







<section-header><section-header><equation-block><equation-block><equation-block><equation-block>

1



**Representations for Bayesian Robot Localization**  Kalman filters (late-80s?) Gaussians Discrete approaches ('95) approximately linear models Topological representation ('95) • uncertainty handling (POMDPs) position tracking · occas. global localization, recovery Grid-based, metric representation ('96) global localization, recovery •Particle filters ('99) •Multi-hypothesis ('00) sample-based representation multiple Kalman filters global localization, recovery global localization, recovery 7



•6









# <section-header><list-item><list-item><equation-block><equation-block><equation-block>



















•21









•25

### Ball Tracking in RoboCup



- Extremely noisy (nonlinear) motion of observer
- Inaccurate sensing, limited processing power
- Interactions between target and environment
- Interactions between robot(s) and target

### OTHER EXAMPLES

•26

### **Rao-Blackwellised PF for Inference**

- Represent posterior by random samples
- Each sample

 $s_i = \langle r_i, m_i, b_i \rangle = \langle \langle x, y, \theta \rangle_i, m_i, \langle \mu, \Sigma \rangle_i \rangle$ 

contains robot location, ball mode, ball Kalman filter

Generate individual components of a particle stepwise using the factorization

 $p(b_k, m_{l:k}, r_{l:k} \mid z_{l:k}, u_{l:k-1}) =$  $p(b_k \mid m_{l:k}, r_{l:k}, z_{l:k}, u_{l:k-1}) p(m_{l:k} \mid r_{l:k}, z_{l:k}, u_{l:k-1}) \cdot p(r_{l:k} \mid z_{l:k}, u_{l:k-1})$ 



•29









## <section-header><section-header><image>

•34

PROPERTIES OF MODEL-BASED AND DEEP LEARNINGÍndel-basedRepresentationReidi model: Allows physics-based reasonineGeneralityRobustnessRequires good models and estimates thered;<br/>Uncertainty and bounds, tracker initialization<br/>and recovery ingendim:ItaniningRipiter trainingBeinet training cold models and estimates thered;<br/>Uncertainty and bounds, tracker initialization<br/>and recovery ingendim:EfficiencyEfficiencyBeinet in local regime;<br/>Bebal initialization complex

### PROPERTIES OF MODEL-BASED AND DEEP LEARNING

|                | Model-based                                                                                                                  | Deep learning                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Representation | Explicit models; Allows physics-based reasoning                                                                              | Learned from data; Network structures                                                                |
| Generality     | Broadly applicable; Physics are universal                                                                                    | Only in trained regime; Prone to overfitting; Transfer<br>challenge                                  |
| Robustness     | Requires good models and estimates thereof;<br>Uncertainty and bounds, No tracker initialization<br>and recovery in high-dim | Highly robust in trained regime; No explicit model of<br>uncertainty;<br>Failure detection difficult |
| Training       | Minimal training; Model building;<br>System identification                                                                   | Major training effort; Model-based, human<br>annotation, or self-experiment for supervision          |
| Efficiency     | Efficient in local regime;<br>Global initialization complex                                                                  | Highly efficient once trained                                                                        |



### INTUITIVE PHYSICS

- PEOPLE HAVE INTUITIVE UNDERSTANDING OF HOW THINGS EVOLVE OVER TIME, AND
  HOW TO ACHIEVE DESIRED CHANGE
- QUALITATIVELY RELATED TO PHYSICS UNDERLYING A SCENE: GRAVITY, FORCES, FRICTION, MASS, SIZE, PERSISTENCE, RIGID AND NON-RIGID MOTION, ...
- GOOD ENOUGH FOR CONTROL SINCE TIGHTLY COUPLED TO PERCEPTION --> CLOSED
  LOOP CONTROL
- PHYSICS BASED MODELS IN ROBOTICS GENERALIZE WELL BUT ARE NOT TIGHTLY COUPLED TO PERCEPTION
- CAN WE LEARN INTUITIVE PHYSICS MODELS FOR ROBOTS?
  - IDEALLY SUITED FOR CLOSED-LOOP CONTROL SINCE FULLY GROUNDED IN PERCEPTUAL EXPERIENCE
  - APPLICABLE ACROSS A WIDE RANGE OF TASKS

Dieter Fox, University of Washington



### •38

### DEEP LEARNING FOR ROBOTICS

- EXTREMELY FLEXIBLE AND EXPRESSIVE FRAMEWORK FOR LEARNING FROM RAW DATA
  - WILL DOMINATE MANY RECOGNITION / CONTROL TASKS, ESPECIALLY WELL SUITED FOR CLOSED-LOOP CONTROL WITH COMPLEX PERCEPTION AND STATE SPACES
  - IN ROBOTICS, FUTURE DATA PROVIDES SUPERVISORY SIGNALS
- CHALLENGES
  - HOW TO GET TRAINING DATA (SCALABILTIY, SAFETY, OVERFITTING, SIMULATION)?
  - HOW TO BEST COMBINE MODELS AND DEEP LEARNING?
- HOW TO EXTRACT / MODEL UNCERTAINTY AND GUARANTEES?
- Understanding of network structures, training regimes, generalization Capabilities
- RISKS
  - STUDENTS DEGRADED TO NETWORK AND DATA ENGINEERS
  - COMPANY OR LAB WITH MOST GPU'S WINS
- A TOOLBOX TO TRY NEW THINGS AND REVISIT TASKS FROM NEW PERSPECTIVES

### Dieter Fox, University of Washington

### •40

10