Welcome to CSE 571
Robotics: Algorithms and Applications

Instructor: Tapomayukh “Tapo” Bhattacharjee
TAs: Aditya “AVK” Vamsikrishna, Brian Hou

Some slides adapted from Dieter Fox and probabilistic-robotics.org
High-level View on Robot Systems

World model

Control system

Sensor data

Actions
Sense - Plan - Act Paradigm

Sensing
Perceive world

Planning
Devise strategy

Control
Execute plan
Robotics Traditionally
Robotics Now
Current Research Trends / Topics

- Self-driving cars, drones
- Manipulation of everyday objects
- Complex household tasks
- Perception: object detection, 3D mapping, tracking, SLAM
- Human robot interaction
- Machine learning: Deep learning, Reinforcement learning
Course Objectives

- Learn about **fundamental algorithms** in robotics
- Obtain **hands-on** experience
- Understand and integrate subfields of robotics
 - state estimation, navigation, planning, controls, learning
- Critically evaluate current research and identify open problems
Course Details

- **Grading**
 - Homeworks (Theory + Programming): 60%
 - Team project: 30%
 - Participation: 10%

- **Office hours (to be scheduled)**

- **Prerequisites:** probability, linear algebra

- **Readings from Probabilistic Robotics, Reinforcement Learning**

- **Websites**
 - https://courses.cs.washington.edu/courses/cse571/19wi/
 - Piazza, Gradescope, Canvas
A little background

• Model-based:
 • Deterministic robot, full and accurate model available
 • From mid 70’s

*Motion planning (Reif ’79, Schwartz ‘87, Canny ‘87, Latombe ‘91, Kavraki ‘96 etc.) - Residual uncertainty using low-level controllers. With sensing, can react to unseen using Potential fields (Khatib ‘86), Navigation functions (Koditschek ‘87) etc.
A little background

- Model-free:
 - *Behavior-based robotics (no internal model)*
 - From mid 80’s

Kaelbling and Rosenschien ‘91, Brooks ‘86, ‘90, Sensing is important, simple tasks (reactive), Hybrid architecture (Arkin ‘98)
A little background

• **Probabilistic Robotics:**
 - *Both models and sensing present but incomplete / insufficient*
 - From **mid 90’s** but can be traced back to Kalman (60’s)

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

Smith and Cheeseman ‘86, Occupancy Grid Mapping (Elfes ‘87, Moravec ‘88), Partially Observable planning (Kaelbling ‘98), Particle filters (Dellaert ‘99), and it continues...
Intro to Probability
Discrete Random Variables

• X denotes a random variable.

• X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$.

• $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i.

• $P(\cdot)$ is called probability mass function.

• E.g. $P(\text{Room}) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$
Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
\Pr(x \in (a, b)) = \int_{a}^{b} p(x) \, dx
$$

- E.g.
Joint and Conditional Probability

• \(P(X=x \text{ and } Y=y) = P(x,y) \)

• If \(X \) and \(Y \) are independent then
 \[P(x,y) = P(x) \cdot P(y) \]

• \(P(x \mid y) \) is the probability of \(x \) given \(y \)
 \[P(x \mid y) = \frac{P(x,y)}{P(y)} \]
 \[P(x,y) = P(x \mid y) \cdot P(y) \]

• If \(X \) and \(Y \) are independent then
 \[P(x \mid y) = P(x) \]
Law of Total Probability, Marginals

Discrete case

\[\sum_x P(x) = 1 \]

\[P(x) = \sum_y P(x, y) \]

\[P(x) = \sum_y P(x \mid y) P(y) \]

Continuous case

\[\int p(x) \, dx = 1 \]

\[p(x) = \int p(x, y) \, dy \]

\[p(x) = \int p(x \mid y) p(y) \, dy \]
Events

- $P(+x, +y)$?
- $P(+x)$?
- $P(-y \text{ OR } +x)$?
- Independent?

