/

h(s)

b

one popular heuristic function — Euclidean distance
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A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

o GG,
CLOSED = {} Jl 2

OP EN = {Sstart}

next state to expand: s,,,,, 3 @/

§= ® §= x®
Maxim Likhachev, University of Pennsyfilinza h=1
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A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

lfg(S ;) g g(S) i C(S’S;) g(SZ) > g(Sstarl) + C(Ssz‘art’SZ)
ofs) = g(5) + clss ) Y
insert s~ into OPEN;
8= 8= ©
h=2 h=1

CLOSED = {] hi)/' 0
OPEN = {s,..} @ J 1 | Sgoal
next state to expand: s,,,,, 3 @/

§= ® §= x®
Maxim Likhachev, University of Pennsyfilinza h=1



A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=0 2
CLOSED = {51, Cﬁ %

OPEN = {5,

next state to expand: s, 3 @/

§= ® §= ®
Maxim Likhachev, University of Pennsyfilinza h=1

|



A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

— 2 _
CLOSED = {s.,.5,) i &) % =0
starp® 2 Jl

OPEN = {s,,s,/

next state to expand: s, 3 @/

g=2 g= ®
Maxim Likhachev, University of Pennsylianda h=1
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A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=1 g=3
h=2 5 h=1
g=0 —=
B h=3 @ %

CLOSED = {S47053:5)/ |
OPEN = {848 gouif i
next state to expand: s, 3

g=2 g= @

Maxim Likhachev, University of Pennsylianda h=1



A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

g=1 g=3
h=2 h=1
APPOLONg
_ h=3 2

CLOSED = {s,,.,555,,5,/ 1
OPEN = {83,8 5ou1f i
next state to expand: Sgoal 3

g=2 g=35

Maxim Likhachev, University of Pennsylianda h=1



A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) + c(s.s)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

OPEN = {53}

done 3

g=2 g=>
Maxim Likhachev, University of Pennsylianda h=1

=0 2 _
CLOSED = s A % i
o {Sstart’SZ’S]’S4’Sg0al} J i



A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —*3 @

we can now compute a least-cost path g=2 g=3
Maxim Likhachev, University of Pennsylianda h=1
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h=3 2 h=0
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A* Search

* Computes optimal g-values for relevant states

ComputePath function

while(s,,,; 1s not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED:;
for every successor s ~ of s such that s " not in CLOSED

if g(s”) > g(s) +c(s;s”)

g(s’) =g(s) +c(s,s’);
insert s~ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound —*3 @

we can now compute a least-cost path g=2 g=3
Maxim Likhachev, University of Pennsylianda h=1

APPSO
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A* Search

* [s guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

» Performs provably minimal number of state expansions
required to guarantee optimality — optimal 1n terms of the

computations

g=2 g=)5
h=2 h=1
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A* Search

* Is guaranteed to return an optimal nath (in fact, for every

expanded state) — 071é2ps with robot deviating off its patﬁ‘. mnm
if we search with A*
backwards (from goal to start)

» Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal 1n terms of the
computations

|

g=2 g=)5
h=2 h=1
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Effect of the Heuristic Function

e A* Search: expands states in the order of f = g+4 values
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Effect of the Heuristic Function

e A* Search: expands states in the order of f = g+4 values

for large problems this results in A* quickly
running out of memory (memory. O(n))
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Eftect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > I = bias towards states that are closer to
goal

solution is always e-suboptimal.:
cost(solution) < e-cost(optimal solution)

Sctrrrr

goal
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initial search (e = 2.5) second search (¢ = 1.5) third search (¢ = 1.0)
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Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =

g+eh values, ¢ > I = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)
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Eftect of the Heuristic Function

* planning in 8D (<x,y> for each foothold)
 heuristic 1s Euclidean distance from the center of the body to the goal location
« cost of edges based on kinematic stablhty of the robot and quality of footholds

P Hw[ |
"P Eﬂ

planning with R* (randonﬁied version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza
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Outline

* Deterministic planning

- constructing a graph
- search with A*
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRYV navigating
initially-unknown environment planning map and path
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new Information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):
— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

Tlartanracing, CMU
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches

cost of least-cost paths to S, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially
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Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite
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Anytime Aspects

1 B3 BT B B B B B
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cost

13,000

11,000

9,000

7,000 !

Anytime Aspects

cost = 133,736
=390
# expands = 1,715

cost = 77,345
e=1.0

# expands = 14,132

0.2 | 0.4 | 0.6
time (secs)
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Searching the Graph

 Incremental behavior of Anytime D*:

initial path a path after re-planning

Maxim Likhachev & Dave Ferguson
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Searching the Graph

e Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

go

S=(z, y, 0, v)

Maxim Likhachev & Dave Ferguson
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Searching the Graph

* In our planner: i(s) = max(h,,,..(s), h,,(s)), where

— h,,..;,(s) — mechanism-constrained heuristic

eny

— h,,,(s) — environment-constrained heuristic

Necn(S) — considers only dynamics constraints heno(S) — considers only environment
and ignores environment constraints and ignores dynamics

l
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Searching the Graph

* In our planner: i(s) = max(h,,,..(s), h,,(s)), where

— h,,..;,(s) — mechanism-constrained heuristic

eny

— h,,,(s) — environment-constrained heuristic

Necn(S) — considers only dynamics constraints heno(S) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

\

e 7] WS
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Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hap 26,108 1.30
hfsh 124,794  3.49
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Example, again

Urban Challenge Race, CMU team, planning with Anytime D*
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Trajectory Pre-Computation and
Optimization

Pre-compute parameters for set of end points

(a) (b) zm) () ym o i

x(m) @) y(m)

Optimize (fine-tune) parameters initialized via interpolation
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Summary

 Deterministic planning

- constructing a grapk
- search Wlth A* used a lot in real-time

- search with D*
think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

\

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!
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