Motion/Path Planning

* Task:
CSE-571 find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)
Deterministic Path Planning in Robotics
* Two types of constraints:

environmental constraints (e.g., obstacles)
Carnegie Mellon University dynamics/kinematics constraints of the robot

Courtesy of Maxim Likhachev

* Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning Motion/Path Planning

Examples (of what is usually referred to as motion planning):

d—rme | A
7
7 |V

Start g ]
Configuration Goal Configuration
. ’
Piano Movers = problem
g the example above is borrowed from www.cs.cnm.edu/~awm/tutorials
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Maxim Likhachev



Motion/Path Planning Motion/Path Planning
Examples (of what is usually referred to as motion planning):
Path/Motion Planner
I | il path
| il
Controller
lcommands
map update pose update
Planned motion for a 6DOF robot arm
CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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Motion/Path Planning Uncertainty and Planning
* Uncertainty can be in:
- prior environment (i.e., door is open or closed)
Path/Motion Planner - execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
lpal‘h - pose
* Planning approaches:
Controller & abp .
- deterministic planning:
J commands - assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives
map update pose update - planning under uncertainty:
- associate probabilities with some elements or everything
i.e., deterministic registration -plan a policy that dictates what to do for each outcome of sensing/action
or Bayesian update i.e., Bayesian update (EKF) and minimizes expected cost-to-goal
- re-plan if unaccounted events happen
CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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Uncertainty and Planning Uncertainty and Planning

* Uncertainty can be in: * Uncertainty can be in:
- prior environment (i.e., door is open or closed) - prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip) - execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure) - sensing environment (i.e., seems like an obstacle but not sure)
- pose - pose
* Planning approaches: re-plan every time * Planning approaches:
- deterministic planning: sensory data arrives or - deterministic planning:

. . . robot deviates off its path . . . .
- assume some (i.e., most likely) environmeiu., : - assume some (i.e., most likely) environment, execution, pose

) . y . s ] . y . . .
plan a single lee}st cost trajectory under el e 7o (o IS plan a single lee}st cost trajectory under this assumption
- re-plan as new information arrives > - re-plan as new information arrives

- planning under uncertainty: - planning under uncertainty:
- associate probabilities with some elements or everything - associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action -plan a policy that dictates what to do for each onteame of sensing/action
and minimizes expected cost-to-goal and minimizes expected cost-to-goal - c.oputationally MUCH harder
- re-plan if unaccounted events happen - re-plan if unaccounted events happen }
CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev. CMU
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Example Outline

* Deterministic planning
- constructing a graph
- search with A*
- search with D*

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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Outline

* Deterministic planning
- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU
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Planning via Cell Decomposition

* Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

[anning map

p!
s (55259
5, convertinto a graph ‘.‘ search the graph
5 @&@ for a least-cost path

Ss 3 from Ssuar 0 Sgoat

CSE-571: Courtesy of Maxim Likhachev, CMU

(one way to construct a graph) '

S2 | S3

Planning via Cell Decomposition

* Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize
oL

eight-connected grid

planning map

S4 | Ss

@ for a least-cost path

O e
convert into a graph ‘.€ search the graph

Se @ from 4 10 Sgoar

CSE-571: Courtesy of Maxim Likhachev, CMU
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Planning via Cell Decomposition

* Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of
arbitrary obstacles
- Problem: transitions difficult to execute on non-holonomic
robots

discretize

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

& =

% S
: . . C(s,99=5

e ] replicate it ™" "\

online

CSE-571: Courtesy of Maxim Likhachev, CMU

17

18

Planning via Cell Decomposition
* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

"\ S16 8,5/ )
sy W
| Y
.

action template

- . . C(5,55) = 5
- replicate it™* ™"\ N s,
PIeee
online '

C(s,s7) =100

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

CSE-571: Courtesy of Maxim Likhachev, CMU
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at any point of time:

the cost of a shortest path
from sswr to s found so far

g(s)

—@—.

e%. =

A* Search

* Computes optimal g-values for relevant states

CSE-571: Courtesy of Maxim Likhachev, CMU

an (under) estimate of the cost
of a shortest path from s to sgoal

W~

A* Search

» Computes optimal g-values for relevant states

at any point of time:

heuristic function

h(s) -

one popular heuristic function — Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

21

22

ComputePath function
while(s,,,, is not expanded)

insert s into CLOSED,
ifg(s’)>gls) +c(ss)

g’) =gs) +clss);
insert s " into OPEN;

