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Task and Motion Planning (TAMP)
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Introduction

■ “Robot, cook me a bowl of 
tomato soup”

■ Must find out a sequence of 
grasps and motions that will 
result in a cooked can of soup

■ In this case: grabs soup, pours it 
out into the red bowl, puts the 
red bowl on the stove, and then 
takes it off.

■ Easy, right?

2

■ Robot must select both high-level actions & low-level controls
■ Application areas: semi-structured and human environments

Planning for Autonomous Robots
3

Food service Construction

Household
Warehouse fulfilment

3

Task and Motion Planning (TAMP)

■ Plan in a factored, hybrid space
■ Discrete and continuous variables & 

actions

■ Variables

■ Continuous: robot configuration, 
object poses, door joint positions, 

■ Discrete: is-on, is-in-hand, is-holding-
water, is-cooked, …

■ Actions: move, pick, place, push, pull, 
pour, detect, cook, …

4

4

http://github.com/caelan/pddlstream
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(Probable) Roadmap

1. Background
1. Task Planning
2. Motion Planning

2. Hybrid Planning
1. Prediscretized & Numeric Planning
2. Multi-Modal Motion Planning
3. Integrated TAMP

3. STRIPStream
4. Temporal TAMP 
5. TAMP under Uncertainty

[Fig from Erion Plaku]

5

Cooking and Stacking
6

6

Preparing Coffee
7

7

Automated Fabrication

■ Plan sequence of 306 3D printing extrusions (actions)
■ Collision, kinematic, stability and stiffness constraints

8

[Huang, Garrett, & Mueller 2018]

8
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Problem Class

■ Discrete-time

■ Plans are finite sequences of controls
■ Deterministic (for now)
■ Actions always produce the intended effect

■ Solutions are plans (instead of policies)
■ Observable (for now)
■ Access to the full world state
■ Hybrid

■ States & controls composed of mixed discrete-
continuous variables 

9

Classical (Task) Planning

■ Key focus: discrete problems with many variables
■ Often enormous, but finite, state-spaces

■ Problems typically described using an action language
■ Propositional Logic (STRIPS)
■ Planning Domain Description Language (PDDL)
■ Develop domain-independent algorithms
■ Can apply to any problem expressible using PDDL
■ Exploit factored and sparse structure to develop 

efficient algorithms

11

[Fikes 1971]        [Aeronautiques 1998]

11

Classical Planning Representations
12

12

First-Order Action Languages

■ Predicate: boolean function   
■ Facts (literals): instantiated predicates
■ State: set of facts
■ Equivalently, boolean state variables
■ Closed-world assumption: unspecified 

facts are false
■ Example: Blocksworld domain

13

(On ?b1 ?b2)=True/False

(On D C)=True

{(On A B)=False, (On D C)=True, …}

[Figs from Hector Geffner] 

13
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(Lifted) Action Schema

■ A tuple of free parameters
■ A precondition formula tests applicability
■ An effect formula modifies the state
■ Logical conjunctions enable factoring
■ Effects are deltas

14

(:action unstack
:parameters (?b1 ?b2)
:precondition (and
(ArmEmpty) (On ?b1 ?b2)
(Clear ?b1))

:effect (and
(Holding ?b1) (Clear ?b2) 
(not (Clear ?b1))
(not (ArmEmpty))
(not (On ?b1 ?b2))))

(:action stack
:parameters (?b1 ?b2)
:precondition (and
(Holding ?b1) (Clear ?b2))

:effect (and
(ArmEmpty) 
(On ?b1 ?b2) (Clear ?b1)
(not (Holding ?b1))
(not (Clear ?b2))))

14

■ State-space search: [Bonet 2001] [Hoffman 2001] [Helmert 2006]

■ Progression (forward) or regression (backward)
■ Best-first heuristic search algorithms
■ Partial-order planning [Penberthy 1992]

■ Search directly over plans (plan-space)
■ Planning as Satisfiability [Kautz 1999]

■ Compile to fixed-horizon SAT instance
■ SAT is NP-Complete
■ Planning is PSPACE-Complete
■ Increase horizon if formula unsatisfiable

Planning Approaches
15

15

■ For a state 
■ Path cost:
■ Heuristic estimate:
■ Open list sorted by priority
■ Weighted A*: 
■ Uniform cost search: 
■ A* search:
■ Greedy best-first search: 
■ How do we estimate        ?
■ No obvious metric (no metric-space embedding)

Forward Best-First Search
16

16

■ Can stack / unstack anywhere on the ground
■ Hint: is an even number

Predict the Minimum Plan Length
17

17
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■ Solution (length=6):
■ (unstack D C)
■ (stack D B)
■ (unstack C ground)
■ (stack C A)
■ (unstack E ground)
■ (stack E C)

Predict the Minimum Plan Length
18

18

Predict the Minimum Plan Length
19

19

Domain-Independent Heuristics

■ Estimating         is nontrivial
■ Can we do it in an a domain-independent manner?
■ Solve a related, approximate planning problem
■ Primary focus for almost all of classical planning

■ Suggestions for how to do this?

