CSE-571
Robotics

Fast-SLAM Mapping

Particle Representation

0 A set of weighted samples

o= {E e} v

0 Think of a sample as one hypothesis about the state

0 For feature-based SLAM:

— T
r = (@14, M1z, M1y MM mM,y)

Courtesy: C. Stachniss

Dimensionality Problem

Particle filters are effective in low dimensional spaces
as the likely regions of the state space need to be
covered with samples.

— T
r = (wlit’ M1z, M1 gy M s mM,y)

Courtesy: C. Stachniss

Can We Exploit Dependencies Between
the Different Dimensions of the State
Space?

L1, M7, -, TNNS

Courtesy: C. Stachniss




If We Know the Poses of the Robot,
Mapping is Easy!

L1, M7,y -, TNNf

N 4

Courtesy: C. Stachniss

Key Idea
L1:ts M1, -+, MMM
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If we use the particle set only to model the robot’s path,
each sample is a path hypothesis. For each sample, we
can compute an individual map of landmarks.

Courtesy: C. Stachniss

Rao-Blackwellization

0 Factorization to exploit dependencies between
variables:

p(a,b) = p(b|a)p(a)

0 1f p(b| a) can be computed efficiently, represent
only p(a) with samples and compute p(b | a) for
every sample

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

0 Factorization of the SLAM posterior

p(xo:t, m1:pr | 2108, u1:) =

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances

in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss
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Rao-Blackwellization for SLAM FastSLAM

0 Proposed by Montemerlo et al. in 2002

- Factorization of the SLAM posterior 0 Each landmark is represented by a 2x2 EKF

poses map observations & movements

l l / / 0 Each particle therefore has to maintain M individual
EKFs

p(zo:, mi:pr | 2104, u1:) =

Particl
p(xo-t | 214, u1:t) (M1 | Toot, 21:4) jortile x,y,gl Landmark 1 Landmark 2 ILandmurkM
I T Particle
path posterior map posterior 2 x,Yy, 9 . Landmark 1 Landmark 2 I Landmark M
First introduced for SLAM by Murphy in 1999 ’PV“’"‘"’ z,y,0 . Landmark 1 Landmark 2 I Landmark M
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss
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FastSLAM — Motion Update FastSLAM — Sensor Update
‘ ‘ Landmark 1 ‘ ‘ Landmark 1
ECa ' 2x2 EKF O~ ' 2x2 EKF
Particle #1 | Particle #1 ~d
QB Landmark 2 QB Landmark 2
2x2 EKF 2x2 EKF
Particle #2 L 2 . Particle #2 I -§Y
T e | &>
Particle #3 Particle #3 0 [te
Courtesy: M. Montemerlo} Courtesy: M. Montemerld
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FastSLAM — Sensor Update

FastSLAM — Sensor Update

Particle #1 "~ B Weight = 0.8
Particle #2 (L -§ Weight = 0.4
Particle #3 | T1e Weight = 0.1
Courtesy: M. Montemerld
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. N Update map
Particle #1 of particle 1

i I-L_ Update map
Particle #2 + ?q?\j of particle 2

= asl AN
Particle #3 voTTer Update map
of particle 3
&
Courtesy: M. Montemerld
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Key Steps of FastSLAM 1.0

for each sample

2~ p(ay | 2 )

00 Compute particle weight

0 Update belief of observed landmarks
(EKF update rule)

01 Resample

01 Extend the path posterior by sampling a new pose

witl = |27 Q| =% exp {—3 (2 — ZENTQ™ (2 — 73[k])}

Courtesy: C. Stachniss
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FastSLAM in Action

Courtesy: M. Montemerlo
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FastSLAM — Video — All Maps

200 L L L L L L I L
-200 -100 [} 100 200 300 400 500 600

17

Data Association Problem

00 Which observation belongs to which landmark?
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1 More than one possible association

O

Courtesy: M. Montemerlo

FastSLAM — Video — “Best” particle in
terms of
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Particles Support for Multi-Hypotheses
Data Association
01 Decisions on a per-particle Y
basis
e e
01 Robot pose is factoreql el
out of data association TN & S

decisions

Courtesy: M. Montemerlo
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Per-Particle Data Association

G_ Woas the observation
T ‘ generated by the red
or by the blue
\ j landmark?

P(observation | red) = 0.3 P(observation | blue) = 0.7

Courtesy: M. Montemerlo

Per-Particle Data Association

G_ Was the observation
7 generated by the red
or by the blue

\ j landmark?2

P(observation | red) = 0.3 P(observation | blue) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick a random association weighted by the observation likelihoods
= |f the probability for an assignment is too low, generate a new
landmark

Courtesy: M. Montemerlo
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Results — Victoria Park

0 4 km traverse

0 < 2.5 mRMS
position error

0 100 particles

Blue = GPS
= FastSLAM

Courtesy: M. Montemerlo

Results — Victoria Park (Video)
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Courtesy: M. Montemerlo

24



Results (Sample Size)
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Accuracy of FastSLAM vs. the EKF on Simulated Data
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Courtesy: M. Montemerlo

Results (Motion Uncertainty)
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Comparison of FastSLAM and EKF Given Motion Ambiguity
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Courtesy: M. Montemerlo

25

26

Techniques to Reduce the
Number of Particles Needed

« Better proposals (put the particles in
the right place in the prediction
step).

« Avoid particle depletion (re-sample
only when needed).
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Generating better Proposals

® Use scan-matching to compute highly
accurate odometry measurements
from consecutive range scans.

® Use the improved odometry in the
prediction step to get highly accurate
proposal distributions.
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Motion Model for Scan Matching

g

Raw Odometry
Scan Matching
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Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle

L B

map of particle 3
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Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle
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Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle
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Outdoor Campus Map

= 30 particles
= 250x250m?2

= 1.088 miles
(odometry)

= 20cm resolution
during scan
matching

= 30cm resolution
in final map

Work by Grisetti et al.
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Example (Intel Lab)

= 15 particles
) = four times faster
than real-time
7 P4, 2.8GHz
& | Y 4 = 5cm resolution
Iae e during scan
Jd (7 1= -\ ‘ matching
= & =1 ' = 1cm resolution in
R ‘ 3 final map

Work by Grisetti et al.
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FastSLAM Summary

0 Particle filter-based SLAM

0 Rao-Blackwellization: model the robot’s path by
sampling and compute the landmarks given the
poses

0 Allow for per-particle data association

0 Complexity O(N log M)

Courtesy: C. Stachniss
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FastSLAM
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13.3 + 13.8 (see erratal)

Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A
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Courtesy: C. Stachniss
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