CSE 571
Robotics

Recap and Discussion

Bayesian Filtering, Models
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Parametric Kinematics Model

* Robot moves from (X.7.0) to(%'.7.0").
e Odometry information u =<é‘mﬂ,5m,2, mm).
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Representations for Bayesian
Robot Localization
/ -Kalma_n filters (Iate-SOS?\
+Discrete approaches (’95) * Gaussians
+ Topological representation ('95) + approximately linear models
« uncertainty handling (POMDPs) « position tracking

« occas. global localization, recovery
* Grid-based, metric representation (’96)
« global localization, recovery

Particle filters (’99) *Multi-hypothesis (’00)

* sample-based representation * multiple Kalman filters

k « global localization, recovery| /< « global localization, recow

Alternative: Non-Parametric
Gaussian Process Models
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The Prediction-Correction-Cycle

of Kalman Filters

/ Pre
hel(x,):][#4;7;(*]’3(:);?{ K j;i E(_x,):{(flé :l,z‘,', |:(1:_u
bel(x,) = {"’ ;’Z ;'[’fl(\’c’)%ﬁ ) K, ~S.CN(CECT+0)" bel(x,) = {Eﬁ :2; "/Zrlij?
8

8



EKF Linearization
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UKF Linearization
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Importance Sampling Principle
= We can use a different distribution g to generate samples
from f
®= By introducing an importance weight w, we can account for
the “differences between g and /"
w=f/g
proposal(x) ——
= target(x)
.g’ samples
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Particle Filter Projection
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SLAM

ESTIMATION
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Why is SLAM a hard problem?

*SLAM: robot path and map are both unknown
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*Robot path error correlates errors in the map

EKF-SLAM

® Map with N landmarks:(3+2N)-dimensional
Gaussian
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e Can handle hundreds of dimensions

15

°14

FastSLAM

Robot Pose 2 x 2 Kalman Filters

Pa;ﬂ"'e X, Y, Z . Landmark 1 | Landmark 2 I Landmark N

Pa;;"'e X, Y, Z . Landmark 1 | Landmark 2 I Landmark N

Pa;;"'e X, Y, Z . Landmark 1 || Landmark 2 I Landmark N

Parl\tI:cIe X, Y, Z . Landmark 1 || Landmark 2 I Landmark N
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[Courtesy of Mike Montemerlo]
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Graph-SLAM Idea
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3D Outdoor Mapping

108 features, 10° poses, only few secs using cg. "
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PLANNING / CONTROL

°18

Deterministic, fully observable
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Planning via Cell Decomposition

* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness % %S ~

action template

2= replicate it et

online

S7
C(s,s;) = 100
C(5,89) =5

CSE-571: Courtesy of Maxim Likhachev, CMU

Rapidly exploring Random Tree (RRT)

21

Source: LaValle and Kuffner 0.

Stochastic, Fully Observable
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Manipulator Control Path

State space

Configuration space
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Inverse Optimal Control

Cost Map

: REERREE"REE . 2-D
'#"i Planner

T

Y
(Path to goal)
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OTHER EXAMPLES

Ball Tracking
in RoboCup

Extremely noisy (nonlinear) motion of
observer

Inaccurate sensing, limited processing
power

Interactions between target and
environment

Interactions between robot(s) and target
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Rao-Blackwellised PF for
Inference

® Represent posterior by random samples
® Each sample

i = <7;,ml.,b,.> = <<x’y’6>i’mi’<ﬂ’z>i>
contains robot location, ball mode, ball Kalman
filter
" Generate individual components of a particle
stepwise using the factorization
Py hy |zt ) =

Py My Ty Zygsthy ) POy | By 2oty ) - P(ly | 2ot )
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Ball-Environment Interaction
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Ball-Environment Interaction

KinectFusion: Real-Time Dense Surface Mapping and
Tracking. Newcombe et al. ISMAR 2011

Raw normal map (input) Kinect RGB (not used)

