CSE-571 Sampling-Based Motion Planning

Built on Dieter's Spring 2020 slides Slides based on Pieter Abbeel, Zoe McCarthy Many images from Lavalle, Planning Algorithms

Motion Planning: Outline

- Configuration Space
- Probabilistic Roadmap
- Rapidly-exploring Random Trees (RRTs)
- Extensions
- Smoothing

Configuration Space (C-Space)

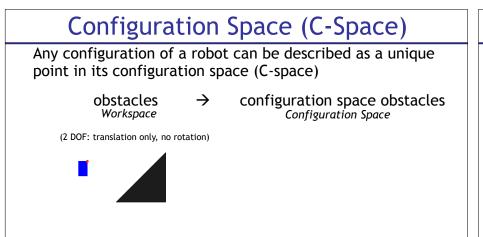
Any configuration of a robot can be described as a unique point in its configuration space (C-space)

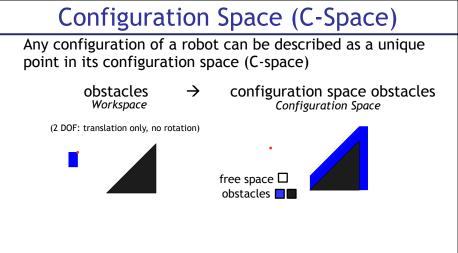
Configuration Space (C-Space)

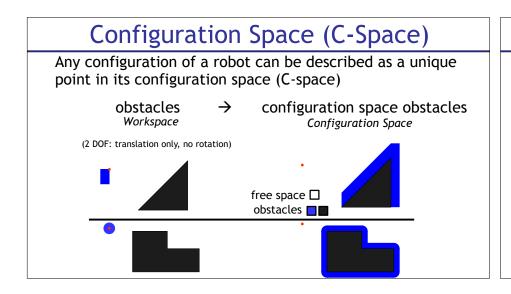
Any configuration of a robot can be described as a unique point in its configuration space (C-space)

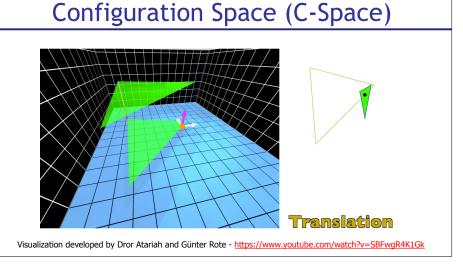
obstacles Workspace → configuration space obstacles

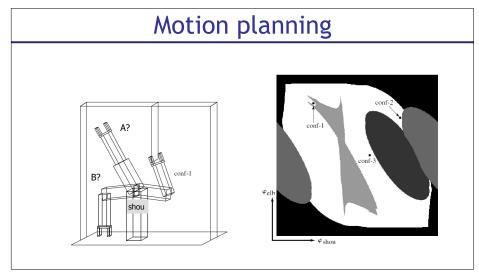
Configuration Space

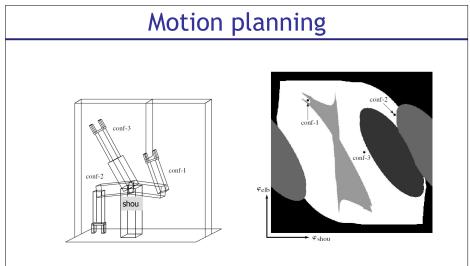


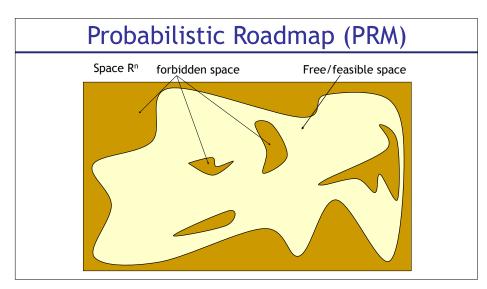


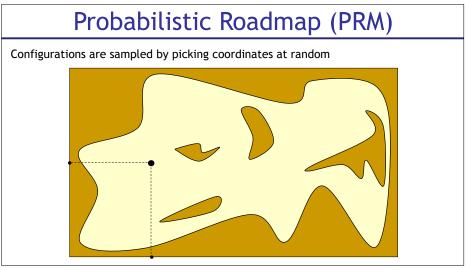






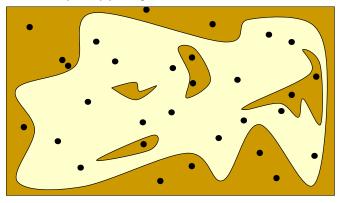






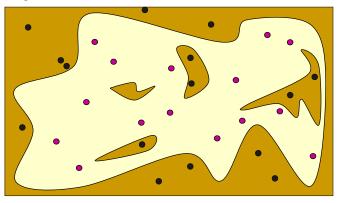
Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random



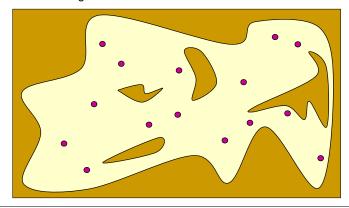
Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision



