
CSE 571 - Robotics

Homework 1 - Bayes Filters and Gaussian Processes

Due Monday April 20th @ 11:59pm

This homework involves three writing assignments and two programming assignments in Python. In the first
programming problem, you will be implementing a 1D Gaussian process for predicting outputs given training
data. In the second programming problem, you will be using multiple Gaussian processes to learn the dynamics
of a cartpole system based on interactions with a cartpole simulator. The zip file containing the code for this
homework can be found on the class website (https://courses.cs.washington.edu/courses/cse571/20sp/).

Useful reading material: Lecture notes, Chapter 2 of Probabilistic Robotics, Thrun, Burgard and Fox
(pdf shared with class) and Chapter 2 of Gaussian Processes for Machine Learning, Rasmussen and Williams
(Available online at: http://www.gaussianprocess.org/gpml/chapters/)

Collaboration: Students can discuss questions, but each student MUST write up their own solution, and code
their own solution. We will be checking code/PDFs for plagiarism.

Late Policy: This assignment may be handed in up to 5 days late (April 25th @ 11:59pm), at a penalty of 10%
of the maximum grade per day.

1 Writing assignments

1.1 Conditional Independence [5 points]

Let X,Y and Z be three random variables. Assuming that X and Y are conditionally independent given Z:

p(x, y|z) = p(x|z)p(y|z)

show that:

p(x|z) = p(x|z, y)

p(y|z) = p(y|z, x)

1.2 Bayes Filter [15 points]

A vacuum cleaning robot is equipped with a cleaning unit to clean the floor. The robot has a binary sensor to
detect whether a floor tile is clean or dirty. However, neither the cleaning unit nor the sensor are perfect. From

1

https://courses.cs.washington.edu/courses/cse571/20sp/
http://www.gaussianprocess.org/gpml/chapters/

previous experience, you know that the robot succeeds in cleaning a dirty floor tile with a probability of

P(xt+1 = clean|xt = dirty) = 0.6,

where xt is the state of the floor tile at time t and xt+1 is the resulting state after the action has been applied.
Activating the cleaning unit when the tile is clean will never make it dirty. Assume the robot always cleans at
every time t (i.e. the transition probabilities model the fact that the robot is cleaning the floor tile).

The probability that the sensor indicates that the floor tile is clean although it is dirty is given by p(zt =
clean|xt = dirty) = 0.2, and the probability that the sensor correctly detects a clean tile is given by p(zt =
clean|xt = clean) = 0.6.

Unfortunately, you have no knowledge about the current state of the floor tile. However, after cleaning the tile,
the robot’s sensor indicates that it is clean. Compute the probability that the floor tile is now clean after the
robot has vacuum-cleaned it. Assume a prior distribution at time t as p(xt = clean) = c, where 0 ≤ c ≤ 1. Then,
plot p(xt+1 = clean|zt+1 = clean) for 0 ≤ c ≤ 1.

1.3 Gaussian Conditioning [20 points]

Let X and Y denote two scalar random variables that are jointly Gaussian:

p(x, y) = N (µ,Σ)

=
1

2π
√
|Σ|

exp

{
−1

2

([
x
y

]
−
[
µX
µY

])ᵀ

Σ−1
([
x
y

]
−
[
µX
µY

])}
,

where µ =
[
µX µY

]ᵀ
and Σ =

[
σ2
X σ2

XY

σ2
XY σ2

Y

]
are the mean and covariance, respectively. Show that conditioning

on Y results in a Gaussian over X:

p(x | y) = N (µX|Y , σ
2
X|Y)

=
1√

2πσX|Y
exp

{
−1

2

(x− µX|Y)2

σ2
X|Y

}

with µX|Y = µX +
σ2
XY

σ2
Y

(y − µY) and σ2
X|Y = σ2

X −
σ4
XY

σ2
Y

.