20

[Bonet 2001] [Hoffman 2001]

[Helmert 2006]

■ Independently plan for each goal
■ Remove some action preconditions
■ Remove negative (delete) effects
■ …

20

Delete-Relaxation Heuristics

■ Remove all negative (not) effects
■ Solving optimally is NP-Complete

■ Can greedily find a short plan in polynomial time
■ Basis for both admissible and greedier, non-admissible 

heuristics

21

(:action unstack
:parameters (?b1 ?b2)
:precondition (and
(ArmEmpty) (On ?b1 ?b2)
(Clear ?b1))

:effect (and
(Holding ?b1) (Clear ?b2) 
(not (Clear ?b1))
(not (ArmEmpty))
(not (On ?b1 ?b2))))

(:action stack
:parameters (?b1 ?b2)
:precondition (and
(Holding ?b1) (Clear ?b2))

:effect (and
(ArmEmpty) 
(On ?b1 ?b2) (Clear ?b1)
(not (Holding ?b1))
(not (Clear ?b2))))

21
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■ Can stack / unstack anywhere on the ground
■ Hint: is no greater than 6

Predict the Minimum Delete-
Relaxed Plan Length

22

22

■ Solution (length=6):
■ (unstack D C)
■ (stack D B)
■ (unstack C ground)

■ (stack C A)
■ (unstack E ground)
■ (stack E C)

Predict the Minimum Delete-
Relaxed Plan Length

23

23

■ Can stack / unstack anywhere on the ground
■ Hint: is an even number

Predict the Minimum Plan Length
24

24

■ Solution (length=12):
■ (unstack E C)
■ (stack E ground)
■ (unstack C A)

■ (stack C ground)
■ (unstack E ground)
■ (stack E C)
■ (unstack B D)

■ (stack B ground)

Predict the Minimum Plan Length
25

■ (unstack D ground)
■ (stack D A)
■ (unstack B ground)
■ (stack B D)

25
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■ Can stack / unstack anywhere on the ground
■ Hint: is no greater than 12

Predict the Minimum Delete-
Relaxed Plan Length

26

26

■ Solution (length=5):
■ (unstack E C)
■ (unstack C A)
■ (unstack B D)

■ (unstack D ground)
■ (stack D A)

Predict the Minimum Delete-
Relaxed Plan Length

27

27

Review: Motion Planning

■ Plan a path for a robot from an initial configuration 
to a goal configuration that avoids obstacles
■ Sequence of continuous configurations
■ Configurations often are high-dimensional
■ Example: 7 DOFs

■ High-level approaches:
■ Geometric decomposition
■ Sampling-based
■ Optimization-based

29

29

Sampling-Based Motion Planning

■ Discretize configuration space by sampling

■ Sampling be deterministic or random

■ Implicitly represent the collision-free configuration space using 
an blackbox collision checker

■ Abstracts away complex robot geometry

■ Algorithms

■ Probabilistic Roadmap (PRM)
■ Rapidly-Exploring Random Tree (RRT)

■ Bidirectional RRT (BiRRT)

32

[Kavraki 1994][Kuffner 2000][LaValle 2006]

32
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Probabilistic Roadmap (1/7)

Find a path from init to goal that avoids the obstacles

33

[Fig from Erion Plaku]

33

Probabilistic Roadmap (2/7)

Sample a set of configurations

34

[Fig from Erion Plaku]

34

Probabilistic Roadmap (3/7)

Remove configurations that collide with the obstacles

35

[Fig from Erion Plaku]

35

Probabilistic Roadmap (4/7)

Connect nearby configurations

36

[Fig from Erion Plaku]

36
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Probabilistic Roadmap (5/7)

Prune connections that collide with the obstacles

37

[Fig from Erion Plaku]

37

Probabilistic Roadmap (6/7)

The resulting structure is a finite roadmap (graph)

38

[Fig from Erion Plaku]

38

Probabilistic Roadmap (7/7)

Search for the shortest-path on the roadmap

39

[Fig from Erion Plaku]

39

Task and Motion Planning (TAMP)

54
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Shakey the Robot (1969)

■ First autonomous mobile manipulator (via pushing)

■ Visibility graph, A* search, and STRIPS!

■ Decoupled task and motion planning

■ Task planning then motion planning

55

[Fikes 1971]

[Nilsson 1984]

55

Obstacle Blocks Shakey’s Path

■ What if a movable block prevented Shakey from safely moving 
into the adjacent room?

