
CSE 571 - Robotics

Guided Project 2 - 2D Navigation

Due Tuesday, June 7th @ 11:59pm

1 Description

In this project, you will select a topic related to (1) localization, (2) planning and/or (3) control for 2D navigation.
We will provide you with a set of occupancy maps and a laser scanner simulator for you to generate training
data and run simulations. This project is a bit more open-ended than the previous project in that you are free
to choose the topic as long as you use the dataset provided. You may borrow code from the other homework
assignments as you wish.

You will work in the same team as your first project. In addition to restricting scope and environment, teams
MUST use PyTorch (as opposed to other deep learning frameworks) in order to implement their networks.

2 Setup

2.1 Dataset

We provide you with 96 occupancy maps from real world environments to generate training data and run simu-
lations. You should perhaps use 80 maps for training and 16 maps for testing. The dataset is available on Ed:
https://edstem.org/us/courses/21585/discussion/1465452. These maps are copyrighted, so please do not
distribute/share the dataset outside class!

2.2 Utilities

See https://courses.cs.washington.edu/courses/cse571/22sp/projects/project2.zip for the code repo.
We provide you with a set of utilities to read maps, generate laser scans and visualize results. Feel free to modify
the code and adapt it to suit your needs. Check out README.md in the code directory for more information. Setup
a new Conda environment or reuse the one from Project 1.
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Figure 1: Localization

3 Suggested Project Ideas

For each topic we provide some example project ideas. You are free to come up with your own project idea as
long as it fits the topic goal. Out of the three topics, Localization is probably the easiest to get started with, but
working on more advanced projects will give you a good primer for graduate-level robotics research.

3.1 Localization

Goal: Predict the robot state [x, y, θ] given an occupancy map of the environmentM and laser scan measurements
d1, d2, ..., dN . Figure 1 illustrates the input/output of the task.

Example ideas are:

• Predict a heatmap of robot’s location and heading given the robot’s current laser scan measurement. You
may treat this as a CNN-based classification problem, where each class is one of the candidate robot states.

• (Advanced) Predict a heatmap of robot’s location given robot’s observation history (multiple laser scans).
Intuitively, as robot traverses inside an environment, it will get increasingly confident about its current
location. To generate a trajectory, you may use A* or RRT. You may get some useful ideas from this paper
[1].

Advice on the design/implementation of this task:

• The original occupancy maps are fairly large. You may resize them to a resolution suitable for a convolu-
tional neural network. A size between 128× 128 to 256× 256 is a good starting point. If you decide to use
networks pretrained on ImageNet (e.g., ResNet-18), they usually take images of size 224× 224.
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• One trick to improve network generalization is data augmentation. Since we only have 80 maps available,
feeding an entire map into the model may not make the network generalize to unseen maps. You may
randomly crop a map to use only certain part of it during training. When testing, you can do the same
thing: extract patches from the map, run your model on each patch and stitch the results together.

• You can represent laser scans as either depth values OR [x, y] coordinates on a bitmap image. You may
experiment with both to see which one works best for you. Note that when you use the [x, y] representation,
the coordinate system is w.r.t the robot’s laser scanner.

• For networks that produce heatmap-like output, you may get useful ideas from papers on keypoint estima-
tion [2, 3].

3.2 Planning

Goal: Learn a neural network model that imitates a classical planner such as A* or RRT. Your model takes an
occupancy map of the environment M , robot’s current state s0 = [x0, y0, θ0], and the goal location sg = [xg, yg].
Your model then generates a collision-free trajectory that connects s0 and sg. Example ideas are:

• Learn a planner that takes M , s0 and sg, outputs action a robot should execute. Robot executes a for a
small time step (e.g., 0.1) to get an updated s. By repeating this, you will get a sequence of robot states
connecting s0 and sg. See [4, 5] for more information. You may assume the robot is holonomic and can be
treated as a point-mass.

• (Advanced) Learn a planner for a non-holonomic robot e.g: steering and forward acceleration.

• (Advanced) Implement Value Iteration Networks [6].

Advice on the design/implementation of this task:

• If the original maps are too big for you to get any meaningful results, try randomly cropping the map to
reduce map complexity. This may ease learning.

• s0 and g are global coordinates. It might not be a good idea to feed these directly to the network. You
may try other representations such as normalizing x, y into the range of [0, 1], or using two separate image
channels to graphically represent s0 and g.

