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CSE-571
Robotics

Bayes Filter Implementations

Particle filters
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§ So far, we discussed the
§ Kalman filter: Gaussian, linearization problems, 

multi-modal beliefs

§ Particle filters are a way to efficiently represent 
non-Gaussian distributions

§ Basic principle
§ Set of state hypotheses (“particles”)
§ Survival-of-the-fittest

Motivation
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Sample-based Localization (sonar)

4/22/20 3Probabilistic Robotics
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§ Particle sets can be used to approximate densities

Density Approximation

§ The more particles fall into an interval, the higher 
the probability of that interval

§ How to draw samples form a function/distribution?
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§ Let us assume that f(x)<=1 for all x
§ Sample x from a uniform distribution
§ Sample c from [0,1]
§ if f(x) > c keep the sample

otherwise reject the sampe

Rejection Sampling
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OK
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§ We can even use a different distribution g to 
generate samples from f

§ By introducing an importance weight w, we can 
account for the “differences between g and f ”

§ w = f / g

§ f is often called
target

§ g is often called
proposal

Importance Sampling Principle
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Importance Sampling with Resampling:
Landmark Detection Example
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Distributions

Wanted: samples distributed according to 
p(x| z1, z2, z3)
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This is Easy!
We can draw samples from p(x|zl) by adding 
noise to the detection parameters.
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Importance Sampling with 
Resampling
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Sampling distribution g: p(x | zl ) =
p(zl | x)p(x)

p(zl )
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Importance Sampling with 
Resampling

Weighted samples After resampling
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Resampling

• Given: Set S of weighted samples.

•Wanted : Random sample, where the 
probability of drawing xi is given by wi.

• Typically done n times with replacement to 
generate new sample set S’.

12



4

w2
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Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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1. Algorithm particle_filter( St-1, ut-1 zt):
2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

Particle Filter Algorithm
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draw xit-1 from Bel(xt-1)

draw xit from p(xt | xit-1,ut-1)

Importance factor for xit:
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Particle Filter Algorithm
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Start

Motion Model  Reminder
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Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Using Ceiling Maps for Localization

[Dellaert et al. 99]
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Vision-based Localization

P(z|x)

h(x)
z
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Under a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):

44



12

Elsewhere

Measurement z: P(z|x):
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Global Localization Using Vision
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Recovery from Failure
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Localization for AIBO robots
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Adaptive Sampling
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KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure
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KLD-Sampling Laser
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Particle Filter Projection
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Density Extraction
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Sampling Variance
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SA-1

CSE-571
Robotics

Bayes Filter Implementations

Discrete filters
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CSE-571 - Probabilistic Robotics4/22/20 56

Piecewise 
Constant

56



15

CSE-571 - Probabilistic Robotics4/22/20 57

Discrete Bayes Filter Algorithm 

1. Algorithm Discrete_Bayes_filter( Bel(x),d ):
2. h=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7. For all x do
8.

9. Else if d is an action data item u then
10. For all x do
11.

12. Return Bel’(x)
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CSE-571 - Probabilistic Robotics4/22/20 58

Piecewise Constant 
Representation
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CSE-571 - Probabilistic Robotics4/22/20 59

Grid-based Localization
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CSE-571 - Probabilistic Robotics4/22/20 60

Sonars and 
Occupancy Grid Map 
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CSE-571 - Probabilistic Robotics4/22/20 61

Tree-based Representation

Idea: Represent density using a variant of Octrees
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CSE-571 - Probabilistic Robotics4/22/20 62

Tree-based Representations

• Efficient in space and time
• Multi-resolution
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