■ Shakey could push it out of the way or go around it

■ What’s more efficient? How to push it? …

56

56

Decoupled vs Integrated TAMP

■ Decoupled: discrete (task) planning then continuous (motion) 
planning

■ Requires a strong downward refinement assumption

■ Every correct discrete plan can be refined into a correct continuous 
plan (from hierarchal planning)

■ Integrated: simultaneous discrete & continuous planning

59

Discrete Planning

Continuous 
Planning

Discrete 
Planning

Continuous 
Planning

IntegratedDecoupled

59

Geometric Constraints Affect Plan
60

■ Inherits challenges of both motion & classical planning

■ High-dimensional, continuous state-spaces

■ State-space exponential in number of variables

■ Long horizons

■ Continuous constraints limit 
high-level strategies

■ Kinematics, reachability, joint 
limits, collisions grasp, 
visibility, stability, stiffness, 
torque limits, …

60
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Pouring Among Obstacles
61

61

Preparing a Meal for Two

62

Breaking Down “Preparing a Meal”
63

Remove 
obstructing 

radishes

Clean each 
cabbage

Replace the 
radishes

Cook each cabbage Serve the cabbage

■ Clean 3 blue cups and clean/cook 2 green cabbages

■ 64 continuous and 10 discrete variables

1. High-dimensional
2. Long horizon
3. Discrete state
4. Geometric 

constraints

63

Block in Left Cabinet & Doors Closed

■ Robot forced to regrasp the object
■ Change from a top grasp to a 

side grasp

■ Non-monotonic problem
■ Plan must undo goals to solve
■ Open then close the cabinet door

■ Physical constraints can be subtle!

64

64
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Hybrid Planning Spectrum
66

Task Planning Motion Planning

Multi-Modal 
Motion Planning

Prediscretized 
Planning

Integrated Task and 
Motion Planning

Numeric 
Planning

Discrete ContinuousHybrid

66

Prediscretized & Numeric Planning

67

Prediscretized Planning

■ Assumes that a finite set of object placements, object grasps, and 
(sometimes) robot configurations are given

■ Can directly perform discrete task planning

■ Still need to evaluate reachability

■ Eagerly in batch [Lozano-Pérez 2014][Garrett 2017][Ferrer-Mestres 2017]

■ Eagerly during search [Dornhege 2009]

■ Lazily [Erdem 2011][Dantam 2018][Lo 2018]

68

68

Multi-Modal Motion Planning

72
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Multi-Modal Motion Planning
73

■ Mode: a set of motion 
constraints 

■ Gripper is empty

■ Relative object pose 
remains constant

■ Collision-free configuration space changes
when objects are manipulated

■ Use a sequence of motion planning problems 
each defined by a mode

[Alami 1994][Siméon 2004][Hauser 2011]
[Barry 2013][Vega-Brown 2016]

73

Low-dimensional Intersections

■ Need samples that connect adjacent modes

■ Intersection of two modes is often low-dimensional

■ Special-purpose samplers are needed

■ Example: transition from gripper empty to holding

■ Configurations at the intersection obtained using inverse 
kinematics (IK)

74

[Hauser 2011]

74

Sampling-Based Multi-Modal Planning

1. Sample from the set of 
modes

2. Sample at the low-
dimensional 
intersection of adjacent 
modes

3. Sample a roadmap 
within each mode

4. Discrete search on the 
multi-modal roadmap

75

Adjacent modes Intersections

Combined 
Roadmap

Individual mode 
roadmaps[Hauser 2011]

75

Mixed Integer Programming (MIP)

■ Continuous and integer variables

■ Convex constraints and costs
■ Branch-and-bound

■ Split on integer variables

■ Integrality relaxation

■ Lower bound on cost

■ Loose when logical operations

■ Planning limitation
■ # of variables may be exponential

in problem size

76

76
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Optimization-Based Multi-Modal 
Motion Planning
■ Discrete search over sequences of mode switches

■ Sequences have varying length

■ Each sequence induces a non-convex constrained 
optimization problem

■ Sequences can be pruned using lower bounds obtained by 
relaxing some constraints

77

[Toussaint 2015]
[Toussaint 2018]

[Lagriffoul
2014]

77

Integrated TAMP

■ Geometric search guided by classical planning

■ Both heuristic and sampling guidance

■ Task and motion planning interface

■ Maintain separate discrete and continuous descriptions
■ Custom interface to communicate between the two

■ Direct search in combined state-space

78

[Gravot 2005][Plaku 2010]

[Kaelbling 2011] [Garrett 2018a] [Garrett 2018b]

[Erdem 2011][De Silva 2013]
[Srivastava 2014][Dantam 2018]

■ How are failures 
diagnosed?

78

Hybrid Planning Spectrum Revisited
81

Task Planning Motion Planning

Multi-Modal 
Motion Planning

Prediscretized 
Planning

Integrated Task and 
Motion Planning

Numeric 
Planning

Discrete ContinuousHybrid

81

One Approach: STRIPStream

■ No general-purpose, flexible framework for 
planning in a variety of TAMP domains

■ Extends PDDL to incorporate sampling procedures
■ Can model domains with infinitely-many actions

■ Develop domain-independent algorithms that treat 
the samplers as blackbox inputs

■ Algorithms solve a sequence of finite PDDL problems
■ Leverage existing classical planners as subroutines
■ Algorithms are particularly fast when downward 

refinement holds while remaining complete

83

83
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STRIPStream Language

85

Benefits of Extending PDDL

■ Standardized action description language
■ Emphasis on describing and solving problems in a 

domain-independent way

■ Large wealth of efficient, existing algorithms that 
exploit factored state & action structure