• You may train your network with A* or RRT as supervision. For initial experiments, you may assume the
robot to be a point and can move in any direction (i.e., ignore heading). In that case A* is sufficient.

• Once you get the point robot working, try the non-holonomic robot model in homework 3. Note that sg
does not contain heading. This could speed up data generation when using RRT.

• For an ultimate challenge, train the network with Reinforcement Learning with partial observation similar
to [7] (not recommended unless you are familiar with RL).
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3.3 Control

As you may have noticed in homework 3, RRT can be slow for non-holonomic robots. Can you learn a controller
for a non-holonomic vehicle (e.g., the one in homework 3) that can get to a nearby location, while avoiding
obstacles along the way? This is useful for avoiding dynamic obstacles like humans.

Goal: The input to the model is current laser scan o = [d1, d2, ..., dN ] and waypoint g = [x, y] (relative to robot’s
current location and heading). You may convert the laser scan depths into local [x, y] coordinates by transforming
the coordinates using robot’s current state [x, y, θ], but the model should not use any global information. The
output of the model is the action a = [v, ω] which consists of the velocity and steering angle. The robot executes
a for a small time step (e.g., 0.1) to reach a new state, after which it gets an updated laser scan measurement
and relative waypoint location. Robot repeats this process until it reaches the waypoint.

Here is a video showing how the obstacle-avoidance behavior looks like for a car-like vehicle: https://courses.
cs.washington.edu/courses/cse571/20sp/projects/sim_lidar3.mp4. Note that this is just an illustration
(the car in the video is different from the one in homework 3). You are not required to implement exactly what
is shown in the video.

Example ideas are:

• Train a MLP network that takes o and g as input, and predicts action a with RRT as supervision. Feel
free to use other controllers (e.g., Model Predictive Control (https://engineering.purdue.edu/~zak/
ECE680/MPC_handout.pdf), RMP[8], etc.) as supervision.

– To generate training data, you could randomly choose an occupancy map, then randomly select a start
and goal point, and run RRT to generate a trajectory. Use the laser scan measurement at the starting
point as o and use the goal point (relative to the start point) as g. The first action in the trajectory
can serve as ground truth for your network.

– You may experiment with recurrent networks (RNN, LSTM) to see if they improve the performance.

• (Advanced) Learn obstacle avoidance with Reinforcement Learning [9].

Advice on the design/implementation of this task:

• Your model should not take any global state as information. However, when you generate training data
and run simulations, you could still maintain the global state of robot [x, y, θ].

4

https://courses.cs.washington.edu/courses/cse571/20sp/projects/sim_lidar3.mp4
https://courses.cs.washington.edu/courses/cse571/20sp/projects/sim_lidar3.mp4
https://engineering.purdue.edu/~zak/ECE680/MPC_handout.pdf
https://engineering.purdue.edu/~zak/ECE680/MPC_handout.pdf


4 Deliverables

You will be using Gradescope https://www.gradescope.com/ to submit the project.

Final Report [2 pages]: The final report will summarize the guided project, not including references. Please
include the following in the PDF:

• Your chosen topic and the proposed solution.

• What worked and what didn’t?

• Some quantitative evaluations to assess the performance (if possible).

• Discuss results and future work.

Upload the PDF to Guided Project 2 on Gradescope.

Presentation [5 min]: There will be a presentation session during the exam week so that students can check
out other projects. Each team will prepare slides and a short 5-minute presentation. The exact time and venue
for presentations will be announced later.

Code: Teams must submit executable code with a README so the TAs can replicate the results. Upload a
zipped file to Guide Project 2 Programming on Gradescope.

Resources

• If you don’t have access to a machine with a GPU, you can use Google Colab (access to a free GPU for up
to 12 hours per session). You only need a Google account. Colab operates as notebooks, very similarly to
Jupyter Notebooks if you have used them. PyTorch/TensorFlow is pre-installed in the Colab notebooks, so
no need for manual installation. You can find more information here: https://colab.research.google.
com/notebooks/intro.ipynb

• PyTorch: A framework that allows you to do Numpy-esque computations on GPU. It also has a lot
of support for autodifferentation and neural networks, making it one of the most popular deep learning
frameworks. You are required to use this framework for the guided projects. See tutorials here: https:

//pytorch.org/tutorials/
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