
CSE 571 - Robotics

Assignment 1 - Bayes Filters and Fully Connected Networks

Due Tuesday, April 19th @ 11:59pm

This homework involves three math problems and a programming assignment in Python. The goal of the math
problems is to help you understand conditional distributions and Bayesian inference. For the programming
portion, you will be implementing a simple neural network in Python without using any existing deep learning
frameworks. Our aim is to teach you what these frameworks do, so you’ll have a better understanding when
it’s time to actually use them. The code for this homework is available at https://courses.cs.washington.
edu/courses/cse571/22sp/homeworks/assignment1.zip

Useful reading material: Lecture notes, Chapter 2 of Probabilistic Robotics, Thrun, Burgard and
Fox (pdf shared with class) and Chapter 2 of Gaussian Processes for Machine Learning, Rasmussen and
Williams (Available online at: http://www.gaussianprocess.org/gpml/chapters)

Collaboration: Students can discuss questions and work together to solve the problems, but each student
MUST write up their own answers and code their own software. We will be checking both the code and PDFs
for plagiarism. If we find that you have shared your solutions or code online, you will get an automatic 50%
on the assignment. If we find that you have plagiarized solutions from another student or the internet, you
will get an automatic 0% on this assignment.

Late Policy: You are allowed 6 late days for the entire quarter. After using these up, you will incur a penalty
of 20% of the maximum grade per day. Please plan ahead!

1 Writing Assignments [40 points]

1.1 Conditional Independence [5 points]

Let X, Y and Z be three random variables. Assuming that X and Y are conditionally independent given Z

p(X,Y | Z) = p(X | Z)p(Y | Z)

Show that

p(X | Z) = p(X | Z, Y )

p(Y | Z) = p(Y | Z,X)

1.2 Bayes Filter [15 points]

A special-purpose robot is equipped with a vacuum unit to clean the floor. The robot has a binary sensor
to detect whether a floor tile is clean or dirty. However, neither the cleaning unit nor the sensor are perfect.
From previous experience, you know that the robot succeeds in cleaning a dirty floor tile with a probability of

P(xt+1 = clean | xt = dirty) = 0.6,
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where xt is the state of the floor tile at time t and xt+1 is the resulting state after the action has been applied.
Activating the cleaning unit when the tile is clean will never make it dirty. Assume the robot always cleans
at every time t (i.e. the transition probabilities model the fact that the robot is cleaning the floor tile).

The probability that the sensor indicates that the floor tile is clean although it is dirty is p(zt = clean | xt =
dirty) = 0.2 and the probability that the sensor correctly detects a clean tile is p(zt = clean | xt = clean) = 0.6.

Unfortunately, you have no knowledge about the current state of the floor tile. However, after cleaning the
tile, the robot’s sensor indicates that it is clean. Compute p(xt+1 = clean | zt+1 = clean), i.e., the probability
that at time t + 1, the floor tile is now clean given that the sensor indicates it is clean. Assume a prior
distribution at time t as p(xt = clean) = c, where 0 ≤ c ≤ 1. Then, using a software package of your choice,
plot p(xt+1 = clean | zt+1 = clean) for 0 ≤ c ≤ 1. You do not need to submit your code for plotting.

1.3 Gaussian Conditioning [20 points]

Let X and Y denote two scalar random variables that are jointly Gaussian:

p(x, y) = N (µ,Σ)
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Show that conditioning on Y results in a Gaussian over X:
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Hints

• Use the definition of the conditional distribution and “complete the square” to get the answer

• Given p(x, y) is jointly Gaussian, the marginal distribution of Y is also Gaussian: p(y) = N (µY , σ
2
Y )

• For a 2x2 matrix positive definite matrix A =

[
a b
c d

]
, A−1 =

1

|A|

[
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−b a

]
, |A| = ad− bc

2 Programming Problems [60 points]

In this assignment, we’re going to implement part of a standard multi-layer perceptron consisting of linear
layers plus non-linear functions. You will train a classifier on MNIST, a common image dataset on hand-
written numbers, while learning the mechanisms of a neural network, including the forward and backward
pass and how gradients flow.

We have provided some tests for checking your implementation. The tests are intentionally missing some
cases, but feel free to write more tests yourself. To run the tests from the outermost directory, simply run
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pytest tests/hw1_tests

Or to run them for an individual file (for example test linear layer), run

pytest tests/hw1_tests/test_linear_layer.py

Rules You may not use PyTorch or any other deep learning package. Only Numpy is allowed. Functions like
numpy.matmul are fine to use. You may only modify the files we mention (those in the submit.sh script). We
will not grade files outside of these. You may not change the signatures or return types of init , forward,
backward or step or you will fail our tests. You may add object fields or helper functions within the files.
You may talk with others about the homework, but you must implement by yourself.