■ Encodes the difference between two states using 
preconditions & effects
■ Most variables are unchanged
■ Actions can be described using few parameters

86

86

STRIPStream + Drake
88

88

Solved Using the Same Algorithm 

Framework not specific to a single robot or robotics at all!
89

89
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Motivating Pick & Place Example
91

■ Single object prevents
a goal object from 
being reachable

■ Focus on a compact 2D 
version

■ Formulation almost the 
same for 3D

■ Algorithms agnostic to 
number of DOFs

91

2D Pick-and-Place Example
92

■ Goal: block A within the red region
■ Robot and block poses are continuous (x, y) pairs
■ Block B obstructs the placement of A

Robot Vacuum Gripper

Movable Blocks

Placement Regions

92

2D Pick-and-Place Solution
93

■ One (of infinitely many) possible solutions
■ move, pick B, move, place B,                       

move, pick A, move, place A

93

2D Pick-and-Place Initial & Goal

■ Some constants are numpy arrays

■ Static initial facts - value is constant over time
■ (Block, A),  (Block, B),  (Region, red), (Region, grey),            

(Conf, [-7.5 5.]), (Pose, A, [0. 0.]), (Pose, B, [7.5 0.]),        
(Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

■ Fluent initial facts - value changes over time
■ (AtConf, [-7.5  5.]), (HandEmpty),                                      

(AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])

■ Goal formula:

94

(exists (?p) (and (Contained A ?p red) 
(AtPose A ?p)))

94
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2D Pick-and-Place Actions
95

(:action move
:parameters (?q1 ?t ?q2)
:precondition (and (Motion ?q1 ?t ?q2) (AtConf ?q1))
:effect (and (AtConf ?q2) (not (AtConf ?q1))))

(:action pick
:parameters (?b ?p ?g ?q)
:precondition (and (Kin ?b ?p ?g ?q)

(AtConf ?q) (AtPose ?b ?p) (HandEmpty))
:effect (and (AtGrasp ?b ?g)

(not (AtPose ?b ?p)) (not (HandEmpty))))

■ Typical PDDL action description except that arguments 
are high-dimensional & continuous! 

■ To use the actions, must prove the following static facts: 
(Motion ?q1 ?t ?q2), (Kin ?b ?p ?g ?q) 

95

BFS in Discretized State-Space

(AtConf, [-5. 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)

(AtConf, [0. 2.5])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.]) 
(HandEmpty)

(AtConf, [0. 2.5])
(AtGrasp, A, [0. -2.5])
(AtPose, B, [7.5 0.])

(AtConf, [-7.5 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.]) 
(HandEmpty)

96

(move, [-7.5 5.], 𝞃1, [0. 2.5])

(move, [-7.5 5.], 𝞃2, [-5. 5.])

(move, [-5. 5.], 𝞃3, [0. 2.5])

(pick, A, [0. 0.], [0. -2.5], [0. 2.5])

Initial
State

■ Suppose we were given the following additional static facts: 
■ (Motion, [-7.5 5.], 𝞃1, [0. 2.5]), (Motion, [-7.5 5.], 𝞃2, [-5. 5.]),                   

(Motion, [-5. 5.], 𝞃3, [0. 2.5]), (Kin, A, [0. 0.], [0. -2.5], [0. 2.5]), …

96

■ Values given at start:
■ 1 initial configuration: (Conf, [-7.5 5.])

■ 2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])

■ 2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

■ Planner needs to find:
■ 1 pose within a region:
■ 1 collision-free pose:
■ 4 grasping configurations:
■ 4 robot trajectories: 

No a Priori Discretization

(Motion ?q1 ?t ?q2)

(Kin ?b ?p ?g ?q) 

(CFree A ?p ? B ?p2) 

(Contain A ?p red) 

97

Intuition: Build a Roadmap

Search for the shortest-path on the roadmap

98

[Fig from Erion Plaku]

98
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What Samplers Do We Need?

■ Low-dimensional placement stability constraint (Contain)
■ i.e. 1D manifold embedded in 2D pose space
■ Directly sample values that satisfy the constraint
■ May need arbitrarily many samples
■ Gradually enumerate an infinite sequence

99

Intersection of Constraints

■ Kinematic constraint (Kin) involves poses, grasps, 
and configurations

■ Conditional samplers - samplers with inputs

100

Composing Conditional Samplers

■ Outputs of one conditional 
sampler are the inputs to 
another

■ Directed acyclic graph (DAG) 
of conditional samplers

101

Stream: a function to a generator

■ Advantages
■ Programmatic implementation
■ Compositional
■ Supports infinite sequences
■ Stream - function from an input object tuple (x1, x2, x3) 

to a (potentially infinite) sequence of output object 
tuples [(y1, y2), (y’1, y’2), …]

102

stream

Input x1

Input x2 Outputs [(y1, y2), (y’1, y’2), …]

Input x3

def stream(x1, x2, x3):
i = 0
while True:

y1 = i*(x1 + x2)
y2 = i*(x2 + x3)
yield (y1, y2)
i += 1

[Kaelbling 2011][Srivastava 2014]
[Garrett 2018a][Garrett 2018b]

102
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Stream Certified Facts

■ Objects alone aren’t helpful: what do they represent?