Full room reconstruction

3D reconstruction 3d reconstruction
(surface normals) (L.N shaded)

31

*30

Wetlab
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RGB-D Mapping
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PROPERTIES OF MODEL-BASED AND DEEP LEARNING

Representation
Generality
Robustness
Training

Efficiency

iversity of Washinglon
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Explicit models; Allows physics-based reasoning

Broadly applicable; Physics are universal

Requires good models and estimates thereof;
Uncertainty and bounds, No tracker initialization
and recovery in high-dim

Minimal training; Model building;
System identification

Efficient in local regime;
Global initialization complex

+CSE-571: Rol

RGB-D Mapping
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PROPERTIES OF MODEL-BASED AND DEEP LEARNING

Representation
Generality
Robustness
Training

Efficiency

«Dieter Fox, Universiy of Washington
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Explicit models; Allows physics-based reasoning

Broadly applicable; Physics are universal

Requires good models and esfimates thereof;
Uncertainty and bounds, No fracker inifiaiization
and recovery in high-dim

Minimal training; Mode! building;
System identification

Efficient in local regime;
Global initialization complex

Learned from data; Network structures

Only in frained regime; Prone fo overfitting; Transfer
challenge

Highly robust in frained regime; No explicit model of
uncertainty;
Failure detection difficult

Major fraining effort; Modebased, human
annotation, or self-experiment for supervision

Highly efficient once trained
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COOKING WITH JULIA

[thanks to Matt Mason for the idea]
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«Diefer Fox, Universfy of Washington + CSE-571: Roboics

INTUITIVE PHYSICS

PEOPLE HAVE INTUITIVE UNDERSTANDING OF HOW THINGS EVOLVE OVER TIME, AND
HOW TO ACHIEVE DESIRED CHANGE

QUALITATIVELY RELATED TO PHYSICS UNDERLYING A SCENE: GRAVITY, FORCES,
FRICTION, MASS, SIZE, PERSISTENCE, RIGID AND NON-RIGID MOTICN, ...

GC ENC FOR CONTROL SINCE TIGHTLY COUPLED TO PERCEPTION --> CLOSED
LOOP CONTROL

PH S BASED MO \ GENERALIZE WELL BUT ARE NOT TIGHTLY
COUPLED TO PERCEPTION

CAN WE LEARN INTUITIVE PHYSICS MODELS FOR ROBOTS?
* IDEALLY SUITED FOR CLOSED-LOOP CONTROL SINCE FULLY GROUNDED IN PERCEPTUAL EXPERIENCE
* APPLICABLE ACROSS A WIDE RANGE OF TASKS

«Diefer Fox, Universiy of Washington
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GRAVITY AND ONIONS

«Diefer Fox, Univer or +CSE-571: Roboics

DEEP LEARNING FOR ROBOTICS

XTREMELY FLEXIBLE AND EXPRESSIVE FRAI IRK FOR LEARNIN
DATA

* WILL DOMINATE MANY RECOGNITION / CONTROL TASKS, ESPECIALLY WELL SUITED FOR
CLOSED-LOOP CONTROL WITH COMPLEX PERCEPTION AND STATE SPACES

* IN ROBOTICS, FUTURE DATA PROVIDES SUPERVISORY SIGNALS
CHALLENGES
* HOW TO GET TRAINING DATA (SCALABILTIY, SAFETY, OVERFITTING, SIMULATION) 2
* HOW TO BEST COMBINE MODELS AND DEEP LEARNING?
How TO EXTRACT / MODEL UNCERTAINTY AND GUARANTEES2

UNDERSTANDING OF NETWORK STRUCTURES, TRAINING REGIMES, GENERALIZATION
CAPABILITIES

STUDENTS DEGRADED TO NETWORK AND DATA ENGINEERS
COMPANY OR LAB WITH MOST GPU'S WINS

Y NEW THINGS AN IT TASKS F

«Diefer Fox, Universiy of Washington «CSE-571: Roboics
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