

Configuration Space (C-Space) = { x | x is a pose of the robot} • obstacles → configuration space obstacles Workspace Configuration Space (2 DOF: translation only, no rotation)

Probabilistic Roadmap (PRM) The collision-free configurations are retained as milestones Image: Configuration of the configuratio of the configuration of the configuration of the conf

14

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

18

Probabilistic Roadmap

- Initialize set of points with x_s and x_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X_S to X_G in the graph
 - Alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component

PRM Example 2

22

PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.
- Cons:
 - Required to solve 2-point boundary value problem
 - Build graph over state space but no focus on generating a path

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

Rapidly exploring Random Tree (RRT)

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

RRT Practicalities

- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing
- SELECT_INPUT(x_{rand}, x_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences. This set could be random, or some well chosen set of primitives.

30

RRT Extension

Non-holonomic: approximately (sometimes as approximate as picking best of a

few random control sequences) solve two-point boundary value problem

No obstacles, holonomic:

With obstacles, holonomic:

Issue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle

RC-RRT solution:

- Choose a maximum number of times, m, you are willing to try to expand each node
- For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
- Initialize CVF to zero when node is added to tree
- Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
 - Increase CVF of that node by I
 - Increase CVF of its parent node by 1/m, its grandparent $1/m^2,\ldots$
- When a node is selected for expansion, skip over it with probability CVF/m

35

RRT*

- Asymptotically optimal
- Main idea:
 - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent

:

Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

- \rightarrow In practice: do smoothing before using the path
- Shortcutting:
 - along the found path, pick two vertices X_{t1}, X_{t2} and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.

Additional Resources

- Marco Pavone (<u>http://asl.stanford.edu/</u>):
 - Sampling-based motion planning on GPUs: https://arxiv.org/pdf/1705.02403.pdf
 - Learning sampling distributions: https://arxiv.org/pdf/1709.05448.pdf
- Sidd Srinivasa (https://personalrobotics.cs.washington.edu/)
 - Batch informed trees: https://robotic-esp.com/code/bitstar/
 - Expensive edge evals: <u>https://arxiv.org/pdf/2002.11853.pdf</u>
- Michael Yip (<u>https://www.ucsdarclab.com/</u>)
 - Neural Motion Planners: <u>https://www.ucsdarclab.com/neuralplanning</u>
- Lydia Kavraki (<u>http://www.kavrakilab.org/</u>)
 - Motion in human workspaces: http://www.kavrakilab.org/nsf-nri-1317849.html