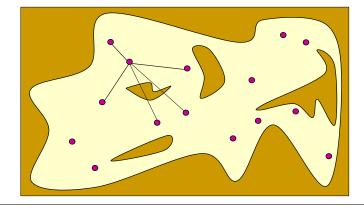
Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones



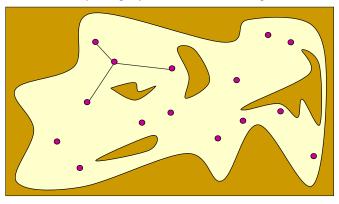
Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors



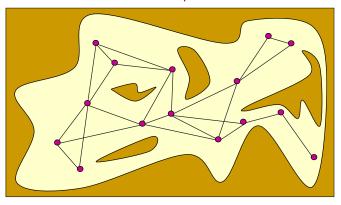
Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors



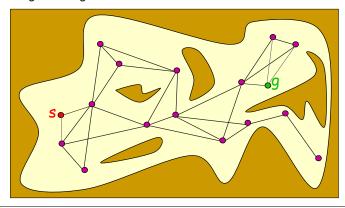
Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM



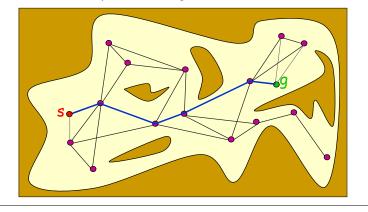
Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones



Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g



Probabilistic Roadmap (PRM)

```
1: for i = 1, ..., N do
      q_i \leftarrow \text{sample from } \mathcal{C}_{free}
      add q_i to Roadmap R
 4: end for
 5: for i = 1, ..., N do
      \mathcal{N}(q_i) \leftarrow k closest neighbors of q_i
       for each q \in \mathcal{N}(q_i) do
          if there is a collision free local path from q to q_i and there is not already
          an edge from q to q_i then
            add an edge from q to q_i to the Roadmap R
 9:
10:
       end for
11:
12: end for
13: \mathbf{return} R
```

Probabilistic Roadmap (PRM)

```
1: for i = 1, ..., N do
                                               The resulting R depends on:
2: q_i \leftarrow \text{sample from } \mathcal{C}_{free}
                                                   • N - number of samples
3: add q_i to Roadmap R
                                                   • k - number of neighbors
4: end for

    Sampler

5: for i = 1, ..., N do

    Local path planner

     \mathcal{N}(q_i) \leftarrow k closest neighbors of q_i
      for each q \in \mathcal{N}(q_i) do
         if there is a collision free local path from q to q_i and there is not already
         an edge from q to q_i then
           add an edge from q to q_i to the Roadmap R
         end if
10:
11:
     end for
12: end for
13: return R
```

Probabilistic Roadmap (PRM)

```
1: for i = 1, ..., N do
                                               The resulting R depends on:
      q_i \leftarrow \text{sample from } \mathcal{C}_{free}
                                                   • N - number of samples
      add q_i to Roadmap R
                                                   • k - number of neighbors
 4: end for

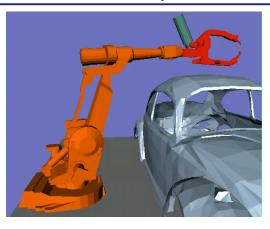
    Sampler

 5: for i = 1, ..., N do
                                                   · Local path planner
      \mathcal{N}(q_i) \leftarrow k closest neighbors of q_i
      for each q \in \mathcal{N}(q_i) do
 7:
         if there is a collision free local path from q to q_i and there is not already
         an edge from q to q_i then
           add an edge from q to q_i to the Roadmap R
 9:
         end if
10:
                        PRM is a multiple-query planner: invest time in generating a
      end for
11:
                        good representation of the free C-space, that can be used to
12: end for
                        solve several motion planning problems.
13: \mathbf{return} R
```

Probabilistic Roadmap (PRM)

Demonstration-https://demonstrations.wolfram.com/ProbabilisticRoadmapMethodForRobotArm/

PRM Example 1



PRM Example 2

PRM's Pros and Cons

• Pro:

• Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.

Cons:

- Required to solve 2-point boundary value problem
- Build graph over state space but no focus on generating a path

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

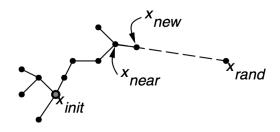
Demonstration - https://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

Rapidly exploring Random Tree (RRT)

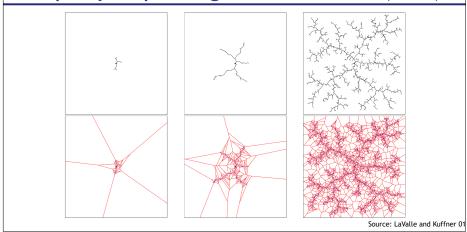
- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region



Rapidly exploring Random Tree (RRT)



