CSE-571
Robotics

Mapping

Types of SLAM-Problems
Grid maps or scans
Sparse landmarks RGB / Depth Maps

Problems in Mapping
- Sensor interpretation
 - How do we extract relevant information from raw sensor data?
 - How do we represent and integrate this information over time?
- Robot locations have to be known
 - How can we estimate them during mapping?

Occupancy Grid Maps
- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions
 - Occupancy of individual cells is independent
 - Robot positions are known!

\[
Bel(m_t) = P(m_t | u_1, z_2, \ldots, u_{t-1}, z_t) = \prod_{x,y} Bel(m^{(xy)}_t)
\]
Updating Occupancy Grid Maps

• **Idea**: Update each individual cell using a binary Bayes filter.

\[
Bel(m_t^{[xy]}) = \eta p(z_t | m_t^{[xy]}) \sum_{m_{t-1}} p(m_t^{[xy]} | m_{t-1}, u_{t-1}) Bel(m_{t-1}^{[xy]})
\]

• **Additional assumption**: Map is static

\[
Bel(m_t^{[xy]}) = \eta p(z_t | m_t^{[xy]}) Bel(m_{t-1}^{[xy]})
\]

• **Log odds representation**:

\[
l_t = \log \left(\frac{p(m_t | z_t, x_t, y_t)}{1 - p(m_t | z_t, x_t, y_t)} \right)
\]

\[
l_t = l_{t-1} + \log \left(\frac{p(m_t | z_t, x_t)}{1 - p(m_t | z_t, x_t)} \right) - \log \left(\frac{p(m_t)}{1 - p(m_t)} \right)
\]

Inverse Sensor Model for Occupancy Grid Maps

Combination of linear function and Gaussian:

Incremental Updating of Occupancy Grids (Example)

Alternative: Simple Counting

• For every cell count

 • **hits** \((x, y)\): number of cases where a beam ended at \(<x, y>\)

 • **misses** \((x, y)\): number of cases where a beam passed through \(<x, y>\)

\[
Bel(m_t^{[xy]}) = \frac{\text{hits}(x, y)}{\text{hits}(x, y) + \text{misses}(x, y)}
\]

• **Assumption**: \(P(\text{occupied}(x, y)) = P(\text{reflects}(x, y))\)
Occupancy Grids: From scans to maps

Tech Museum, San Jose

CAD map
occupancy grid map

K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, W. Burgard
University of Freiburg, Germany

OctoMap
A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems

robots in 3D Environments

Mobile manipulation
Outdoor navigation

http://octomap.sf.net

Humanoid robots
Flying robots
3D Map Requirements

- Full 3D Model
 - Volumetric representation
 - Free-space
 - Unknown areas (e.g. for exploration)
- Can be updated
 - Probabilistic model
 (sensor noise, changes in the environment)
 - Update of previously recorded maps
- Flexible
 - Map is dynamically expanded
 - Multi-resolution map queries
- Compact
 - Memory efficient
 - Map files for storage and exchange

Map Representations

Pointclouds

- Pro:
 - No discretization of data
 - Mapped area not limited
- Contra:
 - Unbounded memory usage
 - No direct representation of free or unknown space

Map Representations

3D voxel grids

- Pro:
 - Probabilistic update
 - Constant access time
- Contra:
 - Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory

Map Representations

Octrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes allocated as needed
- Multi-resolution
Map Representations

Octrees

- **Pro:**
 - Full 3D model
 - Probabilistic
 - Flexible, multi-resolution
 - Memory efficient

- **Contra:**
 - Implementation can be tricky
 (memory, update, map files, ...)

- Open source implementation as C++ library available at http://octomap.sf.net

Probabilistic Map Update

- Clamping policy ensures updatability [Yguel ‘07]
 \[L(n) \in [l_{\text{min}}, l_{\text{max}}] \]

- Update of inner nodes enables multi-resolution queries
 \[L(n) = \max_{i=1..8} L(n_i) \]

Examples

- Cluttered office environment

- Freiburg, building 079

Examples: Office Building

Map resolution: 2 cm
Examples: Large Outdoor Areas

- Freiburg computer science campus
 (292 x 167 x 28 m³, 20 cm resolution)

Adding Color

Probabilistic 3D mapping using OctoMap and RGBDSLAM

Kai M. Wurm, Felix Endres
Autonomous Intelligent Systems Lab
University of Freiburg, Germany

Examples: Tabletop

Memory Usage

<table>
<thead>
<tr>
<th>Map dataset</th>
<th>Mapped area [m²]</th>
<th>Resolution [m]</th>
<th>Memory consumption [MB]</th>
<th>File size [MB]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Full grid</td>
<td>No compr.</td>
<td>Lossless compr.</td>
</tr>
<tr>
<td>FR-079 corridor</td>
<td>43.8 x 18.2 x 3.3</td>
<td>0.05</td>
<td>80.54</td>
<td>73.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>10.42</td>
<td>10.90</td>
</tr>
<tr>
<td>Freiburg outdoor</td>
<td>292 x 167 x 28</td>
<td>0.20</td>
<td>65.42</td>
<td>188.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80</td>
<td>10.96</td>
<td>4.56</td>
</tr>
<tr>
<td>New College</td>
<td>250 x 161 x 33</td>
<td>0.20</td>
<td>63.48</td>
<td>91.43</td>
</tr>
<tr>
<td>(Epoch C)</td>
<td></td>
<td>0.80</td>
<td>10.21</td>
<td>2.35</td>
</tr>
</tbody>
</table>