■ Communicate semantics using predicates!

■ Augment stream specification with:

■ Domain facts - static facts declaring legal inputs

■ e.g. only configurations can be motion inputs

■ Certified facts - static facts that all outputs satisfy 
with their corresponding inputs

■ e.g. poses sampled from a region are within it

103

103

Sampling Contained Poses
104

(:stream sample-region
:inputs (?b ?r)
:domain (and (Block ?b) (Region ?r))
:outputs (?p)
:certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r):
x_min, x_max = REGIONS[r]
w = BLOCKS[b].width

while True:
x = random.uniform(x_min + w/2, x_max - w/2)
p = np.array([x, 0.])
yield (p,)

sample-region
Block b

Region r
Pose [(p), (p’), (p”), …]

104

Sampling IK Solutions
105

(:stream sample-ik
:inputs (?b ?p ?g)
:domain (and (Pose ?b ?p) (Grasp ?b ?g))
:outputs (?q)
:certified (and (Conf ?q) (Kin ?b ?p ?g ?q)))

■ Inverse kinematics (IK) to produce robot grasping 
configuration
■ Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

sample-ik

Block b

Pose p Conf [(q’), (q”)]

Grasp g

105

Calling a Motion Planner
106

(:stream sample-motion
:inputs (?q1 ?q2)
:domain (and (Conf ?q1) (Conf ?q2))
:outputs (?t)
:certified (and (Traj ?t) (Motion ?q1 ?t ?q2)))

sample-motion
Conf q1

Conf q2

■ “Sample” (e.g. via a PRM) multi-waypoint trajectories

■ Include joint limits & fixed obstacle collisions, but not 
movable object collisions

Trajectory [(t)]

106
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2D Place Collisions
107

(:action place
:parameters (?b ?p ?g ?q)
:precondition (and ... (not (UnsafePose ?b ?p)))
:effect (and ...)

(:derived (UnsafePose ?b1 ?p1)
(exists (?b2 ?p2) (and (Pose ?b1 ?p1) (Pose ?b2 ?p2) 

(not (= ?b1 ?b2)) (AtPose ?b2 ?p2)
(not (CFree ?b1 ?p1 ?b2 ?p2))))

■ Add parameters for the pose of each block - bad!

■ Use a derived predicate for whether currently unsafe

■ Predicate defined by logical formula

■ Enables lightweight logical inference

■ Decomposes collision checking into a logical AND

[Fox 2003]
[Thiébaux 2005]

107

Check Block Collisions
108

(:stream test-cfree
:inputs (?b1 ?p1 ?b2 ?p2)
:domain (and (Pose ?b1 ?p1) (Pose ?b2 ?p2))
:outputs ()
:certified (CFree ?b1 ?p1 ?b2 ?p2))

test-cfree

Block b1

Block b2
True or False

Pose p1

Pose p2

■ Test stream: stream without output objects
■ Return True if collision-free placement (e.g. via 

querying a collision checker)

108

STRIPStream = STRIPS + Streams

■ Domain dynamics (domain.pddl): declares actions
■ Stream properties (stream.pddl)
■ Declares stream inputs, outputs, and certified facts
■ Problem and stream implementation (problem.py)
■ Initial state, Python constants, & goal formula
■ Stream implementation using Python generators

109

STRIPStream
Planner

Domain

Streams

Init & Goal

Plan

Supporting 
Facts

User provides

[Garrett 2018b]

109

STRIPStream Algorithms

110
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Two STRIPStream Algorithms

■ STRIPStream planners decide which streams to use
■ Algorithms alternate between searching & sampling:

1. Search a finite PDDL problem for plan
2. Modify the PDDL problem (depending on the plan)

■ Search implemented using off-the-shelf algorithms

■ Off-the-shelf AI planner - FastDownward
■ Exploits factoring in its search heuristics (e.g. hFF)
■ http://www.fast-downward.org/

■ Probabilistically complete given sufficient samplers
[Garrett 2018a]
[Garrett 2018b]

111

Incremental Algorithm

■ Incrementally construct all possible initial facts
■ Periodically check if a solution exists
■ Repeat:

1. Compose and evaluate a finite number of streams 
to unveil more facts in the initial state

2. Search the current PDDL problem for plan
3. Terminate when a plan is found

FastDownward
Search 

Sample 
Streams

Done!