1.3.1 Hints

• Use the definition of the conditional distribution and “complete the square” to get the answer

• Given p(x, y) is jointly Gaussian, the marginal distribution of Y is also Gaussian: p(y) = N (µY , σ
2
Y)

• For a 2x2 matrix positive definite matrix A =

[
a b
c d

]
, A−1 = 1

|A|

[
d −c
−b a

]
, |A| = ad− bc

2

2 Programming problems

2.1 Preliminaries

We highly suggest you install Anaconda (https://www.anaconda.com/) or Miniconda (https://docs.conda.
io/en/latest/miniconda.html) to manage a Python virtual environment. Using such a software, manag-
ing software packages (e.g. requiring certain version numbers) is much easier, and you can create a differ-
ent virtual environment for each project. See this tutorial for more information: https://linuxhint.com/

anaconda-python-tutorial/.

In the source code, we provide a requirements.txt file with the required Python packages to run the code. To
create a conda environment and install the required packages, simply run:

conda create -n cse571_20sp python=3.6

source activate cse571_20sp

cd <code directory>

pip install -r requirements.txt

The above commands create an anaconda environment cse571 20sp with a python3.6 interpreter and activate
the environment. It then installs necessary packages for this homework assignment. After the commands have
completed, you can run a Python script by typing python <script name>.py.

Python version. There are two major versions of Python: Python2 and Python3. Code written in Python2
may crash or produce incorrect results in Python3. In this homework you must make sure your code is
compatible with Python3. We will test your code with a python3.6 interpreter.

OS compatibility. Our code should work in both MacOS and Linux. If you encounter any compatibility issue
feel free to reach us. We recommend you have Linux installed because many robotics software (e.g. ROS) only
works well in Linux, and you may want to use them for your project.

2.2 Gaussian Process predictions (1D) [25 points]

In this assignment, you will implement a 1D Gaussian process that predicts outputs based on noisy training
data. You will be given (noisy) 1D training data pairs Dtrain = {(x1, y1), (x2, y2) . . . }. Your task is to predict
the output for a set of test queries Dtest = {x̂1, x̂2, ...}, conditioned on the training data.

The assignment requires you to implement two separate kernel functions, namely the:

• Squared Exponential Kernel: This is the kernel we discussed in class.

k(xi, xj) = σ2
f exp(− (xi − xj)TM(xi − xj)

2
)

3

https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://linuxhint.com/anaconda-python-tutorial/
https://linuxhint.com/anaconda-python-tutorial/

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

Training data

True function
Noisy training data

0 2 4 6 8 10

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Test predictions - means and variances

True function
Test mean
Test variance
Test variance + noise
Noisy training data

Figure 1: Gaussian process prediction using the Squared-Exponential kernel with default parameters.

where σf is a scale factor for the kernel and M is a metric measuring distance between two input vectors.

In the 1D case, M =
1

l2
where l is the length scale of the kernel.

• Matern Kernel: This kernel is used commonly in many machine learning applications.

k(xi, xj) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)

where ν and l are (positive) parameters of the kernel and r = |xi − xj |. Kν is a modified bessel function
and Γ is the gamma function. Good parameters settings for ν are 0.25 - 3.

The code for this section is in the file gp1d.py in the zip file. You are encouraged to see how the Gaussian
process mean and uncertainty changes as more training points are given. You are also encouraged to play with
the kernel parameters to see their effect on the GP. The code displays the training data and the predicted mean
function and the respective variances (supplied by you) for the test queries. You can find the equations for the
mean and variance predictions from the lecture slides. Fig. 1 shows results from a correct implementation of
the SE kernel (using the default parameters).

