CSE-571 Robotics

Bayes Filter Implementations

Particle filters

Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems, multi-modal beliefs
- Particle filters are a way to efficiently represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)

4/20/22

Probabilistic Robotics

Density Approximation

Particle sets can be used to approximate densities

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Rejection Sampling

- Let us assume that $f(x) \le 1$ for all x
- Sample x from a uniform distribution
- Sample c from [0,1]
- if f(x) > c keep the sample otherwise reject the sampe

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- *f* is often called target
- g is often called proposal

Resampling

- **Given**: Set *S* of weighted samples.
- Wanted : Random sample, where the probability of drawing *x_i* is given by *w_i*.

• Typically done *n* times with replacement to generate new sample set *S* '.

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1} z_t$):
- 2. $S_t = \emptyset, \quad \eta = 0$ **3.** For i = 1...nGenerate new samples Sample index j(i) from the discrete distribution given by w_{t-1} 4. 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1} $6. \qquad w_t^i = p(z_t \mid x_t^i)$ *Compute importance weight* 7. $\eta = \eta + w_t^i$ Update normalization factor 8. $S_t = S_t \cup \{< x_t^i, w_t^i > \}$ Insert 9. For i = 1...n10. $w_t^i = w_t^i / \eta$ Normalize weights

Particle Filter Algorithm

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor

Using Ceiling Maps for Localization

[Dellaert et al. 99]

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

P(z|x):

Elsewhere

Measurement z:

Global Localization Using Vision

Recovery from Failure

Localization for AIBO robots

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

Particle Filter Projection

Density Extraction

Sampling Variance

CSE-571 Robotics

Bayes Filter Implementations

Discrete filters

Piecewise Constant

4/20/22

Discrete Bayes Filter Algorithm

- 1. Algorithm **Discrete_Bayes_filter**(*Bel(x),d*):
- *2.* η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

- 9. Else if *d* is an action data item *u* then
- 10. For all x do

11.
$$Bel'(x) = \sum_{x'} P(x | u, x') Bel(x')$$

12. Return Bel'(x)

Piecewise Constant Representation

Grid-based Localization

4/20/22

CSE-571 - Probabilistic Robotics

Sonars and Occupancy Grid Map

CSE-571 - Probabilistic Robotics

Tree-based Representation

Idea: Represent density using a variant of Octrees

Tree-based Representations

- Efficient in space and time
- Multi-resolution