Start
No plan

Plan found New facts
[Garrett 2018a]
[Garrett 2018b]

112

■ Sampled:
■ 2 new robot configurations: 
■ 4 new block poses: 
■ 2 new trajectories: 

Incremental: Sampling Iteration 1
113

Iteration 1 - 14 stream evaluations 1. s-motion:([-7.5  5. ], [-7.5  5. ])->[([[-7.5  5. ], [-7.5  5. ], [-7.5  5. ], [-7.5  5. ]])]
2. s-ik:(b0, [0. 0. ], [0. -2.5])->[([0.  2.5])]
3. t-cfree:(b0, [0. 0. ], b0, [0. 0. ])->[]
4. s-ik:(b1, [7.5 0. ], [0. -2.5])->[([7.5 2.5])]
5. t-cfree:(b1, [7.5 0. ], b0, [0. 0. ])->[()]
6. t-cfree:(b0, [0. 0.], b1, [7.5 0. ])->[()]
7. t-cfree:(b1, [7.5 0. ], b1, [7.5 0. ])->[]
8. t-region:(b0, [0. 0. ], grey)->[()]
9. t-region:(b1, [7.5 0. ], grey)->[()]
10.t-region:(b0, [0. 0. ], red)->[]
11.s-region:(b0, red)->[([7.65 0. ])]
12.s-region:(b1, red)->[([8.15 0. ])]
13.s-region:(b0, grey)->[([-9.88 0. ])]
14.s-region:(b1, grey)->[([-3.26 0. ])]

113

Incremental: Search Iteration 1
114

1. s-motion:([-7.5  5. ], [-7.5  5. ])->[([[-7.5  5. ], [-7.5  5. ], [-7.5  5. ], [-7.5  5. ]])]
2. s-ik:(b0, [0. 0. ], [0. -2.5])->[([0.  2.5])]
3. t-cfree:(b0, [0. 0. ], b0, [0. 0. ])->[]
4. s-ik:(b1, [7.5 0. ], [0. -2.5])->[([7.5 2.5])]
5. t-cfree:(b1, [7.5 0. ], b0, [0. 0. ])->[()]
6. t-cfree:(b0, [0. 0.], b1, [7.5 0. ])->[()]
7. t-cfree:(b1, [7.5 0. ], b1, [7.5 0. ])->[]
8. t-region:(b0, [0. 0. ], grey)->[()]
9. t-region:(b1, [7.5 0. ], grey)->[()]
10.t-region:(b0, [0. 0. ], red)->[]
11.s-region:(b0, red)->[([7.65 0. ])]
12.s-region:(b1, red)->[([8.15 0. ])]
13.s-region:(b0, grey)->[([-9.88 0. ])]
14.s-region:(b1, grey)->[([-3.26 0. ])]

FastDownward
Search Infeasible!

■ Pass current discretization to FastDownward
■ If infeasible, the current set of samples is insufficient

114

http://www.fast-downward.org/
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Incremental: Sampling Iteration 2
115

Iteration 2 - 54 stream evaluations 1. s-motion:([0.  2.5], [-7.5  5. ])->[([[0.  2.5], [0. 5.], [-7.5  5. ], [-7.5  5. ]])]
2. s-motion:([-7.5  5. ], [0.  2.5])->[([[-7.5  5. ], [-7.5  5. ], [0. 5.], [0.  2.5]])]
3. s-motion:([0.  2.5], [0.  2.5])->[([[0.  2.5], [0. 5.], [0. 5.], [0.  2.5]])]
4. s-motion:([7.5 2.5], [-7.5  5. ])->[([[7.5 2.5], [7.5 5. ], [-7.5  5. ], [-7.5  5. ]])]
5. s-motion:([7.5 2.5], [0.  2.5])->[([[7.5 2.5], [7.5 5. ], [0. 5.], [0.  2.5]])]
6. s-motion:([-7.5  5. ], [7.5 2.5])->[([[-7.5  5. ], [-7.5  5. ], [7.5 5. ], [7.5 2.5]])]
7. s-motion:([0.  2.5], [7.5 2.5])->[([[0.  2.5], [0. 5.], [7.5 5. ], [7.5 2.5]])]
8. s-ik:(b0, [7.65 0.  ], [0. -2.5])->[([7.65 2.5 ])]
9. t-cfree:(b0, [7.65 0.  ], b1, [7.5 0. ])->[]
10.t-cfree:(b1, [7.5 0. ], b0, [7.65 0.  ])->[]
11.s-region:(b0, red)->[([7.27 0.  ])]
12.s-ik:(b1, [8.15 0.  ], [0. -2.5])->[([8.15 2.5 ])]
…
54.s-region:(b1, grey)->[([10.97  0.  ])]

■ Sampled:
■ 4 new robot configurations: 
■ 4 new block poses: 
■ 10 new trajectories: 

115

Incremental: Search Iteration 2
116

1. s-motion:([-7.5  5. ], [-7.5  5. ])->[([[-7.5  5. ], [-7.5  5. ], [-7.5  5. ], [-7.5  5. ]])]
2. s-ik:(b0, [0. 0. ], [0. -2.5])->[([0.  2.5])]
3. t-cfree:(b0, [0. 0. ], b0, [0. 0. ])->[]
4. s-ik:(b1, [7.5 0. ], [0. -2.5])->[([7.5 2.5])]
5. t-cfree:(b1, [7.5 0. ], b0, [0. 0. ])->[()]
6. t-cfree:(b0, [0. 0.], b1, [7.5 0. ])->[()]
7. t-cfree:(b1, [7.5 0. ], b1, [7.5 0. ])->[]
8. t-region:(b0, [0. 0. ], grey)->[()]
9. t-region:(b1, [7.5 0. ], grey)->[()]
10.t-region:(b0, [0. 0. ], red)->[]
11.s-region:(b0, red)->[([7.65 0. ])]
12.s-region:(b1, red)->[([8.15 0. ])]
13.s-region:(b0, grey)->[([-9.88 0. ])]
14.s-region:(b1, grey)->[([-3.26 0. ])]

FastDownward
Search Still infeasible!