2.3 Learning the dynamics of a cartpole using GPs [35 points]

In this assignment, you will implement Gaussian processes to approximate the dynamics of a cartpole system.
A cartpole is an underactuated system with a pendulum fixed to a cart and is controlled by applying a force on
the cart. We represent the state x and control u of the cartpole system as follows:

Cartpole state:

dθ [rad/s] angular velocity of the pendulum

4

dp [m/s] velocity of cart

θ [rad] angle of the pendulum

p [m] position of cart

Control:

u [N] force on cart

Our task is to learn a model of the cartpole dynamics:

xt+1 = f(xt, ut)

from data using Gaussian processes. We do this by interacting with a cartpole simulator which, over time
provides us with the proper training data needed for the GP. We make two important modifications to the
learning problem:

• First, we use an augmented state (x̂) instead of the actual state (x) as input to the GP. The augmented
state replaces the pendulum angle θ with the pair [sin(θ), cos(θ)] in order to avoid the wrap-around issue
with angles.

• Second, we predict delta-values of the state (dxt), rather than the state directly. This reduces the difficulty
of the problem as the model needs to only capture changes in state, centers the predictions (approximately)
around zero and prevents wrap around issues when predicting θ.

We now have the following inputs and outputs to the GP:

GP dynamics model input:

[dθt, dpt, sin(θt), cos(θt), pt, ut]

GP dynamics model prediction:

[∆dθt+1,∆dpt+1,∆θt+1,∆pt+1] # delta-state, not next state

The input of the GP is 6D while the output is 4D. Since a GP only predicts a 1-dimensional output, we will
train 4 separate GPs for this problem.

2.3.1 Learning the dynamics model

Let us now look at the training process for the Gaussian Process dynamics model. The system is setup to train
in epochs, using data from the cartpole simulator to train a model that becomes more accurate with each epoch.
Each epoch proceeds as follows:

1. At the start of an epoch, a random initial state x0 and a sequence of H controls are chosen (either randomly
or via a preset policy) U = {u0, u1, . . . , uH−1}. The code propagates these controls through the cartpole
simulator to generate a rollout (trajectory) {x0, u0, . . . , xH−1, uH−1, xH}.

2. During this epoch, we will compute our GP predictions x̂t+1 = fGP(xt, ut) for every t, and (visually)
compare this with the actual state xt+1 to evaluate how well our GP captures the dynamics of the cartpole.

5

Additionally, the ground truth trajectory will be added to the training dataset for the GP at the end of
the current epoch.

3. To (visually) evaluate how well our GP model is able to predict the dynamics of the cartpole, we make
predictions using the GP model, conditioned on the simulator rollouts from previous epochs. You need
to implement this step. Alg 1 shows pseudocode for generating the rollout. We compute the mean and
variance of the predicted next state using the GP and propagate the mean prediction across time. We call
this a Mean-Rollout since we discard the actual next state distribution and rollout only the mean.

Algorithm 1 Mean-Rollout using GP (fGP) - TO BE IMPLEMENTED

Inputs: Initial state: x0, Training inputs: X, Training targets: Y .
Output: Future states: {x1, x2, . . . , xH}
for t = 0 : H − 1 do

x̂t = g(xt) . Create augmented state
for k = 0 : 3 do . Predict using separate GP per output dimension

(µt[k], σt[k]) = fGP [k](x̂t, ut) . Predict delta-state mean and variance. a[k] = kth element of a
xt+1[k] = xt[k] + µt[k] . Compute next state’s mean

4. The Mean-Rollout captures how well the GP does in expectation. In this step, we would like to see how the
variance of the GP behaves as we predict across a long time horizon. Unlike the previous case, we will now
make use of the complete Gaussian distribution predicted by the GP. Instead of using the mean delta-state,
we will sample from the distribution around the mean, based on the predicted variance. This will result in
trajectories that capture the uncertainties in the predictions over longer horizons. Once again, you need
to implement this step. Alg 2 shows the pseudocode for generating sampled rollouts. Ideally, to fully
represent the uncertainty, we would generate multiple samples from the state distribution at each timestep
of each trajectory. Unfortunately, this would result in the number of samples increasing exponentially over
time. To avoid this, we only sample once from the distribution at each timestep and repeat this N times
to generate the rollouts. In practice, these samples will be near the Mean-Rollout initially and slowly move
away as the uncertainty increases over time.

