CSE-571 Robotics

Fast-SLAM Mapping

1

Dimensionality Problem

Particle filters are effective in low dimensional spaces as the likely regions of the state space need to be covered with samples.

$$x = (x_{1:t}, m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y})^T$$
high-dimensional

Courtesy: C. Stachnis

Particle Representation

□ A set of weighted samples

$$\mathcal{X} = \left\{ \left\langle x^{[i]}, w^{[i]} \right\rangle \right\}_{i=1,\dots,N}$$

- $\hfill\Box$ Think of a sample as one hypothesis about the state
- □ For feature-based SLAM:

$$x = \left(x_{1:t}, \frac{m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y}}{\text{landmarks}}\right)^{T}$$

Courtesy: C. Stachniss

2

Can We Exploit Dependencies Between the Different Dimensions of the State Space?

$$x_{1:t}, m_1, \ldots, m_M$$

Courtesy: C. Stachnis

If We Know the Poses of the Robot, Mapping is Easy!

$$\frac{x_{1:t}, m_1, \ldots, m_M}{2}$$

Courtesy: C. Stachnis:

5

Rao-Blackwellization

□ Factorization to exploit dependencies between variables:

$$p(a,b) = p(b \mid a) p(a)$$

 $\hfill\Box$ If $p(b\mid a)$ can be computed efficiently, represent only p(a) with samples and compute $\,p(b\mid a)$ for every sample

Courtesy: C. Stachniss

Key Idea

$$\frac{x_{1:t}, m_1, \ldots, m_M}{}$$

If we use the particle set only to model the robot's path, each sample is a path hypothesis. For each sample, we can compute an individual map of landmarks.

Courtesy: C. Stachnis

6

Rao-Blackwellization for SLAM

☐ Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances in Neural Information Processing Systems, 1999

Courtesy: C. Stachnis

7

9

FastSLAM □ Proposed by Montemerlo et al. in 2002 □ Each landmark is represented by a 2x2 EKF ☐ Each particle therefore has to maintain M individual **EKFs Particle** |x,y, heta|Landmark 1 Landmark 2 Landmark M Particle $[x, y, \theta]$ Landmark 1 Landmark 2 Landmark M Particle |x,y, heta|Landmark 2 Landmark 1 Landmark M

10

11

Key Steps of FastSLAM 1.0

□ Extend the path posterior by sampling a new pose for each sample

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

□ Compute particle weight

Compute particle weight
$$w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \; \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} \; (z_t - \hat{z}^{[k]})\right\}$$

innovation covariance

□ Update belief of observed landmarks (EKF update rule)

□ Resample

Courtesy: C. Stachniss

exp. observation

14

Particles Support for Multi-Hypotheses
Data Association

Decisions on a per-particle basis

Robot pose error is factored out of data association decisions

Per-Particle Data Association Was the observation generated by the red or by the blue landmark? P(observation | red) = 0.3 P(observation | blue) = 0.7

Courtesy: M. Montemerlo

21

Results – Victoria Park

- □ 4 km traverse
- □ < 2.5 m RMS position error
- □ 100 particles

Blue = GPS

= FastSLAM

23

Per-Particle Data Association

P(observation | red) = 0.3 P(observation | blue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability for an assignment is too low, generate a new landmark

Courtesy: M. Montemerlo

22

Results – Victoria Park (Video)

Courtesy: M. Montemerlo

24

25

Techniques to Reduce the Number of Particles Needed

- Better proposals (put the particles in the right place in the prediction step).
- Avoid particle depletion (re-sample only when needed).

26

Generating better Proposals

- Use scan-matching to compute highly accurate odometry measurements from consecutive range scans.
- Use the improved odometry in the prediction step to get highly accurate proposal distributions.

27

Rao-Blackwellized Mapping with Scan-Matching

Mab: Intel Research Table Seattle

30

29

Rao-Blackwellized Mapping with Scan-Matching

Mab: Intel Research Page Seattle

31 32

Example (Intel Lab)

- 15 particles
- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Work by Grisetti et al.

34

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

Work by Grisetti et al.

FastSLAM Summary

- □ Particle filter-based SLAM
- Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
- $\hfill\square$ Allow for per-particle data association
- \square Complexity $\mathcal{O}(N\log M)$

Courtesy: C. Stachniss

35

Literature

FastSLAM

- □ Thrun et al.: "Probabilistic Robotics", Chapter 13.1-13.3 + 13.8 (see errata!)
- Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
- Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003

Courtesy: C. Stachniss