■ Pass current discretization to FastDownward
■ If infeasible, the current set of samples is insufficient

116

Incremental Example: Iterations 3-4
117

Iteration 3 - 118 stream evaluations
Iteration 4 - 182 stream evaluations

Solution:
1) move [-7.5  5. ] [[-7.5  5. ], [-7.5  5. ], [7.5 5. ], [7.5 2.5]] [7.5 2.5]
2) pick B [7.5 0. ] [0. -2.5] [7.5 2.5]
3) move [7.5 2.5] [[7.5 2.5], [7.5 5. ], [10.97  5.  ], [10.97  2.5 ]] [10.97  2.5 ]
4) place B [10.97  0.  ] [0. -2.5] [10.97  2.5 ]
5) move [10.97  2.5 ] [[10.97  2.5 ], [10.97  5.  ], [0. 5.], [0.  2.5]] [0.  2.5]
6) pick A [0. 0.] [0. -2.5] [0.  2.5]
7) move [0.  2.5] [[0.  2.5], [0. 5.], [7.65 5.  ], [7.65 2.5 ]] [7.65 2.5 ]
8) place A [7.65 0.  ] [0. -2.5] [7.65 2.5 ]
■ Drawback - many unnecessary samples produced
■ Computationally expensive to generate 
■ Induces large discrete-planning problems

117

Optimistic Stream Outputs

■ Many TAMP streams are exceptionally expensive

■ Inverse kinematics, motion planning, collision checking

■ Only query streams that are identified as useful

■ Plan with optimistic hypothetical outputs
■ Inductively create unique placeholder output objects for each 

stream instance (has # as its prefix)

118

■ Optimistic evaluations:

1. [s-region:(b0, red)->(#p0), …
2. [s-ik:(b0, [0. 0.], [0. -2.5])->(#q0), s-ik:(b0, #p0, [0. -2.5]) ->(#q2), t-cfree:(b0, #p0, b1, [7.5 0. ])->() …
3. [s-motion:([-7.5  5. ], #q0)->(#t2), s-motion:(#q0, #q2)   ->(#t13), …]

Optimistic evaluations:

1. s-region:(b0, red)->(#p0)

2. s-ik:(b0, [0. 0.], [0. -2.5])->(#q0),

3. s-ik:(b0, #p0, [0. -2.5]) ->(#q2)

[Srivastava 2014]

[Garrett 2018a]
[Garrett 2018b]

118
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Focused Algorithm

■ Lazily plan using optimistic outputs before real outputs

■ Recover set of streams used by the optimistic plan

119

Optimistic plan
FastDownward 

Search 
Sample 
Streams

Done!

Start

Real plan

Optimistic 
Streams

Disabled 
streams

Optimistic facts

■ Repeat:

1. Construct active 
optimistic objects

2. Search with real & 
optimistic objects

3. If only real objects used, 
return plan

4. Sample used streams

5. Disable used streams
[Garrett 2018a][Garrett 2018b]

New Facts

119

Focused Example 1
120

Optimistic Plan: 
move([-5.  5.], #t0, #q0), pick(A, [0. 0.], [-0.  -2.5], #q0),
move(#q0, #t2, #q1), place(A, #p0, [-0.  -2.5], #q1)

Constraints:
(kin, A, #q0, #p0, [-0.  -2.5]), 
(kin, A, #q1, [0. 0.], [-0.  -2.5]), 
(motion, [-5.  5.], #t1, #q1),
(motion, #q1, #t2, #q0),
(contain, A, #p0, red),

120

Focused Example 2: Iteration 1

Optimistic Plan: 
move([-5.  5.], #t0, #q0), pick(A, [0. 0.], [-0.  -2.5], #q0),      move(#q0, #t2, 
#q1), place(A, #p0, [-0.  -2.5], #q1)
Constraints:
(cfree, A, #p0, B, [7.5 0. ]), (contain, A, #p0, red), 
(kin, A, #q0, [0. 0.], [-0.  -2.5]), (kin, A, #q1, #p0, [-0.  -2.5]), 
(motion, #q0, #t2, #q1), (motion, [-5.  5.], #t0, #q0)

121

Stream evaluations:
1.s-region:(A, red)->[([8.21 0.  ])]
2.t-cfree:(A, [8.21 0.  ], B, [7.5 0. ])=False
These stream instances are removed from subsequent searches

