
CSE-571
Robotics

Neural Networks

[Slides courtesy of Daniel Gordon]

What is deep learning anyway?
Typical ML pipeline:

Extract features -> optimize model -> inference

Deep learning:

Optimize model -> inference

Each point belongs to one class

Goal: build a model that separates classes

E.g.: is this an image of a dog or a cat?

Classification: class labels
= Dog

= Cat

Each point has a (or many) real-valued label

Goal: build model to predict real-values

E.g.: How old is the person in this image?

Regression: real-valued labels

x (independent variable)

f(x)
(label)

Minimize some function
To minimize f(x)

f(x) = e-x + x2

Guess and check
To minimize f(x), when tiny change makes f(x) smaller, do that!

f(x) = e-x + x2

f(-.50) = 1.8987
f(-.51) = 1.9254
f(-.49) = 1.8724

To minimize f(x), when gradient is positive make x smaller, when
negative make x larger!

Gradient descent

f(x) = e-x + x2

f’(x)= -e-x + 2x

f (-.5) = 1.8987
f’(-.5) = -2.64872

Gradient is neg,
make x bigger!

To minimize f(x), when gradient is positive make x smaller, when
negative make x larger!

Gradient descent

f(x) = e-x + x2

f’(x)= -e-x + 2x

f (0) = 1
f’(0) = -1

Gradient is neg,
make x bigger!

To minimize f(x), when gradient is positive make x smaller, when
negative make x larger!

Gradient descent

f(x) = e-x + x2

f’(x)= -e-x + 2x

f (0.5) = 0.85653
f’(0.5) = 0.39347

Gradient is pos,
make x smaller!

To minimize f(x), when gradient is positive make x smaller, when
negative make x larger!

Gradient descent

f(x) = e-x + x2

f’(x)= -e-x + 2x

Know min is between
0 and 0.5, how can
we get more exact??

Gradient Descent Algorithm
To find argminxf(x)

Initialize x somehow
Until converged:

Compute gradient ∇f(x)
x = x - η∇f

η is learning rate

What does this have to do with ML?
Remember, we wanted to optimize our models to fit the data. First
we need a measure of “goodness-of-fit”:

Likelihood function - how likely our model thinks our data is

Loss function - how wrong is our model

Want to find parameters that maximize likelihood or minimize loss!

Non-convex optimization

Extrema may be local or global, don’t always know which you have!

With neural networks we are performing non-convex optimization, we aren’t guaranteed a
globally optimal solution :-(

f(x)

Loss functions are the key!
Just a function! Want to find argminweights(Loss Function)

A note on notation...
In 1d we talk about derivatives,

f’(x) = d/dx f(x)

We want to see how to change the input to modify the output, only
one variable to worry about!

A note on notation...
In more dimensions, we want partial derivatives to see how each
component in input affects output:

∇f(x) = [∂f(x)/∂x1, ∂f(x)/∂x2…]

∇f(x) is a vector of partial derivatives of the function f

∇L(w) is gradient of loss function wrt. w

Basic ML Models
Linear Regression: Best fit line

f(x) = Σi wi·xi = w·x
L(w) = ||Y - f(x)||2

∂L(w)/∂wi = xi[Y - w·x]

Basic ML Models
● Logistic Regression

○ σ(x) = 1/(1 + e-x) = ex/(1 + ex)
○ Maps all reals -> [0,1], probabilities! x

x x

xx

x

oo
oo
o

f(x) = σ(Σi wi·xi)= σ(w·x)
L(w) = ||Y - f(x)||2

∂L(w)/∂wi = xi[Y - w·x] Not actual logistic regression, but same
principle

Gradient Descent Algorithm
To find argminxf(x)

Initialize x somehow
Until converged:

Compute gradient ∇f(x)
x = x - η∇f

η is learning rate

Stochastic gradient descent (SGD)
Estimate ∇L(w) with only some of the data

Before:
wt+1 = wt - η Σi∇Li(w), for all i in |data|

Now:
wt+1 = wt - η Σj∇Lj(w), for some subset j

Maybe even:
wt+1 = wt - η ∇Lk(w), for some random k

of points used for update is called batch size

Basic ML Models
Single Layer Neural Network:

Basic ML Models
Single Layer Neural Network:

Feature engineering
Arguably the core problem of machine learning (especially in
practice)

ML models work well if there is a clear relationship between the
inputs and outputs of the function you are trying to model

Feature engineering
Arguably the core problem of machine learning (especially in
practice)

ML models work well if there is a clear relationship between the
inputs and outputs of the function you are trying to model

??

