So far, we discussed the
Kalman filter: Gaussian, linearization problems, multi-modal beliefs

Particle filters are a way to **efficiently** represent **non-Gaussian distributions**

Basic principle
- Set of state hypotheses (“particles”)
- Survival-of-the-fittest

Density Approximation
- Particle sets can be used to approximate densities
 - The more particles fall into an interval, the higher the probability of that interval
 - How to draw samples form a function/distribution?
Let us assume that $f(x) \leq 1$ for all x
Sample x from a uniform distribution
Sample c from $[0,1]$
if $f(x) > c$ keep the sample
otherwise reject the sample

Rejection Sampling

We can even use a different distribution g to generate samples from f
By introducing an importance weight w, we can account for the “differences between g and f”
$w = \frac{f}{g}$
f is often called target
g is often called proposal

Importance Sampling Principle

Importance Sampling with Resampling: Landmark Detection Example

Distributions

Wanted: samples distributed according to $p(x \mid Z_1, Z_2, Z_3)$
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution $f : p(x|z_1, z_2, ..., z_n) = \frac{\prod_{i=1}^{k} p(z_i | x) p(x)}{p(z_1, z_2, ..., z_n)}$

Sampling distribution $g: p(x|z_l) = \frac{p(z_l | x) p(x)}{p(z_l)}$

Importance weights $w : \frac{f}{g} = \frac{p(x|z_1, z_2, ..., z_n)}{p(x|z_l)} = \frac{\prod_{i=1}^{k} p(z_i | x)}{p(z_1, z_2, ..., z_n)}$

Resampling

- **Given**: Set S of weighted samples.
- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.
- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$
- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \frac{p(z | x) Bel'(x)}{Bel'(x)} = \alpha \frac{p(z | x)}{Bel'(x)}$$

Robot Motion

$$Bel'(x) \leftarrow \int p(x | u, x') Bel(x') \, dx'$$
Sensor Information: Importance Sampling

Sensor Information: Importance Sampling

\[\text{Bel}(x) \leftarrow \alpha p(z \mid x) \text{Bel}^\prime(x) \]

\[w \leftarrow \alpha \frac{p(z \mid x) \text{Bel}^\prime(x)}{\text{Bel}^\prime(x)} = \alpha p(z \mid x) \]

Particle Filter Algorithm

1. Algorithm \texttt{particle_filter}(S_{t-1}, u_{t-1} z_t):
2. \(S_i = \emptyset, \quad \eta = 0 \)
3. For \(i = 1 \ldots n \)
4. Sample index \(j(i) \) from the discrete distribution given by \(w_{i,j} \)
5. Sample \(x'_i \) from \(p(x_i \mid S_{i-1}, u_{i-1}) \) using \(x_{i-1}^{(j)} \) and \(u_{i-1} \)
6. \(w'_i = p(z_i \mid x'_i) \)
7. \(\eta = \eta + w'_i \)
8. \(S_i = S_i \cup \{ x'_i, w'_i \} \)
9. For \(i = 1 \ldots n \)
10. \(w'_i = w'_i / \eta \)

Robot Motion

Robot Motion

\[\text{Bel}^\prime(x) \leftarrow \int p(x \mid u, x') \text{Bel}(x') \, dx' \]

Particle Filter Algorithm

Particle Filter Algorithm

\[\text{Bel}(x_i) = \eta p(z_i \mid x_i) \int p(x_i \mid x_{i-1}, u_{i-1}) \text{Bel}(x_{i-1}) \, dx_{i-1} \]

Importance factor for \(x'_i \):

\[w'_i = \frac{\eta \, p(z_i \mid x_i) \, p(x_i \mid x_{i-1}, u_{i-1}) \, \text{Bel}(x_{i-1})}{\int p(x_i \mid x_{i-1}, u_{i-1}) \, \text{Bel}(x_{i-1})} \approx p(z_i \mid x_i) \]
Motion Model Reminder

Start

10 meters

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Using Ceiling Maps for Localization

[Image: Dellaert et al. 99]

Vision-based Localization

\[P(z|x) \]

Under a Light

Measurement \(z \):

\[P(z|x) \]

Next to a Light

Measurement \(z \):

\[P(z|x) \]
Elsewhere

Measurement z: $P(z|x)$

Global Localization Using Vision

Recovery from Failure

Localization for AIBO robots
Adaptive Sampling

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Sonar

KLD-Sampling Laser

Particle Filter Projection
Density Extraction

Sampling Variance

CSE-571
Robotics

Bayes Filter Implementations

Discrete filters

Piecewise Constant

4/22/20
CSE-571
Discrete Bayes Filter Algorithm

1. Algorithm \texttt{Discrete_Bayes_filter}\,(\texttt{Bel(x),d }):
2. \(\eta = 0 \)
3. If \(d \) is a perceptual data item \(z \) then
 4. For all \(x \) do
 5. \(\text{Bel}'(x) = P(z|x)\text{Bel}(x) \)
 6. \(\eta = \eta + \text{Bel}'(x) \)
 7. For all \(x \) do
 8. \(\text{Bel}'(x) = \eta^{-1}\text{Bel}'(x) \)
9. Else if \(d \) is an action data item \(u \) then
 10. For all \(x \) do
 11. \(\text{Bel}'(x) = \sum_{x'} P(x|u,x') \text{Bel}(x') \)
12. Return \(\text{Bel}'(x) \)

Piecewise Constant Representation

Sonars and Occupancy Grid Map
Tree-based Representation

Idea: Represent density using a variant of Octrees

Tree-based Representations

- Efficient in space and time
- Multi-resolution