121

Focused Example: Iteration 2

Optimistic Plan:
move([-5.  5.], #t4, #q2), pick(B, [7.5 0. ], [-0.  -2.5], #q2), 
move(#q2, #t9, #q3), place(B, #p1, [-0.  -2.5], #q3),         
move(#q3, #t6, #q0), pick(A, [0. 0.], [-0.  -2.5], #q0),        
move(#q0, #t8, #q4), place(A, [8.21 0.  ], [-0.  -2.5], #q4)

122

t-cfree:(A, [8.21 0.  ], B, [7.5 0. ]) previously failed
t-cfree:(A, [8.21 0.  ], B, #p1) might succeed

122
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Focused Outperforms Incremental

[Garrett 2018a]

Incremental  ~20 s
Focused  ~10 s

Incremental N/A
Focused ~20s

Incremental N/A
Focused ~25s

124

Diverse Experiments

126

Diverse Experiments

Success percentage (%), Average runtime in sec. (t)

127

Cost-Minimizing Planning

■ Actions costs specified as nonnegative functions

■ Function specification similar to derived predicates

■ Asymptotically optimal algorithms

128

(:action move
:parameters (?q1 ?t ?q2)
:precondition (and (Motion ?q1 ?t ?q2)

(AtConf ?q1))
:effect (and (AtConf ?q2)

(not (AtConf ?q1)))
(increase (total-cost) (Length ?t)))

def Length(t):
return sum(np.linalg.norm(q2 - q1)

for q1, q2 in zip(t[:-1], t[1:]))

(:function (Length ?t)
(Traj ?t))

(:function (Distance ?q1 ?q2)
(and (Conf ?q1) (Conf ?q2))

128
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Goal: Hold Any Green Block

■ Lower bounds on costs improve focused performance

129

129

TAMP Under Uncertainty

141

A Real World Example

143

In the real world…

Three big problems:

1)Partially observability: we don’t have full 
knowledge of the world; objects not visible.

2)Stochastic actions: objects or the robot will not 
appear where we expect when grasped, placed, 
or detected. This means we must be able to re-plan 
efficiently.

3)Problem complexity: plans are long, with many 
free parameters. It’s impossible to explore all 
possible results of our actions.

144
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POMDP: Partially-Observable State

■ Update a belief (probability distribution) over states
■ Plan in the space of beliefs (belief space planning)
■ Intentionally take observation actions

145

145

MDP: Stochastic Action Effects

■ Approximate as cost-sensitive deterministic problem
■ Policy computed online via replanning

146

146

Geometric & Probabilistic Constraints
147

147

Three Insights

1)Particle-based belief representation: allows us to 
represent belief over where objects might be, given a 
prior based on the environment. Determinize this 
belief before planning.
2)Online replanning: we constrain new plans to be 

decreasing in length, and re-use elements of the plan 
structure. This prevents issues with (1).
3)Deferred evaluation: only evaluate streams, i.e. find 

continuous values, for actions that occur before the 
next time we will need to replan.

148
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Belief-Space TAMP System

■ Convolutional Neural Network (CNN) Object Detector
■ Point cloud plane estimation to identify surfaces
■ Point cloud pose estimation for objects
■ Occupancy grid for non-manipulable

■ Plan, execute, & observe in real time

152

Takeaways

■ Task and Motion Planning (TAMP): hybrid planning 
where continuous constraints affect discrete decisions

■ Sampling is powerful for exploring continuous spaces

■ STRIPStream: planning language that supports 
sampling procedures as blackbox streams
■ Domain-independent algorithms
■ Lazy/optimistic planning intelligently queries only a 

small number of samplers (focused algorithm)
■ Ongoing work involving cost-sensitive, multi-agent, 

probabilistic & partially observable TAMP

153

Other Directions

154

Robustness and Reactivity

Sensors can be wrong, actions can have unpredictable effects, and 
external factors can interfere with execution.

Task-Level Disturbances Action-Level Disturbances

155
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Goal-Based Imitation Learning

• Goal-based imitation allows us 
to map from human 
demonstrations to dramatically 
different environments.

• Take a human demonstration in 
one environment, use motion 
planning to determine what 
their intentions were.

Huang, D., Chao, Y., Paxton, C., Deng, X., Li, F., Naebles, J., Garg, A., Fox, D. Motion 
Reasoning for Goal-Based Imitation Learning. ICRA 2020

156

Goal-Based Imitation Learning

• Goal-based imitation allows us 
to map from human 
demonstrations to dramatically 
different environments.

• Take a human demonstration in 
one environment, use motion 
planning to determine what 
their intentions were.

• Use the inferred logical goal and 
execute robustly in the new 
environment.

Huang, D., Chao, Y., Paxton, C., Deng, X., Li, F., Naebles, J., Garg, A., Fox, D. Motion 
Reasoning for Goal-Based Imitation Learning. ICRA 2020

157

Deep Planning Domain Learning

■ Learn symbols for high-level 
task planning, as well as low-
level policies for reactive 
execution.

■ Advantage: highly reactive 
learned hierarchical architecture 
that can generate plans for 
held-out tasks.

158

Collaborating with Humans

159
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Questions? (and Outtakes!)
160

160
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