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CSE 571
Robotics

Recap and Discussion
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ESTIMATION
Bayesian Filtering, Models
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Bayes Filters
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Parametric Sensor Model
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Parametric Kinematics Model
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Alternative: Non-Parametric 
Gaussian Process Models

Mean

Variance
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Representations for Bayesian 
Robot Localization

•Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)
• occas. global localization, recovery

• Grid-based, metric representation (’96)
• global localization, recovery

•Multi-hypothesis (’00)
• multiple Kalman filters
• global localization, recovery

•Particle filters (’99)
• sample-based representation
• global localization, recovery

•Kalman filters (late-80s?)
• Gaussians
• approximately linear models
• position tracking
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The Prediction-Correction-Cycle
of Kalman Filters
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EKF Linearization
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UKF Linearization

EKF UKF
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Particle Filter Projection
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§ We can use a different distribution g to generate samples 
from f

§ By introducing an importance weight w, we can account for 
the “differences between g and f ”

w = f / g

Importance Sampling Principle

12

•12



4

ESTIMATION
SLAM
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Why is SLAM a hard problem?

•SLAM: robot path and map are both unknown

•Robot path error correlates errors in the map
14
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• Map with N landmarks:(3+2N)-dimensional 
Gaussian

• Can handle hundreds of dimensions

EKF-SLAM
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FastSLAM

Robot Pose 2 x 2 Kalman Filters

Landmark 1 Landmark 2 Landmark N…x, y, z

Landmark 1 Landmark 2 Landmark N…x, y, zParticle
#1

Landmark 1 Landmark 2 Landmark N…x, y, zParticle
#2

Landmark 1 Landmark 2 Landmark N…x, y, zParticle
#3

Particle
M

…

[Courtesy of Mike Montemerlo]
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Graph-SLAM Idea
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3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.
18

•18

PLANNING / CONTROL
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Deterministic, fully observable
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CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it 
online

•21

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01
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Stochastic, Fully Observable
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Manipulator Control Path

State space            Configuration space
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Inverse Optimal Control 

Learning

Y
(Path to goal)

2-D
Planner

Cost Map

•25

OTHER EXAMPLES
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Ball Tracking 
in RoboCup

§ Extremely noisy (nonlinear) motion of 
observer

§ Inaccurate sensing, limited processing 
power

§ Interactions between target and 
environment

§ Interactions between robot(s) and target

•27

Rao-Blackwellised PF for 
Inference
§ Represent posterior by random samples
§ Each sample 

contains robot location, ball mode, ball Kalman
filter

§ Generate individual components of a particle 
stepwise using the factorization
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Ball-Environment Interaction

•29

Ball-Environment Interaction

•30

KinectFusion: Real-Time Dense Surface Mapping and 
Tracking. Newcombe et al.  ISMAR 2011
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Wetlab
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RGB-D Mapping
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RGB-D Mapping
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Model-based

Representation
Explicit models; Allows physics-based reasoning

Generality
Broadly applicable; Physics are universal

Robustness Requires good models and estimates thereof; 
Uncertainty and bounds, No tracker initialization 
and  recovery in high-dim

Training Minimal training; Model building;
System identification

Efficiency Efficient in local regime;
Global initialization complex

•CSE-571: Robotics•Dieter Fox, University of Washington
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Model-based Deep learning

Representation
Explicit models; Allows physics-based reasoning Learned from data; Network structures

Generality
Broadly applicable; Physics are universal

Only in trained regime; Prone to overfitting; Transfer 
challenge

Robustness Requires good models and estimates thereof; 
Uncertainty and bounds, No tracker initialization 
and  recovery in high-dim

Highly robust in trained regime; No explicit model of 
uncertainty; 
Failure detection difficult

Training Minimal training; Model building;
System identification

Major training effort; Model-based, human 
annotation, or self-experiment for supervision

Efficiency Efficient in local regime;
Global initialization complex Highly efficient once trained

•CSE-571: Robotics•Dieter Fox, University of Washington
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•CSE-571: Robotics•Dieter Fox, University of Washington

[thanks to Matt Mason for the idea]      
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•CSE-571: Robotics•Dieter Fox, University of Washington
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• PEOPLE HAVE INTUITIVE UNDERSTANDING OF HOW THINGS EVOLVE
HOW TO ACHIEVE DESIRED CHANGE

• QUALITATIVELY RELATED TO PHYSICS GRAVITY, FORCES, 
FRICTION, MASS, SIZE, PERSISTENCE, RIGID AND NON-RIGID MOTION, …

• GOOD ENOUGH CLOSED
LOOP CONTROL

• PHYSICS BASED MODELS IN ROBOTICS NOT TIGHTLY
COUPLED TO PERCEPTION

• CAN WE LEARN INTUITIVE PHYSICS MODELS FOR ROBOTS? 
•
•

•CSE-571: Robotics•Dieter Fox, University of Washington
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• EXTREMELY FLEXIBLE AND EXPRESSIVE FRAMEWORK FOR LEARNING FROM RAW
DATA
• DOMINATE RECOGNITION / CONTROL TASKS

• , FUTURE DATA

• CHALLENGES
• TRAINING DATA (SCALABILTIY, SAFETY, OVERFITTING, SIMULATION)
• COMBINE MODELS AND DEEP LEARNING?
• UNCERTAINTY AND GUARANTEES?
• NETWORK STRUCTURES, TRAINING REGIMES, GENERALIZATION
CAPABILITIES

• RISKS
• STUDENTS DEGRADED
• GPU’S

• A TOOLBOX TO TRY NEW THINGS AND REVISIT TASKS FROM NEW PERSPECTIVES

•CSE-571: Robotics•Dieter Fox, University of Washington
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