$RANDOM_STATE(): often uniformly at random over space with probability 99\%, and the goal state with probability 1\%, this ensures it attempts to connect to goal semi-regularly$

 $x_{rand} \leftarrow \text{RANDOM_STATE}();$

 \mathcal{T} .add_vertex (x_{new}) ; \mathcal{T} .add_edge (x_{near}, x_{new}, u) ;

 $x_{near} \leftarrow \text{NEAREST_NEIGHBOR}(x_{rand}, \mathcal{T});$ $u \leftarrow \text{SELECT_INPUT}(x_{rand}, x_{near});$ $x_{new} \leftarrow \text{NEW_STATE}(x_{near}, u, \Delta t);$

GENERATE_RRT $(x_{init}, K, \Delta t)$

1 $\mathcal{T}.init(x_{init});$ 2 **for** k = 1 **to** K **do**

Return \mathcal{T}

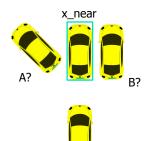
Rapidly exploring Random Tree (RRT)

RRT Practicalities

- NEAREST_NEIGHBOR(x_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - · Locality Sensitive Hashing
- SELECT_INPUT(x_{rand}, x_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences.
 This set could be random, or some well chosen set of primitives.

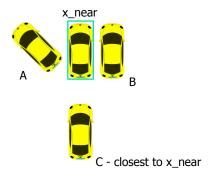
RRT Extension

 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem



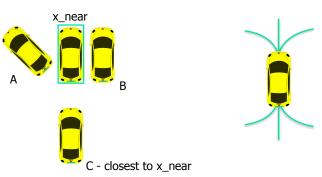
RRT Extension

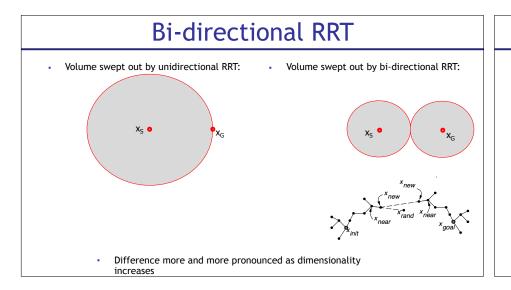
 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem



RRT Extension

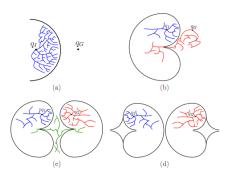
 Non-holonomic: approximately (sometimes as approximate as picking best of a few random control sequences) solve two-point boundary value problem

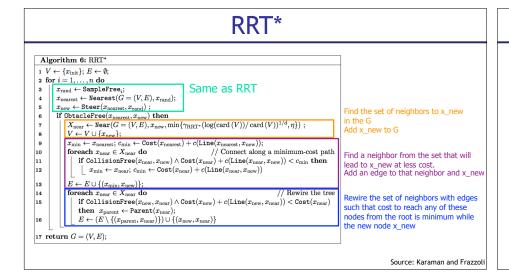




Multi-directional RRT

 Planning around obstacles or through narrow passages can often be easier in one direction than the other

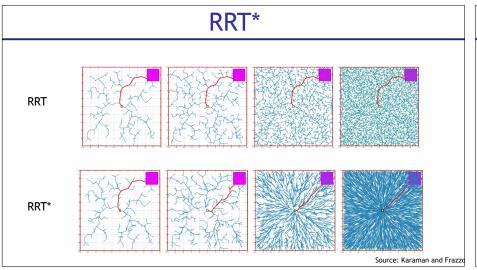


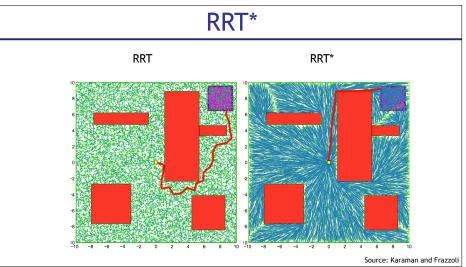


RRT*

- Asymptotically optimal
- Main idea:
 - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent

Demonstration-https://demonstrations.wolfram.com/Rapidly Exploring Random TreeRRTAnd RRT/Market RRTAnd RRTAN





Real Time RRT* (a) RRT* run 1 (b) RRT* run 1

Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

- → In practice: do smoothing before using the path
- Shortcutting:
 - along the found path, pick two vertices x₁₁, x₁₂ and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Additional Resources

- Marco Pavone (http://asl.stanford.edu/):
 - Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf
 - Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf
- Sidd Srinivasa (https://personalrobotics.cs.washington.edu/)
 - Batch informed trees: https://robotic-esp.com/code/bitstar/
 - Expensive edge evals: https://arxiv.org/pdf/2002.11853.pdf
 - Lazy search: https://personalrobotics.cs.washington.edu/publications/mandalika2019gls.pdf
- Michael Yip (https://www.ucsdarclab.com/)
 - Neural Motion Planners: https://www.ucsdarclab.com/neuralplanning
- Lydia Kavraki (http://www.kavrakilab.org/)
 - Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html