$P(X, Y)$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Marginal Distributions

\[P(X, Y) \]

\[
\begin{array}{ccc}
 \text{X} & \text{Y} & \text{P} \\
 +x & +y & 0.2 \\
 +x & -y & 0.3 \\
 -x & +y & 0.4 \\
 -x & -y & 0.1 \\
\end{array}
\]

\[
P(x) = \sum_y P(x, y)
\]

\[
P(y) = \sum_x P(x, y)
\]

\[P(X) \]

\[
\begin{array}{cc}
 \text{X} & \text{P} \\
 +x & \\
 -x & \\
\end{array}
\]

\[P(Y) \]

\[
\begin{array}{cc}
 \text{Y} & \text{P} \\
 +y & \\
 -y & \\
\end{array}
\]
Conditional Probabilities

\[P(X, Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \(P(+x \mid +y) \)?
- \(P(-x \mid +y) \)?
- \(P(-y \mid +x) \)?
Bayes Formula

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

\[\Rightarrow \]

\[P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}} \]

• Often causal knowledge is easier to obtain than diagnostic knowledge.
• Bayes rule allows us to use causal knowledge.
Conditioning

- Bayes rule and background knowledge:

\[P(x \mid y, z) = \frac{P(y \mid x, z) \ P(x \mid z)}{P(y \mid z)} \]

\[P(x \mid y) = \int P(x \mid y, z) \ P(z \mid y) \ dz \]
Conditional Independence

\[P(x, y \mid z) = P(x \mid z)P(y \mid z) \]

• Equivalent to

\[P(x \mid z) = P(x \mid z, y) \]

and

\[P(y \mid z) = P(y \mid z, x) \]
Bayes Filtering
Combining Evidence

• Often the world is *dynamic* since
 • actions carried out by the robot,
 • actions carried out by other agents,
 • or just the *time* passing by

change the world

• How can we *combine the evidence* or *incorporate* such actions?
Typical Actions

- The robot *turns its wheels* to move
- The robot *uses its manipulator* to grasp an object
- Plants grow over *time*...

- Actions are *never carried out with absolute certainty*.
- In contrast to measurements, *actions generally increase the uncertainty*.
Modeling Belief

- Robot’s internal knowledge about the state

\[Bel(x_t) = p(x_t | z_{1:t}, u_{1:t}) \]
Modeling Motion

• To incorporate the outcome of an action u into the current “belief”, we use the conditional pdf

$$p(x_t | x_{t-1}, u_t)$$

• This term specifies the pdf that executing u changes the state from x_{t-1} to x_t.
Modeling Sensor

- Generative model of the sensor given the state:

\[p(z_t | x_t) \]
Bayes Filters: Framework

- **Given:**
 - Initial belief of the system state \(Bel(x_0) \)
 - Sensor model \(p(z_t | x_t) \)
 - Motion model \(p(x_t | x_{t-1}, u_t) \)

- **Wanted:**
 - Estimate of the state \(X \) of a dynamical system.
 - The belief of the state is also called posterior:

\[
Bel(x_t) = p(x_t | z_{1:t}, u_{1:t})
\]
Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors
Bayes Filters (See notes)

\[\text{Bel}(x_t) = P(x_t \mid u_1, z_1, \ldots, u_t, z_t) \]

Bayes

\[= \eta \ P(z_t \mid x_t, u_1, z_1, \ldots, u_t) \ P(x_t \mid u_1, z_1, \ldots, u_t) \]

Markov

\[= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \ldots, u_t) \]

Total prob.

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1}) \]

\[\ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1} \]

Markov

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1} \]

Markov

\[= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \ dx_{t-1} \]

\[= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ \text{Bel}(x_{t-1}) \ dx_{t-1} \]
\[
Bel(x_i) = \eta \ P(z_t \mid x_i) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
\]

1. Algorithm **Bayes_filter** \((Bel(x_{t-1}), u_t, z_t)\):

2. for all \(x_t\) do

3. \(\bar{Bel}(x_t) = \int p(x_t \mid x_{t-1}, u_t) Bel(x_{t-1}) dx_{t-1}\)

4. \(Bel(x_t) = \eta p(z_t \mid x_t) \bar{Bel}(x_t)\)

5. endfor

6. return \(Bel(x_t)\)

Prediction - Correction Cycle
Bayes Filters: Framework

• **Initial belief** of the system state $Bel(x_0)$
• **Sensor model** $p(z_t \mid x_t)$
• **Motion model** $p(x_t \mid x_{t-1}, u_t)$
• **Belief representation**
 • Gaussians - Kalman Filters
 • Particles - Particle Filter
Representations for Bayesian Robot Localization

Discrete approaches ('95)
- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Kalman filters (late-80s)
- Gaussians, unimodal
- approximately linear models
- position tracking

Particle filters ('99)
- sample-based representation
- global localization, recovery

Multi-hypothesis ('00)
- multiple Kalman filters
- global localization, recovery

AI

Robotics
Summary

• Bayes rule allows us to compute probabilities that are hard to assess otherwise.

• Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.

• Bayes filters are a probabilistic tool for estimating the state of dynamic systems.