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Kalman Filters

Slides adapted from Dieter Fox and probabilistic-robotics.org



•Prediction

•Correction

Bayes Filter Reminder



Properties of Gaussians



Properties of Gaussians



• Marginalization and conditioning in Gaussians 
results in Gaussians

• We stay in the “Gaussian world” as long as we 
start with Gaussians and perform only linear 
transformations.

Multivariate Gaussians
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Discrete Kalman Filter
Estimates the state x of a discrete-time 
controlled process that is governed by the 
linear stochastic difference equation

with a measurement 
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Components of a Kalman Filter

Matrix (nxn) that describes how the state 
evolves from t-1 to t without controls or 
noise.
Matrix (nxl) that describes how the control ut 
changes the state from t to t-1.

Matrix (kxn) that describes how to map the 
state xt to an observation zt.

Random variables representing the process 
and measurement noise that are assumed to 
be independent and normally distributed 
with covariance Rt and Qt respectively.



Linear Gaussian Systems: Initialization

• Initial belief is normally distributed:



• Dynamics are linear function of state and 
control plus additive noise:

Linear Gaussian Systems: Dynamics



Linear Gaussian Systems: Dynamics



• Observations are linear function of state 
plus additive noise:

Linear Gaussian Systems: Observations



Linear Gaussian Systems: Observations



Kalman Filter Algorithm 

1.  Algorithm Kalman_filter (               ): 

2.  Prediction:
3.       
4.   

5.  Correction:
6.       
7.  
8.  
9.  Return
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Kalman Filter Updates in 1D
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Kalman Filter Updates in 1D



Kalman Filter Updates in 1D



Kalman Filter Updates
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The Prediction-Correction-Cycle

Prediction
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The Prediction-Correction-Cycle

Correction
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The Prediction-Correction-Cycle

Correction

Prediction



Kalman Filter Summary

• Highly efficient: Polynomial in 
measurement dimensionality k and 
state dimensionality n: 
             O(k2.376 + n2) 

• Optimal for linear Gaussian systems!

• Most robotics systems are nonlinear!



EXTENDED KALMAN 
FILTER

Going non-linear
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Nonlinear Dynamic Systems

• Most realistic robotic problems involve 
nonlinear functions



Linearity Assumption Revisited



Non-linear Function



EKF Linearization (1)



EKF Linearization (2) 



EKF Linearization (3)



• Prediction:

• Correction:

EKF Linearization: First Order 
Taylor Series Expansion



EKF Algorithm 

1. Extended_Kalman_filter(                  ):

2.  Prediction:
3.       
4.   

5.  Correction:
6.       
7.  
8.  
9.  Return      



Localization

• Given 
• Map of the environment.
• Sequence of sensor measurements.

• Wanted
• Estimate of the robot’s position.

• Problem classes
• Position tracking
• Global localization
• Kidnapped robot problem (recovery)

“Using sensory information to locate the robot 
in its environment is the most fundamental 
problem to providing a mobile robot with 
autonomous capabilities.”                 [Cox ’91]



Landmark-based Localization



1. EKF_localization (                          ):
Prediction:

2.

3.

4.  

5.  
6.  

Motion noise

Jacobian of g w.r.t location

Predicted mean
Predicted covariance

Jacobian of g w.r.t control



1. EKF_localization (                         ):  See Notes

Prediction:

2.

3.

4.  

5.  
6.  Predicted covariance



EKF Prediction Step



1. EKF_localization (                          ): See Notes

Correction:

2.

3.

4.  
5.  
6.  
7.  
8.  

Predicted measurement mean

Pred. measurement covariance

Kalman gain

Updated mean

Updated covariance

Jacobian of h w.r.t location



EKF Correction Step



Estimation Sequence (1)



Estimation Sequence (2)



EKF Summary

• Highly efficient: Polynomial in 
measurement dimensionality k and 
state dimensionality n: 
             O(k2.376 + n2) 

• Not optimal!
• Can diverge if nonlinearities are large!
• Works surprisingly well even when all 

assumptions are violated!


