CSE-571 Robotics

Bayes Filter Implementations

Particle filters

1

Sample-based Localization (sonar) A/22/20 Probabilistic Robotics 3

Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems, multi-modal beliefs
- Particle filters are a way to efficiently represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

2

2

Density Approximation

Particle sets can be used to approximate densities

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

2

Rejection Sampling

- Let us assume that f(x) <= 1 for all x
- Sample x from a uniform distribution
- Sample *c* from [0,1]
- if f(x) > c keep the sample otherwise reject the sampe

5

Importance Sampling with Resampling: Landmark Detection Example

Importance Sampling Principle

- lacktriangle We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is often called target
- g is often called proposal

Importance Sampling with Resampling

Target distribution
$$f: p(x \mid z_1, z_2,...,z_n) = \frac{\prod_k p(z_k \mid x) \quad p(x)}{p(z_1, z_2,...,z_n)}$$

Sampling distribution g: $p(x \mid z_i) = \frac{p(z_i \mid x)p(x)}{p(z_i)}$

Importance weights w:
$$\frac{f}{g} = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

9

10

Importance Sampling with Resampling

Weighted samples

After resampling

Resampling

- **Given**: Set *S* of weighted samples.
- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i .
- Typically done *n* times with replacement to generate new sample set *S* ′.

11

Robot Motion $Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$ p(s) p(s)

17

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_{t-1} z_t):
- 2. $S_i = \emptyset$, $\eta = 0$
- 3. **For** i = 1...n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

9. **For** i = 1...n

19

 $0. w_t^i = w_t^i / \eta$

Normalize weights

Particle Filter Algorithm $Bel (x_t) = \eta \ p(z_t | x_t) \int p(x_t | x_{t-1}, u_{t-1}) \ Bel (x_{t-1}) \ dx_{t-1}$

18

20

 $w_{t}^{i} = \frac{\text{target distribution}}{\text{proposal distribution}}$ $= \frac{\eta \ p(z_{t} \mid x_{t}) \ p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$

 \rightarrow draw x^{i}_{t-1} from $Bel(\mathbf{x}_{t-1})$

 $\propto p(z_t \,|\, x_t)$

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

50

49

CSE-571
Robotics

Bayes Filter Implementations

Discrete filters

Discrete Bayes Filter Algorithm Algorithm **Discrete_Bayes_filter**(*Bel(x),d*): 3. If *d* is a perceptual data item *z* then For all x do $Bel'(x) = P(z \mid x)Bel(x)$ 5. $\eta = \eta + Bel'(x)$ 6. For all x do 7. $Bel'(x) = \eta^{-1}Bel'(x)$ 9. Else if *d* is an action data item *u* then For all x do $Bel'(x) = \sum P(x | u, x') Bel(x')$ 11. 12. Return Bel'(x) 4/22/20 CSE-571 - Probabilistic Robotics

57

58