CLOSED = {}
OPEN = {Syuni}

next state to expand: S

A* Search

* Computes optimal g-values for relevant states

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN,;

for every successor s * of s such that s " not in CLOSED

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(s,,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN,;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
igis ) > 5le) * clss ) 806> 8luu) + sy
8(s) =g(s) T c(ss);
insert s " into OPEN;

g=ow g=
h=2 h=1
=0 (D2
h=3 _
CLOSED = {} =0
OPEN = {5,10n) &) !
next state to expand. Sy 3
g= g=
Maxim Likhachev, University of PennsyRamnda h=1
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A* Search

* Computes optimal g-values for relevant states

ComputePath function
while(s,,,; is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’)>g(s) +c(ss’)
gls) =g(s) +c(ss )
insert s " into OPEN;

CLOSED = {Sari}
OPEN = {s,}
next state to expand: 82
g: oo
Maxim Likhachev, University of Pennsyfianda h

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(s,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED;,
for every successor s * of s such that s " not in CLOSED
ifg(s’)>g(s) +c(s,s”)
gs7) =gls) +efss);

insert s " into OPEN;
&

1
2 h

3
1

h

CLOSED = Z/Ss/arbsz}

OPEN = {S[,S4}

next state to expand. s, @ 3 @//
g=2 g=

Maxim Likhachey, University of Pennsyfianfa h=1

lﬁ@x

g=o
h=0
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A* Search

* Computes optimal g-values for relevant states

ComputePath function
while(s,,,, is not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN,;

insert s into CLOSED,
for every successor s * of s such that s " not in CLOSED
ifg(s’)>gls) +c(ss)
&) =g(s) +c(s,s’);

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(s,,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN,;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > a(s) +c(ss’)
als’) =gls) +clss);
insert s " into OPEN;

insert s " into OPEN;
g=1 g=3 g=1 g=3
h=2 h=1 h=2 h=1
SPFORS O PUORS
h=3 2 - h=3
CLOSED = {8,251/ & . = CLOSED = {Syur,5:,51,54]
OPEN = {5.,Sgoa1} . OPEN = {53,Sg0a1} !
next state to expand: s4 9 3 next state to expand: Sgoal @ 3
g=2 g= g=2 g=35
Maxim Likhachev, University of Pmmsyf(fin?a h=1 Maxim Likhachev, University of Pennsyfvanfa h=1
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A* Search A* Search
» Computes optimal g-values for relevant states » Computes optimal g-values for relevant states
ComputePath function ComputePath function
while(s,,,; is not expanded) while(s,,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;, remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED; insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED for every successor s * of s such that s " not in CLOSED
ifg(s’) > g(s) +c(s,5”) ifg(s’)>g(s) +c(ss’)
as’) =g(s) +css’); gs’)=g(s) +cs,s);
insert s " into OPEN, insert s " into OPEN;
g=1 g=3 g=1 g=3
h=2 h=1 h=2 h=1
g=0 @*2, g=5 g=0 @*2, g=5
CLOSED = {Sy4r52:51,54,Sg0a1} s/l( 2 =0 5/‘/’ h=0
OPEN~ fo] e | _ =l
/1' for every expanded state g(s) is optimal
done 3 . > 3
@—» for every other state g(s) is an upper bound @—»
g=2 g=3 we can now compute a least-cost path g=2 g=5
Maxim Likhachev, University of Pennsyltanda h=1 Maxim Likhachev, University of Pennsyfiida h=1
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A* Search A* Search
» Computes optimal g-values for relevant states * Is guaranteed to return an optimal path (in fact, for every
ComputePath function expanded state) — optimal in terms of the solution
while(s,,,, is not expanded)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN,;
insert s into CLOSED; ¢ Performs provably minimal number of state expansions
for every successor s * of s such that s not in CLOSED required to guarantee optimality — optimal in terms of the

ifg(s?)>gls) +css)
g’) =gs) +clss);
insert s " into OPEN;

computations
g=3
h=1

=1
=7 h=2 )
SE S i’ 2 @_'@\K =5
§=0 — g=5 : h=0
h=3 1 @ % h=0 } 1
| —
. . 3
for every expanded state g(s) is optimal L @—»@
for every other state g(s) is an upper bound *3. g=2
we can now compute a least-cost path g=2 g=5
Maxim Likhachev, University of Pennsylvanda h=1

g=3
h=2 h=1

CSE-571: Courtesy of Maxim Likhachev, CMU
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A* Search

 [s guaranteed to return an optimal path (in fact, for every

expanded state) — Chelps with robot deviating off its patl on
if we search with A*
backwards (from goal to start)

* Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal in terms of the
computations

g

h

3
1

g=3
h=1

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

* A* Search: expands states in the order of f'= g+h values

CSE-571: Courtesy of Maxim Likhachev, CMU
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Effect of the Heuristic Function