Feature engineering
Arguably the core problem of machine learning (especially in
practice)

ML models work well if there is a clear relationship between the
inputs and outputs of the function you are trying to model

??
??

Feature engineering
Arguably the core problem of machine learning (especially in
practice)

ML models work well if there is a clear relationship between the
inputs and outputs of the function you are trying to model

Quick Demo
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.79237&showTestData=false&discretize=false&percT
rainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collect
Stats=false&problem=classification&initZero=false&hideText=false

https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.79237&showTestData=false&discretize=false&percT
rainData=50&x=false&y=false&xTimesY=false&xSquared=true&ySquared=true&cosX=false&sinX=false&cosY=false&sinY=false&collect
Stats=false&problem=classification&initZero=false&hideText=false

https://playground.tensorflow.org/
https://playground.tensorflow.org/

What if we added more processing?
Create “new” features using old ones. We’ll call H our hidden layer

What if we added more processing?
H can be expressed in matrix operations

What if we added more processing?
Now our prediction p is a function of our hidden layer

What if we added more processing?
Can express the whole process in matrix notation! Nice because
matrix ops are fast

This is a neural network!
This one has 1 hidden layer, but can have way more
Each layer is just some function φ applied to linear combination of the previous layer

Quick Demo
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3&seed=0.79237&showTestData=false&discretize=false&perc
TrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collect
Stats=false&problem=classification&initZero=false&hideText=false

https://playground.tensorflow.org/

What went wrong?

φ is our activation function
Want to apply some extra processing at each layer. Why?

Imagine φ(x) = x, linear activation

φ is our activation function
Want to apply some extra processing at each layer. Why?

Imagine φ(x) = x, linear activation

p = v1h1 + v2h2 + v3h3

But h1 = x1w1 + x2w2, h2 = … etc
So

p = v1w1x1 + v1w2x2 + v2w3x1 + v2w4x2 + v3w5x1 + v3w6x2

= (v1w1+v2w3+v3w5)x1 + (v1w2+v2w4+v3w6)x2
= u1x1 + u2x2

Quick Demo
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3&seed=0.79237&showTestData=false&discretize=false&perc
TrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collect
Stats=false&problem=classification&initZero=false&hideText=false

https://playground.tensorflow.org/

Putting everything together

How do we learn it?: Logistic regression
● Linear classifier, f is logistic function

○ σ(x) = 1/(1 + e-x) = ex/(1 + ex)
○ Maps all reals -> [0,1], probabilities!

How do we learn it?
Now we have a “real” neural network (using linear activation for simplicity). How do we
predict p?

P = (2, -1)
Label = +

How do we learn it?
Now we have a “real” neural network (using linear activation for simplicity). How do we
predict p?

Calculate hidden layer neurons

P = (2, -1)
Label = +

How do we learn it?
Now we have a “real” neural network (using linear activation for simplicity). How do we
predict p?

Calculate hidden layer neurons
Calculate output p

P = (2, -1)
Label = +

How do we learn it?
We want to make p larger. How do we modify the weights? The first layer is easy, same as
normal linear model:

P = (2, -1)
Label = +

How do we learn it?
Say we want to make p larger. How do we modify the weights? The first layer is easy, same
as normal linear model:

P = (2, -1)
Label = +

How do we learn it?
Now what? Let’s calculate the “error” that the hidden layer makes. We want p to be larger,
given current weights how should we adjust the hidden layer output to do that?

P = (2, -1)
Label = +

How do we learn it?
Now what? Let’s calculate the “error” that the hidden layer makes. We want p to be larger,
given current weights how should we adjust the hidden layer output to do that?

P = (2, -1)
Label = +

How do we learn it?
Now that we have an “error” in our hidden layer, want to modify the previous weights.
Easy again, just like our linear model.

P = (2, -1)
Label = +

How do we learn it?
Now that we have an “error” in our hidden layer, want to modify the previous weights.
Easy again, just like our linear model.

P = (2, -1)
Label = +

Backpropagation: just taking derivatives
Move in the (opposite) direction of the gradient proportional to the error.

This was with linear activations but the process is the same for any φ, just have to calculate
φ’(x) for that neuron as well.

P = (2, -1)
Label = +

Backpropagation: the math

∂L/∂p

∂L/∂v1

Backpropagation: the math

∂L/∂p

∂L/∂h1

Backpropagation: the math

∂L/∂h1
∂L/∂(w1x1 + w2x2)

φ’(w1x1+w2x2)

Backpropagation: the math

∂L/∂(w1x1 + w2x2)

∂L/∂w2

What if we have multiple classes?
What if we normalized logistic regression across classes?

Softmax!

If we have 2 classes and we assume z0 = 0, z1 = w·X then this is
normal logistic regression.

