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§ So far, we discussed the
§ Kalman filter: Gaussian, linearization problems, 

multi-modal beliefs

§ Particle filters are a way to efficiently represent 
non-Gaussian distributions

§ Basic principle
§ Set of state hypotheses (“particles”)
§ Survival-of-the-fittest

Motivation



Sample-based Localization (sonar)
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§ Particle sets can be used to approximate densities

Density Approximation

§ The more particles fall into an interval, the higher 
the probability of that interval

§ How to draw samples form a function/distribution?
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§ Let us assume that f(x)<=1 for all x
§ Sample x from a uniform distribution
§ Sample c from [0,1]
§ if f(x) > c keep the sample

otherwise reject the sampe

Rejection Sampling

c
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OK
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§ We can even use a different distribution g to 
generate samples from f

§ By introducing an importance weight w, we can 
account for the “differences between g and f ”

§ w = f / g
§ f is often called

target
§ g is often called

proposal

Importance Sampling Principle



Resampling

• Given: Set S of weighted samples.

•Wanted : Random sample, where the 
probability of drawing xi is given by wi.

• Typically done n times with replacement to 
generate new sample set S’.
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Resampling
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• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity

• Easy to implement, low variance



Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling



Robot Motion
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1. Algorithm particle_filter( St-1, ut-1 zt):
2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1
5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert
9. For

10. Normalize weights

Particle Filter Algorithm
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Particle Filter Algorithm



Start

Motion Model  Reminder



Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization

P(z|x)

h(x)
z



Under a Light

Measurement z: P(z|x):



Next to a Light

Measurement z: P(z|x):



Elsewhere

Measurement z: P(z|x):



Global Localization Using Vision



Recovery from Failure



Localization for AIBO robots



Adaptive Sampling



KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure



KLD-Sampling Laser



Particle Filter Projection



Density Extraction



Sampling Variance
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Discrete filters
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Piecewise 
Constant
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Discrete Bayes Filter Algorithm 
1. Algorithm Discrete_Bayes_filter( Bel(x),d ):
2. h=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7. For all x do
8.

9. Else if d is an action data item u then
10. For all x do
11.

12. Return Bel’(x)
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Piecewise Constant 
Representation
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Grid-based Localization
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Sonars and 
Occupancy Grid Map 
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Tree-based Representation

Idea: Represent density using a variant of Octrees
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Tree-based Representations

• Efficient in space and time
• Multi-resolution