2.0 Set up the codebase

Download and unzip the codebase from https://courses.cs.washington.edu/courses/cse571/22sp/homeworks/

assignment1.zip. Install Miniconda (https://docs.conda.io/en/latest/miniconda.html) and run the
following commands.

cd assignment1

conda env create -f environment.yml

conda activate robotics-class

Layers Look at ../nn/layers/layer.py where the base Layer class is defined. All of your neural network
layers will inherit from this class, which helps create and track the computation graph. When you overload
Layer you will need to implement a forward and a backward function. The forward function should take
an input array and return a new array. The backward function will take partial gradients with respect to the
layer’s output, accumulate gradients with respect to the parameters, and return gradients with respect to the
input. For this homework, each backward you implement should return a single array. You can also optionally
implement selfstr which prints out information about the layer.

Parameters Look at ../nn/parameter.py to see the data structure used to hold the weights and biases
of the network. For the forward pass, you will need to access the param.data field, and for the backward
pass, you will need param.grad. Note that assigning to param.grad actually does the += operation in order
to accumulate gradients.

2.1 Linear Layer [10 points]

Open ../nn/layers/linear layer.py. Implement the forward and backward pass of a linear layer, which
defines the following operation

y = Wx+ b

where y is the output, x is the input, W is the weight matrix and b is the bias vector.

You can assume that LinearLayer takes a 2D array of shape (batch size, input feature dimension) as input
and returns a 2D array of shape (batch size, output feature dimension) as output.
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2.2 ReLU Layer [10 points]

Rectified Linear Unit (ReLU) is a simple yet most widely used non-linear activation function in neural networks.
Open ../nn/layers/relu layer.py and implement the forward and backward pass of the ReLU function
defined as follows

f(x) = max(0, x)

ReLU layers (and all the non-linearities you implement) should accept arrays of arbitrary shape.

2.3 Softmax Cross Entropy Loss Forward [15 points]

Cross entropy is a commonly used loss function for classification problems. It measures the discreprency
between the ground truth distribution p and predicted distribution q over n possible values.

H(p, q) = −
n∑

i=1

p(i) log(q(i))

Usually, p is a one-hot vector where p(j) = 1 for the ground truth label j and p(i) = 0 for i ̸= j, so H(p, q)
reduces to

H(p, q) = − log(q(j))

It is often used together with the softmax activation function, which turns any real-valued vector x of dimension
n into a normalized distribution over n values.

q(j) =
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i=1 e

xi

Note that the softmax function is prone to overflow and underflow during computation if any xi is large. By
implementing the softmax and cross entropy operation together, better numerical stability can be achieved
via the so-called log-sum-exp trick. Let m = maxi(xi). We have
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Open ../nn/layers/losses/softmax cross entropy loss layer.py. Implement the forward pass of the
softmax cross entropy operation. The inputs include the logits (output of the network), the targets (integer
indicating the ground truth classes) and the axis along which the softmax normalization should be taken.
Make sure to implement both mean and sum reduction.

Hint You can assume the input is 2D at first, but to get full credit you need to make softmax cross entropy
work for inputs with arbitrary dimensions (warning, harder than it sounds). Take a look at these useful
functions: numpy.reshape, numpy.moveaxis, numpy.expand dims, numpy.take along axis.
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2.4 Softmax Cross Entropy Loss Backward [15 points]

Implement the backward pass of the softmax cross entropy operation.

Hint You should use class variables to store relevant values from the forward pass in order to use them in
the backward pass. With some fancy math, we can show that the gradient of the cross entropy loss with
respect to the inputs is actually quite simple

∂H

∂xi
= q(i)− p(i).

Remember to scale the loss appropriately if the reduction was mean.

2.5 SGD Update [10 points]

Open ../nn/optimizers/sgd optimizer.py. Recall that each Parameter has its own data and grad variables.
Based on the other parts you wrote, the gradients should already be ready inside the Parameter. Now we just
have to use them to update the weights.

Our normal SGD update with learning rate η is:

w ⇐ w − η
∂L

∂w

With this done, we can now train our first neural network! Open main.py. We have already provided code
to train and test a simple three layer neural network. Have a look at the training loop. First, you load the
data. Then you call the forward function on the network to get its outputs. Finally, you zero the previous
gradients, call backward on the network, and update the weights. You can run it by calling

python main.py

After 1 epoch, you should see about 70% test accuracy. After 10 epochs, you should see about 90% accuracy.

3 Submission

You will be using Gradescope https://www.gradescope.com to submit the homework. Please submit the
written assignment answers as a PDF. For the code, use the submit script in the homework directory and
submit the compressed directory that it produces.

5

https://www.gradescope.com

	Writing Assignments [40 points]
	Conditional Independence [5 points]
	Bayes Filter [15 points]
	Gaussian Conditioning [20 points]

	Programming Problems [60 points]
	Set up the codebase
	Linear Layer [10 points]
	ReLU Layer [10 points]
	Softmax Cross Entropy Loss Forward [15 points]
	Softmax Cross Entropy Loss Backward [15 points]
	SGD Update [10 points]

	Submission

