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CSE 571
Inverse Optimal Control

(Inverse Reinforcement Learning)

Many slides by Drew Bagnell
Carnegie Mellon University
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Mode 1: Training example
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Mode 1: Training example
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Mode 1: Learned behavior
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Mode 1: Learned behavior
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Mode 1: Learned cost map
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Mode 2: Training example
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Mode 2: Training example
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Mode 2: Learned behavior
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Mode 2: Learned behavior
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Mode 2: Learned cost map
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Ratliff, Bagnell, Zinkevich 2005
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008
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w=[], F=[]

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

Learn F1

(        , High Cost)

(       ,  Low Cost)
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w=[w1], F=[F1]

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff,  Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

Learn F2

(      , High Cost)

(       ,  Low Cost)
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Ratliff, Bradley, Chesnutt,
Bagnell 06

Zucker, Ratliff, Stolle, 
Chesnutt, Bagnell, 
Atkeson, Kuffner 09
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Learned Cost Function Examples
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Learned Cost Function Examples
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Pedestrian Trajectory Prediction
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Staying out of People’s Path
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Learning Manipulation Preferences
• Input: Human demonstrations of preferred behavior 

(e.g., moving a cup of water upright without spilling)

• Output: Learned cost function that results in trajectories 
satisfying user preferences
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Demonstration(s)
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Demonstration(s) Graph
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Demonstration(s) Graph
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Demonstration(s) Graph Projection
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Demonstration(s) Graph Projection
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Demonstration(s) Graph Projection

Learned cost
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Demonstration(s) Graph Projection

Discrete sampled 
paths Learned cost
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost

Discrete 
MaxEnt IOC
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Demonstration(s) Graph Projection

Output 
trajectories

Discrete sampled 
paths Learned cost

Local Trajectory 
Optimization
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Setup

• Binary state-dependent features (~95)
• Histograms of distances to objects
• Histograms of end-effector orientation
• Object specific features (electronic vs non-electronic)
• Approach direction w.r.t goal

• Task
• Hold cup upright while not moving above electronics
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Laptop task: Demonstration 
( Not part of training set)
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Laptop task: LTO + Discrete graph path
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Laptop task: LTO + Smooth random path
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Readings

• Max-Ent IRL (Ziebart, Bagnell): 
http://www.cs.cmu.edu/~bziebart/

• CIOC (Levine) 
http://graphics.stanford.edu/projects/cioc/cioc.pdf

• Manipulation (Byravan/Fox): https://rse-
lab.cs.washington.edu/papers/graph-based-IOC-ijcai-2015.pdf

• Imitation learning (Ermon): https://cs.stanford.edu/~ermon/
• Human/manipulation (Dragan): 

https://people.eecs.berkeley.edu/~anca/research.html
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