* A* Search: expands states in the order of /= g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

oal

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of f =
g+eh values, ¢ > 1 = bias towards states that are closer to
goal

solution is always e-suboptimal:
cost(solution) < ¢ cost(optimal solution)

' ~goal

CSE-571: Courtesy of Maxim Likhachev, CMU
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Effect of the Heuristic Function

* Weighted A* Search: expands states in the order of ' =
g+eh values, ¢ > [ = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%¢ states

€e=25 e=15 € = 1.0 (optimal search) .

o

third search (e = 1.0) _

initial search (¢ = 2.5) second search (¢ = 1.5)
planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachey, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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Effect of the Heuristic Function Outline
¢ planning in 8D (<x,y> for each foothold) * Deterministic plannlng
« heuristic is Euclidean distance from the center of the body to the goal location - constructing a graph
cost of edges based on kinematic stability of the robot and quality of footholds - search with A*
planning with R* (randomiied version of weighted A*)
Jjoint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandy Kushleyev, Paul Vernaza
CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRYV navigating
initially-unknown envii

ment planning map and path

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and

dynamic environments) incremental planning (re-planning):

— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU
CSE-571: Courtesy of Maxim Likhachev, CMU
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to S, initially

6 [
g d
1
S
8 sT8[8® 8%
after the door turns out to be closed
3
111

F T I S N N
CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 sy, initially

osts are optimal g-values if search is

done backwards

(1]
1
]
4 R e

114 E
cost of least-cost paths 1o s,,, afier the door turns out to be closed

§ EiNENEE

ool afa[

CSE-571: Courtesy of Maxim Likhachev, CMU
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 s, initially

7

7
7
7
7
7
7
7

o= =

7
7
7
7

aths 10 Sl

ST8[S8ST8]ST8

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
* Reuse state values from previous searches

cost of least-cost paths t0 Sy, initially

g

ool -

ool f= -

cost of least-cost paths t0 5, 0

L3

ld # of changec
ry different for forward A*?

g-values be

o o] s fon

§ EUNERSE

ool afafa[|

loolafon st £ o fusfs=fn

CSE-571: Courtesy of Maxim Likhachev, CMU
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cost of least-cost paths 10 s, initially

Motivation for Incremental Version of A*
* Reuse state values from previous searches

5ol

ofio]—E [~

|

» work needs to be done if robot
deviates off its path?

E - pofwslasfn

S5 ) PR

S|s[s|[s8s|8]%

CSE-571: Courtesy of Maxim Likhachev, CMU

initial search

Incremental Version of A*

* Reuse state values from previous searches

initial searc
T

h by D* Lite

by backwards A*
T T T T T T 17
T T

second search by backwards A*

second search by D* Lite

T

CSE-571: Courtesy of Maxim Likhachev, CMU
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Anytime Aspects

J |
i
TR
Siiii]
|

]

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

13,000
11,000
> cost = 77,345
8 £=10
# expands = 14,132
9,000
1
7,000
0 0.2 04 0.6
time (secs)

49

CSE-571: Courtesy of Maxim Likhachev, CMU

50

Searching the Graph

* Incremental behavior of Anytime D*:

initial path

a path after re-planning

Maxim Likhachev & Dave Ferguson

Searching the Graph
* Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be consi: and admi

ible (never over cost-to-goal)

S=(z, y, 0, v)

51

Maxim Likhachev

Maxim Likhachev & Dave Ferguson 53
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Searching the Graph
* In our planner: /i(s) = max(hmecn(s), hem(s)), where
— Npeen(s) — mechanism-constrained heuristic

— henv(s) — environment-constrained heuristic

hen(s) — considers only environment
constraints and ignores dynamics

hmech(s) — considers only dynamics constraints
and ignores environment

hmeci(s) — considers only dynamics constraints
and ignores environment
\

Searching the Graph

* In our planner: A(s) = max(hmecn(s), henv(s)), where
— Nmecn(s) — mechanism-constrained heuristic
— hen(s) — environment-constrained heuristic

hem(s) — considers only environment
constraints and ignores dynamics

pre-computed as a table lookup computed online by running

for high-res. lattice a 2D A* with late termination

Maxim Likhachev & Dave Ferguson

VAN

55

Maxim Likhachev & Dave Ferguson 54
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Heuristics Example, again
E heuristic states time -
expanded (secs) Urban Challenge Race, CMU team, planning with Anytime D*

h 2,019 0.06
hap 26,108 1.30
htsh 124,794  3.49

CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
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JL

2(m) () ym)

a(m) y(m)
(d)

(b xm) () ym

Optimize (fine-tune) parameters initialized via interpolation

CSE-571: Courtesy of Maxim Likhachev, CMU
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Summary

* Deterministic planning
- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty ~ /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

CSE-571: Courtesy of Maxim Likhachev, CMU
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