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Particle Representation

¨ A set of weighted samples

¨ Think of a sample as one hypothesis about the state

¨ For feature-based SLAM:

poses landmarks

Courtesy: C. Stachniss
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Dimensionality Problem
Particle filters are effective in low dimensional spaces 
as the likely regions of the state space need to be 
covered with samples.

high-dimensional

Courtesy: C. Stachniss
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Can We Exploit Dependencies Between 
the Different Dimensions of the State 

Space?

Courtesy: C. Stachniss
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If We Know the Poses of the Robot, 
Mapping is Easy!

Courtesy: C. Stachniss
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Key Idea

If we use the particle set only to model the robot’s path, 
each sample is a path hypothesis. For each sample, we 
can compute an individual map of landmarks.

Courtesy: C. Stachniss
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Rao-Blackwellization

¨ Factorization to exploit dependencies between 
variables:

¨ If                can be computed efficiently, represent 
only           with samples and compute                for 
every sample

Courtesy: C. Stachniss
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Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

poses map observations & movements

Courtesy: C. Stachniss
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances 
in Neural Information Processing Systems, 1999
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Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior
poses map observations & movements

path posterior map posterior

Courtesy: C. Stachniss

First introduced for SLAM by Murphy in 1999
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances 
in Neural Information Processing Systems, 1999
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FastSLAM
¨ Proposed by Montemerlo et al. in 2002
¨ Each landmark is represented by a 2x2 EKF
¨ Each particle therefore has to maintain M individual 

EKFs

Landmark 1 Landmark 2 Landmark M…

Landmark 1 Landmark 2 Landmark M…
Particle
1

Landmark 1 Landmark 2 Landmark M…
Particle
2

Particle
N

…
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FastSLAM – Motion Update

Particle #1

Particle #2

Particle #3

Landmark 1
2x2 EKF

Landmark 2
2x2 EKF

Courtesy: M. Montemerlo
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark 1
2x2 EKF

Landmark 2
2x2 EKF

Courtesy: M. Montemerlo
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1

Courtesy: M. Montemerlo
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Update map 
of particle 1

Update map 
of particle 2

Update map 
of particle 3

Courtesy: M. Montemerlo
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Key Steps of FastSLAM 1.0

¨ Extend the path posterior by sampling a new pose 
for each sample 

¨ Compute particle weight

¨ Update belief of observed landmarks
(EKF update rule)

¨ Resample 

innovation covariance

exp. observation

Courtesy: C. Stachniss
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FastSLAM  in Action

Courtesy: M. Montemerlo
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FastSLAM – Video – All Maps
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FastSLAM – Video – “Best” particle in 
terms of Cum Log Prob
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Data Association Problem

¨ Which observation belongs to which landmark?

¨ More than one possible association
¨ Potential data associations depend on the pose of 

the robot 

Courtesy: M. Montemerlo
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Particles Support for Multi-Hypotheses 
Data Association

¨ Decisions on a per-particle 
basis

¨ Robot pose error is factored 
out of data association 
decisions

Courtesy: M. Montemerlo
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Per-Particle Data Association

Was the observation
generated by the red
or by the blue
landmark?

P(observation | red) = 0.3 P(observation | blue) = 0.7

Courtesy: M. Montemerlo
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Per-Particle Data Association

P(observation | red) = 0.3 P(observation | blue) = 0.7

§ Two options for per-particle data association
§ Pick the most probable match

§ Pick a random association weighted by the observation likelihoods

§ If the probability for an assignment is too low, generate a new 
landmark

Was the observation
generated by the red
or by the blue
landmark?

Courtesy: M. Montemerlo

22

Results – Victoria Park

¨ 4 km traverse
¨ < 2.5 m RMS 

position error
¨ 100 particles

Blue = GPS
Yellow = FastSLAM

Courtesy: M. Montemerlo
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Results – Victoria Park (Video)

Courtesy: M. Montemerlo
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Results (Sample Size)

Courtesy: M. Montemerlo
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Results (Motion Uncertainty)

Courtesy: M. Montemerlo
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Techniques to Reduce the 
Number of Particles Needed

• Better proposals (put the particles in 
the right place in the prediction 
step).

• Avoid particle depletion (re-sample 
only when needed). 
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Generating better Proposals

•Use scan-matching to compute highly 
accurate odometry measurements 
from consecutive range scans. 