Algorithm 2 Sampled Rollouts using GP (fGP) - TO BE IMPLEMENTED

Inputs: Initial state: x0, Training inputs: X, Training targets: Y .
Output: Sampled Future states (N samples per timestep): {x01, x02, . . . , x0H}, {x11, x12, . . . , x1H}, . . . , {xN−1

1 , xN−1
2 , . . . , xN−1

H }
for j = 0 : N − 1 do . Generate N sampled trajectories

for t = 0 : H − 1 do
x̂jt = g(xjt) . Create augmented state. ∀j, xj0 = x0
for k = 0 : 3 do . Predict using separate GP per output dimension

(µj
t [k], σj

t [k]) = fGP [k](x̂jt , ut) . Predict delta-state mean and variance. a[k] = kth element of a
s ∼ N (µj

t [k], σj
t [k]) . Sample a delta-state from the predicted Gaussian

xjt+1[k] = xjt [k] + s . Compute next sampled state

5. Finally, at the end of each epoch, we compare the predictions from the GP (Mean/Samples) with the
ground-truth from the cartpole simulator. The system displays the mean trajectory, the N rolled out
trajectories and plots the GP and simulator predictions with uncertainties. Also, the predictions from the
cartpole simulator are added to the training data from the previous epoch. We use the augmented state
and control pair [x̂t, ut] as the training inputs with the delta-states dxt as the targets.

6

2.3.2 Remarks:

A few points to note:

• The output is 4-dimensional. You need to create a separate GP per output dimension.

• The kernel to use for this problem is the Squared Exponential kernel. Unlike the previous problem, the
kernel inputs are 6-dimensional. There is a different length scale for each dimension of the input (6 values
per GP) and for each GP (4 GPs in total).

• The hyper-parameters (for each GP) are given to you for this task. You are encouraged to modify the
hyper-parameters and see how the system behaves.

• With a successful implementation, you will see that the system does quite poorly at the start (the rollouts
are all over the place) and starts to improve very fast. The predictions should match well against the
simulator with low variance. One case where the system fails to do well even with a lot of training data is
when the pendulum is upright as even a small force there can cause large changes in the state.

• When sampling from a Gaussian to sample GP rollouts, please use np.random.RandomState.normal(). See
the code for more details. This will allow our autograders to fix the random seed and grade your results
accurately.

• When implementing mathematical code in Python/Numpy, try to minimize the amount of for loops.
If a for loop can be replaced with vectorized computation, it will greatly increase the efficiency of the
code. Here is a nice tutorial about this and other advantages of Numpy: https://realpython.com/

numpy-array-programming.

The code to be modified for this part of the homework is in cartpole test.py.

You can find a video of a correct implementation for the first 12 epochs at https://courses.cs.washington.

edu/courses/cse571/20sp/homeworks/cartpole.mp4. Your results might be slightly different based on how
you sample from the gaussian for the 10 rollouts. The results should have the general trend of high variance for
the first few epochs (evidenced by the rollouts - transparent cartpoles moving all over) and lower variance as you
get more data (tighter clumping of the rollouts).

3 Submission

You will be using Gradescope https://www.gradescope.com/ to submit the homework. Please submit the
written assignment answers as a PDF. For the code, please submit gp1d.py and cartpole test.py.

7

https://realpython.com/numpy-array-programming
https://realpython.com/numpy-array-programming
https://courses.cs.washington.edu/courses/cse571/20sp/homeworks/cartpole.mp4
https://courses.cs.washington.edu/courses/cse571/20sp/homeworks/cartpole.mp4
https://www.gradescope.com/

	Writing assignments
	Conditional Independence [5 points]
	Bayes Filter [15 points]
	Gaussian Conditioning [20 points]
	Hints

	Programming problems
	Preliminaries
	Gaussian Process predictions (1D) [25 points]
	Learning the dynamics of a cartpole using GPs [35 points]
	Learning the dynamics model
	Remarks:

	Submission