Softmax Classifiers
Are great!

Softmax function:

σ(x)j = ex_j / Σkex_k

“Loss” is negative log-likelihood:

Data point has truth value y = [0,0,...,1,0,...,0]

L = -Σiyilog[σ(x)i]

And... dL/dx = y - σ(x) (just truth minus prediction)
Can read more here: https://knet.readthedocs.io/en/latest/softmax.html

Neural Network Playground

Three

Neural networks and images
Neural networks are densely connected

Each neuron in layer i connected to every neuron in layer i+1

Neural networks and images
Neural networks are densely connected

Each neuron in layer i connected to every neuron in layer i+1

Say we want to process images:
Input : 256 x 256 x 3 RGB image
Hidden : 32 x 32 x 36 feature map?
Output : 1000 classes

Neural networks and images
Neural networks are densely connected

Each neuron in layer i connected to every neuron in layer i+1

Say we want to process images:
Input : 256 x 256 x 3 RGB image
Hidden : 32 x 32 x 36 feature map?
Output : 1000 classes

Input -> hidden is 7.2 billion connections!

Too many weights!
Neural networks are densely connected

But is this really what we want when
processing images?

Convolutions?

Highpass Kernel: finds edges

Identity Kernel: Does nothing!

Sharpen Kernel: sharpens!

Note: sharpen = highpass + identity!

Neural Networks

- Can learn from data
- Learn to extract features that are good for a

specific task
- Too many connections for images

Convolutions

- Good at extracting features from images
- Static, hand designed
- Same for every task

So the situation is...

Too many weights!
Would rather have sparse connections

Fewer weights
Nearby regions - related
Far apart - not related

Convolutions!
Just weighted sums of
small areas in image

Weight sharing in different
locations in image

Convolutional neural networks
Use convolutions instead of dense connections to process images

Takes advantage of structure in our data!

Imposes an assumption on our model:
○ Nearby pixels are related, far apart ones are less related.
○ Features in one part of the image are also useful in other parts.

Convolutional Layer
Input: an image
Processing: convolution with multiple filters
Output: an image, # channels = # filters

Output still weighted sum of input (with activation)

Kernel size
How big the filter for a layer is

Typically 1 x 1 <-> 11 x 11

1 x 1 is just linear combination of channels in previous image (no
spatial processing)

Filters have same
number of channels as
input image.

Padding
Convolutions have problems on edges

Do nothing: output a little smaller than input

Pad: add extra pixels on edge

Stride
How far to move filter between applications

We’ve done stride 1 convolutions up until now, approximately
preserves image size

Could move filter further, downsample image

Images are BIG
Even a 256 x 256 images has hundreds of thousands of pixels and
that’s considered a small image!

Convolution:

Aggregate information, maybe we don’t need all of the image, can
subsample without throwing away useful information

Pooling Layer
Input: an image
Processing: pool pixel values over region
Output: an image, shrunk by a factor of the stride

Hyperparameters:
What kind of pooling? Average, mean, max, min
How big of stride? Controls downsampling
How big of region? Usually not much bigger than stride

Most common: 2x2 or 3x3 maxpooling, stride of 2

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6 7

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6 7

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6 7 10

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6 7 10 10

Maxpooling Layer, 2x2 stride 2

-7 6 -1 3 9 9 6 -9

3 -8 0 7 10 8 -3 10

-4 2 -6 4 -7 5 5 7

-3 -9 1 8 -8 9 -1 -5

-7 10 -9 -5 9 -8 -7 10

-5 5 9 4 10 -8 7 6

-3 8 0 2 2 -3 -2 5

4 -6 7 -3 1 4 10 0

6 7 10 10

2 8 9 7

10 9 10 10

8 7 4 10

Fully Connected Layer
The standard neural network layer where every input neuron
connects to every output neuron

Often used to go from image feature map -> final output or map
image features to a single vector

Eliminates spatial information

Convnet Building Blocks
Convolutional layers:

Connections are convolutions
Used to extract features

Pooling layers:
Used to downsample feature maps, make processing more efficient
Most common: maxpool, avgpool sometimes used at end

Fully Connected layers:
Often used as last layer, to map image features -> prediction
No spatial information
Inefficient: lots of weights, no weight sharing

LeNet: First Convnet for Images*

99% accuracy on MNIST (Yann LeCun 1998)

Has all elements of modern convnet
Convolutions, maxpooling, fully connected layers
Logistic activations after pooling layers (nowadays use RELU)
Weight updates through backpropagation

*probably? Maybe neocognitron but not trained w/ backprop Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF). Biological Cybernetics. 36 (4): 193–202.