•Use the improved odometry in the 
prediction step to get highly accurate 
proposal distributions.
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Motion Model for Scan Matching

a'

b'

d'

final pose
a

d

measured pose
b

initial pose

path

Raw Odometry
Scan Matching
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Rao-Blackwellized Mapping with 
Scan-Matching

M
ap

: 
In

te
l R

es
ea

rc
h 

La
b 

S
ea

tt
le

30

Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Rao-Blackwellized Mapping with 
Scan-Matching
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Rao-Blackwellized Mapping with 
Scan-Matching
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Example (Intel Lab)
§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map

Work by Grisetti et al.
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Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

Work by Grisetti et al.

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map
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FastSLAM Summary

¨ Particle filter-based SLAM
¨ Rao-Blackwellization: model the robot’s path by 

sampling and compute the landmarks given the 
poses

¨ Allow for per-particle data association
¨ Complexity 

Courtesy: C. Stachniss
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Literature

FastSLAM

¨ Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-
13.3 + 13.8 (see errata!)

¨ Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A 
Factored Solution to the Simultaneous Localization 
and Mapping Problem, 2002

¨ Montemerlo and Thrun: Simultaneous Localization and 
Mapping with Unknown Data Association Using 
FastSLAM, 2003

Courtesy: C. Stachniss
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6D OBJECT POSE ESTIMATION

x

y

z6D Object Pose

3D 
Translation

3D 
Orientation
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POSE-CNN
Handles symmetric, texture-less objects under partial occlusions

§ Provides object mask and 3D position and 
orientation of object relative to camera

§ Operates at 10Hz, sufficient to  initialize a 
tracker

§ With ICP, state of the art results on LineMod
and YCB-Video

Centers and masks 6D poses

[Xiang-Schmidt-Narayanan-Fox: RSS-18]      

21 YCB objects, 92 Videos, 133,827 frames
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RELATED WORK

Single image
§ Object symmetries ignored or special cases

§ Tremblay et al. CoRL 2018 (DOPE)

§ Tekin et al.  CVPR 2018

§ Xiang et al. RSS 2018 (PoseCNN)

§ Li et al. ECCV 2018 (DeepIM)

§ Manhardt et al. ECCV 2018

Techniques aim at a unique pose 
estimate

6D object pose tracking

§ Unimodal tracking

§ Kehl et al. CVPR 2018

§ Tjaden et al. ICCV 2017

§ Prisacariu et al. IJCV 2017 (PWP3D)

§ Srivatsan et al. RSS 2017

§ 6D particle filter

§ Choi et al. IROS 2013

Not designed to estimate 
multi-modal distributions
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ORIENTATION UNCERTAINTY
Depends on context, shape, sensor

Observation

Orientation
uncertainty

Shape symmetry Texture breaks  
symmetry View-based uncertainty
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TRAINING VIEW-BASED SIMILARITY
Randomly Sample Views onto the Textured Object Model

Encoder Decoder

Network output
1 training epoch

Input view Target Network output
50 training epochs

128 dim

Bottleneck encodes viewpoint information

[Sundermeyer-Marton-Durner-Brucker-Triebel: ECCV-18]
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TRAINING AN ENCODER IN SIMULATION
Randomly Sample Views onto the Textured Object Model

Encoder

…

…

Codebook (5 deg discretization; 191,808 views)

Cosine Similarity

…

128 dim 128 
dim
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191,808 bins
5 deg resolution

PoseRBPF: 6D PARTICLE FILTER

3D Translation
𝑇!

Orientation Distribution
𝑷 𝑹𝒊 𝑻𝒊, 𝒁𝟏:𝒌)

RoI

Encoder

Rotations

Codebook

Particle
Code

Rotation Likelihood

…

…

…

𝑋( = {𝑇( , P 𝑅( 𝑇( , 𝑍):+ }

YCB-Video RGB(-D)
§ PoseRBPF: 

ADD: 62.1, ADD-S: 78.4
§ PoseCNN:

ADD: 53.7, ADD-S: 75.9 
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PoseRBPF: Observation Update 

Encoder

Particle
Code

Encoder

Encoder

Normalizer

WeightsCompute posterior

Particle
RoIs Orientation Distribution

…

…

…

…

…

…

Observation likelihood
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EXAMPLE RESULTS
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GLOBAL LOCALIZATION EXAMPLE
Sample Uniformly in Translation Space

1st frame: 5,000 particles, then 500 particles until strong match, then 50 particles
500 particles: 2.6 fps; 50 particles: 20 fps
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