

Particle Representation

 \square A set of weighted samples $\mathcal{X} = \left\{ \left\langle x^{[i]}, w^{[i]} \right\rangle \right\}_{i=1,\dots,N}$

2

4

Think of a sample as one hypothesis about the state
For feature-based SLAM:

$$x = (x_{1:t}, \frac{m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y}}{\mathsf{landmarks}})^T$$

1

Dimensionality Problem

Particle filters are effective in low dimensional spaces as the likely regions of the state space need to be covered with samples.

$$x = (x_{1:t}, m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y})^T$$

high-dimensional

Courtesy: C. Stachnis

Can We Exploit Dependencies Between the Different Dimensions of the State Space?

$$x_{1:t}, m_1, \ldots, m_M$$

Courtesy: C. Stachniss

1

Rac-Blackwellization for SLAM • Factorization of the SLAM posterior poses map observations & movements $p(x_{0:t}, m_{1:M} | z_{1:t}, u_{1:t}) =$ First introduced for SLAM by Murphy in 1999 Karphy Bayesian map learning in dynamic environments, In Proc. Advances Marking Marking Marking Systems, 1999

Techniques to Reduce the Number of Particles Needed

- Better proposals (put the particles in the right place in the prediction step).
- Avoid particle depletion (re-sample only when needed).

Generating better Proposals

- Use scan-matching to compute highly accurate odometry measurements from consecutive range scans.
- Use the improved odometry in the prediction step to get highly accurate proposal distributions.

34

FastSLAM Summary

- Particle filter-based SLAM
- Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
- □ Allow for per-particle data association
- \Box Complexity $\mathcal{O}(N \log M)$

Courtesy: C. Stachnis

Literature

FastSLAM

- Thrun et al.: "Probabilistic Robotics", Chapter 13.1-13.3 + 13.8 (see errata!)
- Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
- Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003

Courtesy: C. Stachniss

<section-header><section-header><section-header><section-header><section-header><section-header><complex-block><complex-block>

