

Problems in Mapping

- Sensor interpretation
 - How do we extract relevant information from raw sensor data?
 - How do we represent and integrate this information over time?

• Robot locations have to be known

• How can we estimate them during mapping?

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions

4

• Occupancy of individual cells is independent

1

$$Bel(m_t) = P(m_t | u_1, z_2 ..., u_{t-1}, z_t)$$

= $\prod_{x,y} Bel(m_t^{[xy]})$

Robot positions are known!

Inverse Sensor Model for Occupancy Grid Maps

Combination of linear function and Gaussian:

Alternative: Simple Counting
For every cell count

hits(x,y): number of cases where a beam ended at <x,y>
misses(x,y): number of cases where a beam passed through <x,y>

Bel(m^[xy]) = hits(x,y)/hits(x,y) + misses(x,y)
Assumption: P(occupied(x,y)) = P(reflects(x,y))

Robots in 3D Environments

Humanoid robots

Outdoor navigation

Flying robots

Map Representations

Pointclouds

- Pro:
 - No discretization of data
 - Mapped area not limited
- Contra:
 - Unbounded memory usage
 - No direct representation of free or unknown space

14

16

Map Representations

3D voxel grids

Pro:

- Probabilistic update
- Constant access time

Contra:

- Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory

Map Representations

Octrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes allocated as needed
- Multi-resolution

 Update of inner nodes enables multiresolution queries

18

Examples: Office Building

Freiburg, building 079

Examples: Tabletop

Memory Usage								
Map dataset	Mapped	Resolution	Memory consumption [MB] F			File size	File size [MB]	
	area [m ³]	[m]	Full grid	No compr.	Lossless compr.	All data	Binary	
FR-079 corridor	$43.8\times18.2\times3.3$	0.05	80.54	73.64	41.70	15.80	0.67	
		0.1	10.42	10.90	7.25	2.71	0.14	
Freiburg outdoor	$292\times167\times28$	0.20	654.42	188.09	130.39	49.75	2.00	
		0.80	10.96	4.56	4.13	1.53	0.08	
	250 x 161 x 22	0.20	637.48	91.43	50.70	18.71	0.99	
New College	$250 \times 161 \times 33$							