
CSE 571 - Robotics

Homework 2 - EKF and Particle Filter for Localization

Due Wednesday May 13th @ 11:59pm

The key goal of this homework is to get an understanding of the properties of Kalman filters and Particle filters
for state estimation. There are two parts to the homework - a written assignment and a programming assignment.
There are two questions in the written assignment. For the programming assignment, you will be implementing
an Extended Kalman Filter (EKF) and a Particle Filter (PF) for landmark based localization. You will also
analyze their performance under various conditions. The zip file containing the code for this homework can be
found on the class website (https://courses.cs.washington.edu/courses/cse571/20sp/).

Useful reading material: Lecture notes, Chapters 3,4,5,7 & 8 of Probabilistic Robotics, Thrun, Burgard and Fox
(pdf shared with class).

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late (May 18th @ 11:59pm), at a penalty of 10%
of the maximum grade per day.

1 Writing assignments

1.1 Kalman Gain [10 points]

Recall that if we have two Gaussian probability density functions:
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then, their product is still a Gaussian (up to a scaling factor):
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Show that in 1D, the Kalman filter correction step shown below is equivalent (up to a scaling factor) to a
multiplication of the predicted state (N (x; µ̄, σ̄2)) and observation (N (z;x, σ2

obs)) Gaussians with mean and
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variance given by:

µ = µ̄+K(z − µ̄)

σ2 = (1−K)σ̄2

where K = σ̄2

σ̄2+σ2
obs

.

1.2 Motion Model Jacobian [10 points]

Figure 1 describes a simple motion model. The state of the robot is its 2D position and orientation: s = [x, y, θ].
The control to the robot is u = [δrot1, δtrans, δrot2], i.e. the robot rotates by δrot1, drives straight forward δtrans,
then rotates again by δrot2.

The equations for the motion model g are as follows:

xt+1 = xt + δtrans ∗ cos(θt + δrot1)

yt+1 = yt + δtrans ∗ sin(θt + δrot1)

θt+1 = θt + δrot1 + δrot2

where st+1 = [xt+1, yt+1, θt+1] is the prediction of the motion model. Derive the Jacobians of g with respect to
the state G = ∂g

∂s and control V = ∂g
∂u :
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2 Programming assignments

In the programming component of this assignment, you will implement an Extended Kalman Filter (EKF) and
Particle Filter (PF) for localizing a robot based on landmarks.

We will use the odometry-based motion model you derived in question 1.2. We assume that there are landmarks
present in the robot’s environment. The robot receives the bearings (angles) to the landmarks and the ID of the
landmarks as observations: (bearing, landmark ID).

We assume a noise model for the odometry motion model with parameters α (PR Table 5.6) and a separate
noise model for the bearing observations with parameter β (PR Section 6.6). The landmark ID observation is
noise-free. See the provided starter code for implementation details.

At each timestep, the robot starts from the current state and moves according to the control input. The robot
then receives a landmark observation from the world. You will use this information to localize the robot over the
whole time sequence with an EKF and PF.
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Figure 1: Odometry-based motion model

Code Overview

The starter code is written in Python and depends on NumPy and Matplotlib. The conda environment you
installed for HW1 should suffice for this homework. This section gives a brief overview of each file.

• localization.py – This is your main entry point for running experiments.

• soccer_field.py – This implements the dynamics and observation functions, as well as the noise models
for both. Add your Jacobian implementations here!

• utils.py – This contains assorted plotting functions, as well as a useful function for normalizing an angle
between [−π, π].

• policies.py – This contains a simple policy, which you can safely ignore.

• ekf.py – Add your extended Kalman filter implementation here!

• pf.py – Add your particle filter implementation here!

Command-Line Interface

To visualize the robot in the soccer field environment, run

$ python localization.py --plot none

The blue line traces out the robot’s position, which is a result of noisy actions. The green line traces the robot’s
position assuming that actions weren’t noisy. After you implement a filter, the filter’s estimate of the robot’s
position will be drawn in red.
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$ python localization.py --plot ekf

$ python localization.py --plot pf

To see other command-line flags available to you, run

$ python localization.py -h

Data Format

• state: [x, y, θ]

• control: [δrot1, δtrans, δrot2]

• observation: [θbearing]

Hints

• Make sure to call utils.minimized_angle any time an angle or angle difference could exceed [−π, π].

• Make sure to use the low-variance systematic sampler from lecture. It gives you a smoother particle
distribution and also requires only a single random number per resampling step.

• Turn off plotting for a significant speedup.

4



2.1 EKF Implementation [40 points]

Implement the extended Kalman filter algorithm in ekf.py. You will need to fill in ExtendedKalmanFilter.update

and the Field methods G, V, and H. Your results from a successful EKF implementation should be comparable
to the following results.

$ python localization.py ekf --seed 0

...

Mean position error: 8.9983675360847

Mean Mahalanobis error: 4.416418248584298

ANEES: 1.472139416194766

(a) Plot the real robot path and the filter path under the default (provided) parameters.

(b) Plot the mean position error as the α and β factors range over r = [1/64, 1/16, 1/4, 4, 16, 64]1 and discuss
anything interesting you observe.

You should run 10 trials per value of r. One run might look something like:

$ python localization.py ekf --data-factor 4 --filter-factor 4

(c) Plot the mean position error and ANEES (average normalized estimation error squared) as the filter α, β
factors vary over r (as above) while the data is generated with the default. Discuss anything interesting you
observe.

2.2 PF Implementation [40 points]

Implement the particle filter algorithm in pf.py. You will need to fill in ParticleFilter.update and
ParticleFilter.resample.

$ python localization.py pf --seed 0

...

Mean position error: 8.567264372950905

Mean Mahalanobis error: 14.742252771106532

ANEES: 4.914084257035511

(a) Plot the real robot path and the filter path under the default parameters.

(b) Plot the mean position error as the α, β factors range over r and discuss.

(c) Plot the mean position error and ANEES as the filter α, β factors vary over r while the data is generated
with the default.

(d) Plot the mean position error and ANEES as the α, β factors range over r and the number of particles varies
over [20, 50, 500].

1Since the factors are multiplied with variances, this is between 1/8 and 8 times the default noise values.
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3 Submission

You will be using Gradescope https://www.gradescope.com/ to submit the homework. Please submit the
written assignment answers as a PDF. For the code, please submit ekf.py, pf.py, and soccer field.py.
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